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A CHARACTERISATION OF HELICES AND CORNU SPIRALS
IN REAL SPACE FORMS

J. ARROYO, M. BARROS AND O.J. GARAY

We classify unit speed curves contained in a real space form of arbitrary dimension
Nm(c), whose mean curvature vector is proper for the Laplacian. Then we use these
results to classify Hopf cylinders of S3 and semi-Riemannian Hopf cylinders of H\ (—1)
with proper mean curvature function.

1. INTRODUCTION

Given an isometric immersion of a Riemannian manifold into Euclidean space,

x : Mn —> M , we use H and A to denote the mean curvature vector and the Laplacian

of {M,x) respectively. If M™ = Em, the Euclidean space, we have two interesting conse-

quences of Beltrami's formula, Ax = -nH. The first one is that minimal submanifolds of

Em have harmonic position vector {harmonic submanifolds). By using again Beltrami's

formula, we see that submanifolds satisfying AH = 0 also verify A2x = 0 and for this

reason they were called biharmonic submanifolds [6]. Chen conjectured in [6] that the

family of biharmonic immersions is the same as that of harmonic (minimal) immersions.

The conjecture has been proved to be true in E3, [10]. Other verifications have been

made which provide further support for it : [13, 11]. As far as we know, the conjecture

is still unsolved.

A second consequence is Takahashi's Theorem [16]: a Euclidean submanifold (Mn, x)

satisfies Ax = Ax, if and only if, (M", x) is either minimal in Em (A = 0) or minimal in a

hypersphere of Em (A > 0). One sees easily that condition Ax = Ax implies AH = XH,

where H is considered as an m-valued function on M. Unlike condition Ax = Ax which

makes no sense for a submanifold of any Riemannian manifold, condition AH = XH

can be considered in such a more general context as we see in Section 2. Thus, it

makes sense to study the condition AH = XH ( and also ADH = XH , see below) as

a generalisation of Takahashi's one, for submanifolds of any Riemannian manifold. The

study of submanifolds of Euclidean and pseudo-Euclidean spaces satisfying AH = XH

was initiated by Chen [7, 8], and it is related with the theory of submanifolds of finite
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38 J. Arroyo, M. Barros and O.J. Garay [2]

type introduced by the same author. (For details one may consult the excellent survey
[9].) In Section 3, we see that we can reduce codimension to two, for curves in a real
space form Nm(c) satisfying AH = XH.

Moreover, they must be helices in a totally geodesic N3(c) . In particular, the only
curves with harmonic mean curvature vector in a Nm(c) are the geodesies, and this
extends a confirmation of Chen's conjecture due to Dimitric [11].

On the other hand, by looking at Chen's formula, [5, Lemma 4.1, p.271], one sees
that the Laplacian in the normal bundle of H, ADH, is an ingredient of the normal part
of AH to (M, x). This relation between AH and ADH suggests that the condition
ADH = 0 is less restrictive than AH = 0 and, in fact, hypersurfaces of Em satisfying
ADH = 0 are precisely those hypersurfaces with harmonic mean curvature function.
(This is a consequence of Chen's formula.) However, condition AH = XH does not imply
ADH = XH. Thus one would expect that the family of curves in Nm(c) with proper
mean curvature vector in the normal bundle does not include helices other than geodesies
and circles. This is true indeed, as it is proved in Section 4, where we classify unit speed
curves in a real space form Nm(c), with proper mean curvature in the normal bundle. We
show first that we can reduce codimension for a curve of this type (namely m ^ 3) and
then we integrate the differential equations which determine its curvature and torsion.
As for the harmonic case, we extend the ideas used in [3] to identify them as members
of a certain biparametric family of curves (Lemma 5). Then we use a different idea and
what we call Cornu spirals in a surface to obtain their classification (of course for the
case Nm(c) = Em our result becomes the one obtained in [3]). Also, some small errors
concerning the parameters which appeared in [3] are modified here (see formula (14)) .

