ON THE SPACES OF MAPPINGS ON BANACH SPACES

SADAYUKI YAMAMURO

(Received 19 November 1965)

1

Let E be a real Banach space. A mapping f of E into E is said to be bounded if f maps every bounded set into a bounded set.

Let **B** be the set of all bounded and continuous mappings of *E* into *E*. If we define the linear combination $\alpha f + \beta g$ for *f*, $g \in B$ and real numbers α and β by $(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$ for every $x \in E$, **B** is a linear space. Moreover, we can define the product of *f* and *g* by

$$fg(x) = f(g(x))$$
 for every $x \in E$.

It is clear that the right distributive law is satisfied: (f+g)h = fh+gh for every f, g, $h \in B$, and that the left distributive law is not always true. Therefore, following the terminology of Zassenhaus [4, pp. 71-74], we may call this space **B** a near-algebra.

In this near-algebra **B**, we can define a topology as follows. Let us consider the sets $B_n = \{x \in E \mid ||x|| \leq n\}$ for $n = 1, 2, \dots$, then a mapping f is bounded if and only if the semi-norms

$$||f||_n = \sup_{x \in B_n} ||f(x)||$$

are finite. Therefore,

$$d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{||f-g||_n}{1+||f-g||_n}$$

is a metric on B, and with this metric B is complete. We call this topology the uniform topology of B. Thus the space B is a Fréchet space by the uniform topology.

A mapping f of E into E is said to be *compact* if each of $f(B_n)$ $(n = 1, 2, \cdots)$ is contained in a compact set. Evidently, the set C of all compact and continuous mappings of E into E is contained in B. Moreover, the set C satisfies the following conditions:

- (1) It is a linear subset.
- (2) If f is one of its elements and $g \in B$, then fg and gf belong to it.
- (3) It is closed under the uniform topology.

Generally, a non-empty subset I of B is called *an ideal* if it satisfies the conditions (1) and (2). An ideal is called *the zero ideal* if it consists of a single element 0 (the zero element of B). C is a non-zero closed ideal. Since B is not an algebra, an ideal is not necessarily a kernel of a homomorphism. For a study of this fact from the algebraic point of view, we refer to [1].

When E is a Hilbert space of countable dimension, it was proved by Calkin [2] that the set of all compact and continuous linear mappings was a minimal closed ideal of the Banach algebra of all bounded linear mappings. (An ideal is said to be *minimal* if it is not the zero ideal and does not contain properly any ideal of the same type other than the zero ideal.) But, in the case of the near-algebra B, the set C is no longer a minimal closed ideal of B.

For example, let us consider the set I(E) of all constant mappings, in other words, I(E) is the set of all mappings $c_a(a \in E)$ such that $c_a(x) = a$ for every $x \in E$. It is obvious that $I(E) \subset C \subset B$, and we have

$$\begin{aligned} \alpha c_a + \beta c_b &= c_{aa+\beta b}, \\ c_a f &= c_a, \ f c_a &= c_{f(a)} \ \text{for every } f \in B. \end{aligned}$$

Therefore, I(E) is an ideal of **B** and, moreover, it is closed under the uniform topology. It also follows from the equality $c_a f = c_a$ that every non-zero ideal contains I(E), which means that I(E) is a minimal (closed) ideal.

This closed ideal does not contain the set of all linear mappings of finite rank. On the other hand, the closed ideal C contains all linear mappings of finite rank.

REMARK. Let \tilde{E} be the conjugate space of E. Then, a mapping f is said to be of *finite rank* if there exist $a_i \in E$ $(i = 1, 2, \dots, k)$ and $\tilde{a}_i \in \tilde{E}$ $(i = 1, 2, \dots, k)$ such that $f(x) = \tilde{a}_1(x)a_1 + \tilde{a}_2(x)a_2 + \dots + \tilde{a}_k(x)a_k$ for every $x \in E$.

The purpose of this paper is to prove that the closed ideal C is minimal amongst all closed ideals which contains all linear mappings of finite rank.

