Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:57:08.823Z Has data issue: false hasContentIssue false

Homogeneity of Wet Oxidation by RTP

Published online by Cambridge University Press:  22 February 2011

M. Glück
Affiliation:
Daimler Benz AG, Wilhelm Runge Str. 11, D-89081 Ulm, (Germany)
U. König
Affiliation:
Daimler Benz AG, Wilhelm Runge Str. 11, D-89081 Ulm, (Germany)
J. Hersener
Affiliation:
Daimler Benz AG, Wilhelm Runge Str. 11, D-89081 Ulm, (Germany)
Z. Nenyei
Affiliation:
A.S.T. elektronik GmbH, Science Park, Helmholtzstr.20, D-89081 Ulm, (Germany)
A. Tillmann
Affiliation:
A.S.T. elektronik GmbH, Science Park, Helmholtzstr.20, D-89081 Ulm, (Germany)
Get access

Abstract

The implementation of a wet oxidation process in an RTP system using a bubbler with deionized water is described. A special process related calibration in a wet atmosphere, by means of pyrometer and thermocouple readings, allows one to improve the temperature accuracy during the oxidation to an offset of only + 1 to 2°C. High oxide growth rates, up to a factor of 1.8 above literature data have been achieved. Wet and dry RTO oxides are compared and related to the expectations from growth models. Effects of growth time (10 s to 4 min), growth temperature (675°C-950°C), substrate orientation (100,111), preparation (e.g. HF) and bubbler temperature (20°C-90°C) are presented. The uniformity of oxides on 4 and 6 inch diameter wafers are discussed. Preferentially by the use of a silicon guard ring and by adjusting lamp power and gas flow rates excellent results concerning uniformity (standard deviations 2σ: 1-2 %) and reproducibility (variation of 0.5 to 0.75 % at least over 12 wafers) are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kesan, V. P. et. al., IEDM Techn. Dig. 25 (1991)Google Scholar
2. Schäffler, F., Herzog, H.J., Jorke, H., Kasper, E., J. Vac. Sci. Technol., B9, 2039 (1991)CrossRefGoogle Scholar
3. König, U., Mat. Res. Soc. Symp. Proc. Vol. 281, 387 (Boston, 1992)Google Scholar
4. Deal, B. E., in Semiconductor Materials and Process Technology Handbook for VLSI and ULSI, edited by Guire, G. E. Mc (Noyes Publications, Park Ridge, NJ, 1988), pp. 4677 Google Scholar
5. LeGoues, F. K., Rosenberg, R., Meyerson, B. S., Appl. Phys. Lett. 54, 644 (1989)Google Scholar
6. Nayak, D., Kamjoo, K., Park, J.S., Woo, J.C.S., Wang, K.L., Appl. Phys. Letters 57(4), 369371(1990)Google Scholar
7. Nayak, D., Kamjoo, K., Park, J.S., Woo, J.C.S., Wang, K.L., IEEE Trans. on Electron Devices, Vol. 39, 5663 (1992)Google Scholar
8. Walk, H., AST elektronik, German Patent DE 4,012,615 (1991)Google Scholar
9. Roozeboom, F., Mater. Res. Soc. Proc. (1993, San Francisco CA))Google Scholar
10. Nayak, D., Kamjoo, K., Park, J.S., Wang, K.L., Appl. Phys. Letters 56(1), 6668 (1990)Google Scholar
11. Deaton, R., Massoud, H.Z., IEEE Trans. on Semiconductor Manufacturing, Vol. 5, 347357 (1992)Google Scholar
12. Lewis, E.A., Irene, E.A., J. Electrochem. Soc., Vol. 134, 23322339 (1987)Google Scholar
13. Ligenza, J.R., J. Phys. Chem., 65, 2011 (1961)CrossRefGoogle Scholar
14. Deal, B.E., Grove, A.S., J. of Appl. Phys., Vol. 36, 37703778, 1965 Google Scholar
15. Fukuda, H., Yasuda, M., Iwabuchi, T., Jap. Journal of Appl. Phys., Vol. 31, 34363439 (1992)Google Scholar
16. Nényei, Z., Walk, H., Knarr, T., J. Electrochem. Soc., Vol. 140, 17281733 (1993)Google Scholar
17. Kakoschke, R., Mater. Res. Soc. Symp.: Rapid Thermal and Integrated Processing, Vol. 224, 159, Pittsburgh, PA (1989)Google Scholar