In Section 5 we start by proving a technical result on totally geodesic semi-
Riemannian submersions (Proposition 7). Proceeding from the proofs in the earlier
section and with the aid of this technical result, we give then the classification of Hopf
cylinders in 53(1) and semi-Riemannian Hopf cylinders in H\(-1) with proper mean cur-
vature function. The spherical case corresponding to the harmonic mean curvature vector
was treated in [3], but here instead of considering the Hopf map as in [P], we consider it
as a Riemannian submersion in order to offer a unified analysis based on Proposition 7
of both spherical and hyperbolic cases.

2. PRELIMINARIES

We consider an arclength parameterised curve {3 = fi(s) : I C R —> Nm(c) in a real
space form Nm(c) with constant sectional curvature c and dimension m. We denote by
T = T{s) = 6 the unit tangent vector field of /? and by k^s) = ||VTT . If fci(s) = 0,
then /3 is a geodesic. If it is not zero, we can define a unit vector £2 perpendicular to
T = £1 such that
(1) VTT(S) = *i(s)&(s)
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[3] Helices and Cornu spirals 39

where V denotes the Levi-Civita connection of Nm(c). Now we consider £2 = V T £ 2 , which
can be decomposed as £2

 = —k{T + 6 with S € Span {t;i,&}L- If 5 it identically zero,
then by using [12], we can reduce codimension and /3 is "plane", that is it is contained in
a totally geodesic surface N2(c) of Nm(c). If S is not zero, then we can find a unit vector
£3 perpendicular to £1 = T and £2 and a positive function ki(s), such that

(2) VT6(s) = -Ms)T(S) + fc26(s).

Proceeding in the same way we find that (3 is fully contained in a totally geodesic
(d+l)-dimensional submanifold Nd(c), d $J m, and we have d — 1 positive functions
fci, &2, • • •, A;</_i : I —> R satisfying

VTT(s) = *!(«)&(«)

(3) V T £ ( s ) = -*i_iO»)6-i(s) + *i (s)6+ i (s) , 2^i^d

The functions &, > 0 are called the Frenet ith-curvatures of /? (&i = fc, and A;2 = —r
are called simply curvature and torsion of /?, respectively, if d ^ 3).

A unit speed curve (3 is a /lefe if it has constant Frenet curvatures. A helix is called
a circle if k\ is a non-zero constant (of course k\ = 0 corresponds to the geodesies of
./Vm(c)) and A;2 = 0. A unit speed curve which lies in a simply connected real space form
Nm(c) , (3 : I -t Nm(c) is said to be a general helix if there exist a Killing vector field
V(s) with constant length along /?, such that the angle between V and /?' is a non-zero
constant along /?. The vector V is called the axis of the general helix. This definition
generalises that of general helices in R3 (Boschungslinien) and includes the above defined
helices (with constant curvatures). For details see [1] and Remark 2.

A unit speed curve which lies in a surface 5 of Nm(c), /?:/—> 5 C Nm(c) is said to
be a Cornu Spiral if its curvature if in 5 is a non-constant linear function of the natural
parameter s, that is if ip(s) — [is + e with /z ^ 0. The classical Cornu spiral in E2 was
studied by J. Bernoulli and it appears in diffraction theory.

Consider now an isometric immersion of a Riemannian manifold into Euclidean space
x : Mn -¥ Em. Let us denote by A the Laplacian of (Mn, x) and extend it in the natural
way so that it acts on m-valued functions. Then we have the following Beltrami's formula :
Arc = —nH, where H is the mean curvature vector of (Mn, x). Chen proved the following
identity [5]:

(4)

where V is the connection on Em, V is the Riemannian connection of (Mn,x) and
{Ei}"=l is a local orthonormal basis tangent to (Mn,x). For an isometric immersion in
any Riemannian manifold x : Mn —> M we can define (see [15]) the Laplacian of the
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mean curvature vector formally as in (4), where this time V is the Riemannian connection
on M. Also, following [15], we define the Laplacian of the mean curvature vector in the
normal bundle by

(5) ADH = - J2 {DEiDEiH - DVEiEiH)

where D is the connection in the normal bundle.