THEOREM. Let E be a real Banach space, B be the near-algebra of all bounded and continuous mappings and I be a closed ideal of B. If I contains all linear mappings of finite rank, then $C \subset I$.

2

LEMMA. For any $f \in B$, there exists a sequence $f^{[n]} \in B$ such that (1) $f^{[n]}(E) \subset \bigcup_{0 \le \alpha \le 1} \alpha f(B_{n+1});$ (2) $\lim_{n \to \infty} d(f^{[n]}, f) = 0;$ (3) if $f \in C$, then $f^{[n]} \in C$. Moreover, $f^{[n]}(E)$ is contained in a compact set;

(4) if each of $f(B_n)$ $(n = 1, 2, \dots)$ is contained in a finite-dimensional subset of E, then each of $f^{[n]}(E)$ is contained in a finite-dimensional subset.

PROOF. Let us consider the real continuous functions:

$$\phi_n(\lambda) = \begin{cases} 1 & \text{if } 0 \leq \lambda \leq n; \\ -\lambda + n + 1 & \text{if } n < \lambda \leq n + 1; \\ 0 & \text{if } \lambda > n + 1 \end{cases}$$

and define the mappings $f^{(n)}$ by

 $f^{[n]}(x) = \phi_n(||x||)f(x) \text{ for every } x \in E.$

Since $0 \leq \phi_n(\lambda) \leq 1$ for every $\lambda \geq 0$ and $n = 1, 2, \dots$, it is clear that $f^{(n)} \in \mathbf{B}$.

Proof of (1). Let us take an arbitrary $y \in f^{(n)}(E)$. Then, $y = f^{(n)}(x) = \phi_n(||x||)f(x)$ for some $x \in E$.

(i) If $x \in B_n$, then, since $||x|| \le n$, $\phi_n(||x||) = 1$, hence $y = \phi_n(||x||)/(x) = f(x) \in f(B_n) \subset f(B_{n+1})$.

(ii) If $x \in B_{n+1} \setminus B_n$, then, since $n < ||x|| \le n+1$, $0 \le \phi_n(||x||) = -||x||+n+1$, hence it follows that $y = \phi_n(||x||)f(x) \in \bigcup_{0 \le \alpha \le 1} \alpha f(B_{n+1})$.

(iii) If $x \notin B_{n+1}$, then, since $\phi_n(||x||) = 0$, we have $y = 0 \in 0 \cdot f(B_{n+1}) \subset \bigcup_{0 \le \alpha \le 1} \alpha f(B_{n+1})$.

Proof of (2). For any m and n, we have

$$||f^{[n]}-f||_{m} = \sup_{x \in B_{m}} ||f^{[n]}(x)-f(x)|| = \sup_{x \in B_{m}} (1-\phi_{n}(||x||))f(x).$$

When $n \ge m$, since $x \in B_m$ implies $||x|| \le m \le n$, we have $\phi_n(||x||) = 1$, so that $||f^{[n]} - f||_m = 0$ if $n \ge m$. Therefore,

$$\lim_{n\to\infty} d(f^{[n]}, f) = \lim_{n\to\infty} \sum_{m=n+1}^{\infty} \frac{1}{2^m} \frac{||f^{[n]} - f||_m}{1 + ||f^{[n]} - f||_m} \le \lim_{n\to\infty} \frac{1}{2^n} = 0.$$

Proof of (3). Let us take an arbitrary sequence $(y_k) \subset f^{[n]}(E)$. Then, by (1), we can find numbers α_k and elements x_k such that $0 \leq \alpha_k \leq 1$, $x_k \in B_{n+1}$ and $y_k = \alpha_k f(x_k)$. Since $f(B_{n+1})$ is contained in a compact set, there exists a subsequence (x_{k_i}) such that $\lim_{i\to\infty} f(x_{k_i}) = y_0$ for some $y_0 \in E$. Since (α_{k_i}) is a bounded sequence, there exists a subsequence $(\alpha_j) \subset (\alpha_{k_i})$ such that $\lim_{j\to\infty} \alpha_j = \alpha_0$ for some α_0 . Thus, $\lim_{j\to\infty} y_j = \lim_{j\to\infty} \alpha_j f(x_j) = \alpha_0 y_0$, which means that $f^{[n]}(E)$ is relatively compact.