3. CURVES WITH PROPER MEAN CURVATURE VECTOR

The purpose of this section is to study arclength parameterised curves (3 — P(s) :

I C R —>• Nm(c) in a real space form Nm(c) with constant sectional curvature c and

dimension m, whose mean curvature vector satisfies

(6) AH = \H.

The mean curvature vector field H of P is given by

(7) H(s) = k^his).

If k\ = 0, then (5 would be a geodesic. If k\ ^ 0 and k2 = 0, then P lies in a totally

geodesic surface N2(c) of Nm(c). Moreover, by using (3), (4) and (7) we see /? satisfies

(6) if and only if k\ = A. Thus /3 is a circle. Assume then that k\, /C2 ^ 0, therefore we

may suppose m > 2, so we can define a 2-dimensional subbundle, say v, of the normal

bundle A of (3 into Nm(c) as follows:

(8) i/(s) = Span{&,6}M

where £2 and £3 are unit normal vector fields to /? defined in (3) . Let us denote by v'

the orthogonal complementary subbundle of v into A. Certainly the fibers of u' have

dimension m — 3. Therefore we have from (3)

(9)

where 6(s) € v'(s) everywhere. Hence, we have from (3) and (4)

(10) AH = ( | (A?) ' ) T + ("*i

so that P satisfies (6) if and only if

(11) (*;)' = 0

(12) -k'l+kl + hkl = AA;
(13) k[k2 + {hh)' = 0
(14) kxk26 = 0.
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From (11), we see that k\ is non-zero constant, then (12) gives that k^ is also a non-zero

constant. Therefore, (14) means that 5 vanishes identically and so v (and also i/') is

a parallel subbundle in A. Furthermore i/ is formed by totally geodesic directions and

consequently we can reduce codimension (see [12] for details) to get some N3(c), totally

geodesic in Nm(c), in which P lies. Hence we have

LEMMA 1. Let P be an unit speed curve fully immersed in a real space form

Nm(c). If P has proper mean curvature vector Geld, then m ^ 3.

Thus, we conclude

PROPOSITION 2 . Let p : I C R —> Nm(c) be a unit speed curve in a m-
dimensional real space form of curvature c and denote by H its mean curvature vector.
Then it satisfies AH = XH if and only if p is a helix of a totally geodesic submanifold
N2(c) orN3(c) ofNm{c).

REMARK 1. From Takahashi's Theorem for n = 1 and using (3) and [12] as in the
proof of the above Proposition, one can easily check that a unit speed curve /3 : / —>
Em satisfies A/? = XP for some real number A if and only if it is either a geodesic of E2

(and then A = 0), or a geodesic of a 2-dimensional sphere S2 of E3, that is a circle (and
then A > 0). (As we said before, condition A/? = A/3 implies AH = XH for Euclidean
submanifolds). Also we see that a unit curve in E3 is a helix if and only if the position
vector of its tangent spherical image is proper for the Laplacian. For curves in Euclidean
space, Proposition 2 is basically due to Chen and Dimitric (see [9] for details).

REMARK 2. Helices in E3 have different characterisations. For instance, they can be
seen as the path followed by the motion of an electron in a constant magnetic field.
General helices were characterised in [1]. In fact, it was proved there, extending a theorem
of Lancret first proved by Saint Venant in 1845, that a unit "non-plane" curve in a 3-
dimensional simply connected space form /?:/—» N3(c) is a general helix if and only if
(1) it satisfies r = bk when c = 0, or (2) it satisfies r = bk ± c, when c > 0; or (3) it is
a helix (constant curvatures) when c < 0 . Thus in the 3-dimensional hyperbolic case,
the only general helices are the helices. The above result characterises helices in N3 (c) in
terms of the spectral behaviour of its mean curvature vector. Observe that helices of E3

are geodesies of 2-dimensional circular cylinders and none of them (but the circles) are
closed. On the other hand, helices of the 3-dimensional sphere S3 are also geodesies of
2-dimensional hop} cylinders shaped on circles of S2 and there are many of them which
are closed [1].

4. CURVES WITH PROPER MEAN CURVATURE VECTOR IN THE NORMAL BUNDLE

As it was said in the introduction, one easily finds examples of non-minimal sub-
manifolds of Em with harmonic mean curvature vector in the normal bundle: it is enough
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to consider cylinders of E3 constructed over Cornu spirals of E2 or hypercylinders of Em

built on Cornu spirals of S2, [3]. More examples are given in Remark 4.

Now we study curves in real space forms with proper mean curvature vector field in
the normal bundle, that is satisfying.

(15) ADH ~ XH.

As before, we consider an arclength parameterised curve /? = fi(s) : I C R —> Nm(c)
in a real space form Nm(c) with constant sectional curvature c and dimension m, and
use the same notation as in the previous sections. If k\ = 0, then (3 is a geodesic. If
ki / 0, and k2 = 0, then /3 lies in a totally geodesic surface N2(c) of Nm(c) and using
(3), (5) and (7) we have ADH = -*"&• Then /? satisfies (15) if and only if - k"x = Xkx.
Therefore, P is either a Cornu spiral in N2(c) if A = 0, or

(16) fci = Cj cos (\/AsJ + c2 sin (Vx~s)

if A < 0, and
(17) k\ = Ci exp (\/-AsJ + c2 exp (y/^Xs)

if A > 0, where Ci,C2 € R . Attending to the shape of curves in R2 satisfying (16) and
(17), we use the terms curl curve and generalised Nielsen spiral to denote curves in N2(c)
satisfying (16) and (17) respectively. Assume then that ki,k2 ^ 0, therefore we may
suppose m > 2, so we can define subbundles, say v, v', of the normal bundle A of /3 into
Nm(c) as in (8). From (3) and (7) we have that the normal connection D of /? into Nm(c)
behaves on v as follows :

(18) £>T6 = - T &

(19) DT& = T& + 8

with 6 e v'. Therefore combining (3), (5), (7), (18) and (19), we obtain

(20) ADH = {-k" + kT2)t,2 + (2*V + A;r')6 + kr5.

Let us suppose that (3 has proper mean curvature vector field in A, that is ADH = \H.

Then

(21) k"-kr2 = -Xk

(22) rk2 = a

(23) 6 = 0

where we have used ki = k, k2 = —T and a is some constant which we may assume to be
non-zero ( m > 2). One can proceed in just the same way as in the proof of Lemma 1 to
obtain
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LEMMA 3 . Let 0 be an unit speed curve fully immersed in a real space form

Nm(c). If ft has proper mean curvature vector field in the normal bundle, then m ^ 3.

Assume first that A ^ 0. Then one can integrate the above equations to obtain

(24) k2 = — + cx cos (2\/As) + c2 sin (2\/\s)

if A > 0, and

(25) k2 - — + ci exp (2%/^As) + c2 exp (2\/^\s)

if A < 0, where b, c\, c2 € R. Hence, from the fundamental theorem of curves, we have:

PROPOSITION 4 . Let ft : I C R —> Nm(c) be a unit speed curve in a m-
dimensional real space form of curvature c and denote by H its mean curvature vector.
Assume it satisfies ADH - XH, A ^ 0. Then either

1. m — 2 and it is a curl curve or a generalised Nielsen spiral in N2(c), or

2. m = 3 and its curvature and torsion are given either by (22) and (24), or

by (22) and (25) respectively.