Proof of (4). By the assumption, for each *n*, there exists a finitedimensional subspace E_n such that $f(B_{n+1}) \subset E_n$. Since E_n is linear, $\alpha f(B_{n+1}) \subset E_n$ for every α , which implies that $f^{[n]}(E) \subset \bigcup_{0 \le \alpha \le 1} \alpha f(B_{n+1}) \subset E_n$. 3

Proof of Theorem. Let us take an arbitrary $f \in C$. By (2) and (3) of the above lemma, $\lim_{n\to\infty} d(f^{[n]}, f) = 0$ and each of $f^{[n]}(E)$ is contained in a compact set. Therefore, since I is assumed to be closed, we have only to prove that, if f(E) is contained in a compact set, $f \in I$. Let us assume that f(E) is contained in a compact set. Following the method first used by Leray and Schauder [3, p. 51] we can construct a sequence f_n such that $\lim_{n\to\infty} d(f_n, f) = 0$ and each $f_n(E)$ is contained in a finite-dimensional subspace of E as follows. Since f(E) is totally bounded, for each n, there exists a finite number of elements $y_1, y_2, \dots, y_{k(n)}$ such that

$$f(E) \subset \bigcup_{i=1}^{k(n)} \{ y \in E / ||y-y_i|| < 1/n \}.$$

Let E_n be a finite-dimensional subspace which is spanned by $y_1, y_2, \dots, y_{k(n)}$, then the mapping f_n is defined by

$$f_n(x) = \sum_{i=1}^{k(n)} \mu_i(x) y_i / \sum_{i=1}^{k(n)} \mu_i(x)$$

where

$$\mu_i(x) = \begin{cases} 1/n - ||f(x) - y_i|| & \text{if } ||f(x) - y_i|| \leq 1/n; \\ 0 & \text{if } ||f(x) - y_i|| \geq 1/n. \end{cases}$$

It is clear that $f_n \in B$ and $||f(x) - f_n(x)|| < 1/n$ for every $x \in E$, from which it follows that $\lim_{n\to\infty} d(f, f_n) \leq \lim_{n\to\infty} 1/(n+1) = 0$. Therefore, we have only to prove that, if f(E) is contained in a finite-dimensional subspace, then $f \in I$. Let us assume that $f(E) \subset E_0$, where E_0 is a k-dimensional subspace. Let e_1, e_2, \dots, e_k be a base of E and $\bar{e}_1, \bar{e}_2, \dots, \bar{e}_k$ be elements of \bar{E} such that $\bar{e}_i(e_j) = 1$ if i = j; = 0 if $i \neq j$. Then, we have

$$f(x) = \tilde{e}_1(f(x))e_1 + \cdots + \tilde{e}_k(f(x))e_k \text{ for every } x \in E.$$

Now, let us consider the mapping

$$g(x) = \bar{a}(f(x))a \qquad (x \in E)$$

where $a \in E$ and $\bar{a} \in \bar{E}$. If we put $(a \otimes \bar{a})(x) = \bar{a}(x)a$, then the mapping $a \otimes \bar{a}$ is a linear mapping of finite rank, and $g = (a \otimes \bar{a})f$. Therefore, since $a \otimes \bar{a} \in I$, we have $g \in I$, and, since f is a linear combination of $(e_i \otimes \bar{e}_i)f$, we have $f \in I$. Thus, the proof is completed.

References

 D. W. Blackett, "Simple and semi-simple near-rings", Proc. Amer. Math. Soc. 4 (1953), 772-785.

- [2] J. W. Calkin, "Two-sided ideals and congruences in the ring of bounded linear operators in Hilbert space", Ann. of Math. 42 (1941), 839-873.
- [3] J. Leray and J. Schauder, "Topologie et équations fonctionnelles", Ann. Sci. Ecole Norm. Sup. 51 (1934), 45-78.
- [4] H. Zassenhaus, Lehrbuch der Gruppentheorie (Berlin, 1937).

Australian National University

164