It is easy to check that curves given in 2. of Proposition 4 never lie in a totally
umbilical surface of N3(c). This fact should be compared with Proposition 6. We now
consider the harmonic case, that is A = 0. The following Lemma 5 is obtained by
using arguments similar to those in [3] for the Euclidean case. We repeat it here for a
better understanding of the proof of Proposition 5. The case r = 0 has been treated at
the beginning of this section. If m = 3, one can use standard arguments to integrate
equations (21) and (22) with A = 0 to obtain

(26) k(s) = ^

. ab

where a ^ 0, b > 0 and d £ R. The parameter d is not essential in the sense that it
depends on the origin we use to measure the arclength function of (3. The fundamental
theorem of curves says that there exists a curve in N3(c) (unique up to isometries in N3(c))
whose curvature and torsion functions are given by (26) and (27) respectively. Also the
class of curves obtained in this way can be a priori parameterised into R+ x (R- {0}),
according to the values of b and a respectively. But from (27), the sign of a is determined
by the orientation of p. Therefore we have a family of curves in N3(c) parameterised
into R+ x R+. Thus if we take e 6 R+ - {0} with e2 = b and denote by J7£e the set
of unit speed curves in N3(c) whose curvature and torsion are given by (26) and (27)
respectively, we have:

LEMMA 5 . Let 0 be an unit speed curve fully immersed in a real space form
Nm(c). Then f3 has harmonic mean curvature vector Geld in the normal bundle if and
only if one of the two following cases occurs:
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(i) 0 is either a Cornu spiral or a circle in a totally geodesic surface N2(c) of

Nm(c); or

(ii) ft belongs to f2£e for some constants a G R+,e € R+ - {0}.

Let us suppose that N3(c) is complete and simply connected, so it is R3, S3 C RA

or H3(c) C R\ according to c = 0, c > 0 or c < 0 respectively. We shall denote by P the
spaces R3, R4 or Rj in order to unify the three cases. Now let us study the family f2£e.
We use (26) and (27) to obtain

We define the curve

(29) a(s) = P(s) + ^2(s)-^{^

and denote by V and a the Levi-Civita connection of N3(c) and its second fundamental
form in P. Notice that if c = 0, then a = 0 because iV3(0) — R3 = P and in the other
two cases N3(c) is totally umbilical in P. In particular cr(T, £2) = ^{T,^) = 0 and then

Consequently we use (28) to show that a' vanishes identically which proves that a(s) is

some point, say p0 £ P. Therefore

(30) p(a)-po = -!&-£-&

If (,) denotes the usual inner product in P, then

(31) </?(*)-p0, /?(s)-po> = -^ = 4

which proves that /? is contained in some totally umbilical surface, say 5 of N3(c). More-

over the geodesic curvature of /? in S is

<32>

with r = a/e if Nm(c) = E3 and r depending on e,a,c and ||po|| if Nm(c) / E3. Then
from (26) and (27), we see that p(s) is a linear function. Thus j3 is a Cornu spiral in S.

Conversely, if /3 is a Cornu spiral in a totally umbilical surface S of N3(c), then the
geodesic curvature p(s) of (3 in 5 is a linear function p(s) = n(s) + e and also p(s) is
given by (32) for some constant r € R satisfying r2 + p2 = n2. Using these facts one gets
TK2 = [ir which is nothing but (22). By differentiating this formula and (32) and using
r2 + p2 = K2 we obtain (21). Hence j3 € Q,cae for some constants a, e € R+. Therefore we
have proved the following:
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PROPOSITION 6 . Let P be an unit speed curve immersed in a complete, simply

connected real space form Nm(c) of constant sectional curvature c and dimension m.

Then 0 has harmonic mean curvature vector Seld in the normal bundle if and only if (3

is a Cornu spiral in some totally umbilical surface S (which can be totally geodesic and

P could have constant curvature in such a case) of Nm(c).

R E M A R K 3. From the above proof, we see tha t /? is a Cornu spiral in a totally umbilical

surface 5 of N3(c) if and only if /? 6 f2£e for some constants o € R+,e € R+ - {0}.

5. HOPF CYLINDERS WITH PROPER MEAN CURVATURE FUNCTION

We begin this section by proving a result which will be useful later. Let IT : P —> M
be a harmonic submersion between semi-Riemannian manifolds P and M, that is to say, II
is a semi-Riemannian submersion and the fibers IT^a:), x £ M are minimal submanifolds
of P. Given a vector field X on M, there exists a unique horizontal lift X on P (that is,
orthogonal to the fibers) and II-related to X. For any regular curve 7 : / C R —> M
(we shall assume 7 arc-length parameterised) we consider the submanifold TV = I I " 1 ^ )
on P. If X = 7' is the unit tangent vector field of 7 and X its horizontal lift, let us
denote by Vp the tangent space to the fiber through p. Then for any point p € N,
TPN = Span{X(p),Vp}, and the normal space, T'pN, of N in P at p is a horizontal
subspace. Denote by V and V the Levi-Civita connections of P and M respectively
associated with their semi-Riemannian metrics (,) and -C, 3> respectively. Let us denote
by o and h the second fundamental forms of TV and of the fibers in P respectively and, as
usual, by Ti the horizontal orthogonal projection in P. Then for any £ € T^N we have

where d l l ^ j = £ € Tu(p)M. On the other hand, if the semi-Riemannian submersion is

totally geodesic and of codimension one, then TV is a surface which can be parameterised

in such a way that the parametric curves are precisely the horizontal lifts of 7 and the

fibers (which are geodesies in P ) . Moreover

therefore the Weingarten map with respect to f can be written in the natural parame-
terisation for TV as

(Ai A V
[x, 0)

Thus, choosing an orthonormal frame {£i}™2 of 7 ^ ( 7 ' ) in T^^M and denoting by &
their horizontal lifts, we have that the mean curvature function of N in P satisfies

(33) a2 = - ± (trA-J = \ ± « VXX, £ »2 = \ \\VxXf = \p\
t = 2
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p being the curvature function of 7 in M and n the dimension of M. Hence we have
proved:

PROPOSITION 7 . Let II : P -> M be a totally geodesic semi-Riemannian sub-
mersion of codimension one. For any curve 7 in M we denote by N the surface of P
defined by N = T T " 1 ^ ) . Then the square of the mean curvature of N in P coincides, up
to a constant, with the square of the curvature of 7 in M.

One can use the previous results to classify Hopf cylinders in the 3-dimensional
sphere and in the 3-dimensional hyperbolic space with proper mean curvature function.
As we said earlier, the harmonic case in the sphere was treated in [3], but in order to unify
both the spherical and hyperbolic cases, we give here a proof based on Proposition 7. In
order to do so, we need to describe the Hopf map as a Riemannian submersion.

Let us denote by Sm(r) the m-dimensional sphere of radius r. The Hopf map
n : S3(l) —> S2(l/2) is considered as the restriction to the unit 3-sphere of the usual
projection of C2 — {0} on CPl. Then TT is a Riemannian submersion (more precisely, a
circle bundle). Also if we consider a unit speed curve 7 : I —> S2(l/2) and pull it back
via 7r, we obtain its total horizontal lift M7 c 53(1) which is isometric to [0, L] x S1, L
being the length of 7, [14]. M7 is a flat surface which is called a Hopf cylinder over 7.
Moreover, if 7 is a closed curve of length L and enclosing oriented area A in 52(l/2),
then M7 is isometric to the flat torus f?2/A where A is the lattice spanned by (2A,L)
and (27r,0). Then, we have:

PROPOSITION 8 . A Hopf cylinder M7 has proper mean curvature function if
and only if 7 has proper mean curvature vector for the Laplacian in the normal bundle. In
particular, M1 has harmonic mean curvature function if and only if either 7 has constant
curvature in S2(l/2) or 7 is a Cornu spiral in 52(l /2) . It has proper non-harmonic mean
curvature function if and only if either 7 is a curi curve or a generalised Nielsen spiral in
52(l/2).

PROOF: Let us denote by p the geodesic curvature of 7 in 52(l /2) and by a the
mean curvature function of M7 in 53(1). By using (33) and a suitable parameterisation
of the flat surface M7 we see that a is proper, that is Aa = Xa, A being the Laplacian
of M7 if and only if p" = \p. This means that the mean curvature vector of the curve is
proper for AD (see comments before (16)). This finishes the proof. D

The following corollary is a consequence of Remark 3 and it was proven in [3] for
Hopf cylinders over curves 7 of 52(1).

COROLLARY 9 . A Hopf cylinder M7 has harmonic mean curvature function if
and only if

1. 7 is a (piece of) great circle in S2(l/2) and M7 is a (piece of) the Clifford
torus in 53(1); or
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2. 7 is a (piece of) a small circle in S2(l/2) and M7 is a (piece of) the rect-

angular torus in S3(l); or
3- 7 e fiL for suitable constants a £ R+, e € R+ - {0}.

REMARK 4. Take 7 e fi^ a curve lying in 52(l/2) and consider its associated Hopf
cylinder M7 in 53(1). One can check by direct computation that the cone of E4 shaped
on M1 is a hypersurface having non-constant harmonic mean curvature and, therefore, it
satisfies ADH = 0. This contrasts with the fact that every biharmonic hypersurface of
E4 is harmonic (minimal) [13].

Now we go to the hyperbolic case. Let R4. be the 4-dimensional linear space R4

endowed with the inner product of signature (2,2) given by (x, y) = -xiyi — X2I/2 + X3IJ3 +
X42/4 for x,y € R4. The space Hf(—1) is the hypersurface of R4. defined by Hf(—1) =
{x e R4 : {x, x) — - 1 } . Then Hf (—1) with the restrictions of (,) is a Lorentzian manifold
with constant sectional curvature - 1 which is known as the 3-dimensional anti De Sitter
space. We denote by C\ the 2-dimensional complex linear space C2 with the Hermitian
form (a,b) = -aJn + a2h with a,b 6 C2. Then Hf(-l) = {a € C2 : (a,a) = - 1 } .
There is a natural action of S1 on Hf(-l) given by (r(ai,a2)) = (ra,i,ra2). Then the
hyperbolic space H2(—l/4) with Gaussian curvature —4 is obtained as the orbit space.
Thus we have a Hopf fibration TT : Hf(-l) ->• # 2 ( ( - l ) / 4 ) with fibers S1. Actually, n is
a semi-Riemannian submersion.

Let /? be a unit speed curve immersed in 7 / 2 ( - l /4 ) . By pulling back 3 via n we
obtain a total horizontal lift Mp of 3 which is an immersed flat surface in Hf (—1) called
the semi-Riemannian Hopf cylinder over 3. Mp is a Lorentzian surface which can be
described as a B-scroll of any horizontal lift /? of (3 (see [2] for details).

By using Proposition 1, we can proceed as in the spherical case to prove:

PROPOSITION 1 0 . A semi-Riemannian Hopfcylinder M0 ofHf(-l) has proper
mean curvature function if and only if 3 has proper mean curvature vector for AD. In
particular if Mp has harmonic mean curvature function then 8 is a circle or a Cornu
spiral in H2(—\/A) and it has proper non-harmonic mean curvature function when f3 is
a curl curve or generalised Nielsen spiral in H2(-l/4)

Finally from Remark 3 and the description of curves of constant curvature in
# 2 ( - l / 4 ) , [4], we get:

COROLLARY 1 1 . A semi-Riemannian Hopf cylinder Mp ofHf(-l) has harmonic
mean curvature vector function if and only if

1. Mp is a minimal complex circle (p = 0); or

2. Mp is a non-minimal complex circle (0 < p2 < 4); or

3. Mp is a Hopf cylinder over the horocycle (p2 = 4); or

4. Mp is the semi-Riemannian product H\(-r2) x Sl(r2 - 1) when (p2 > 4);
or
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5. Mg is a B-scroll of any horizontal lift (3 of a curve (3 e U~} for suitable
constants a e R+,e e R+ - {0}.

REMARK 5. Observe that the first four cases correspond with the constancy of the
curvature p of j3 in H2{—1/4)
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