
A PRESENTATION OF THE GROUPS PSL(2, p) 
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1. In the present paper, we shall prove the following result. 

THEOREM A. The groups PSL(2, p) can be presented by the following system 
of generators and relations: 

(i.i) s* = T2 = (sry = (s2TS^+»ry = 1 (p> 2). 
This theorem considerably improves earlier results of Bussey, Frasch, and 

Todd (cf. 2, pp. 93-96). The presentation of Frasch reads as follows: 

(1.2) sp = r2 = (sry = 1, u-lsu = s«\ (ury = 1, 
jj2(P-i) — 1 (TUSa)3 = 1, where a is a primitive root mod p. 

By using simple properties of PSL(2, p), such as the existence of a Bruhat 
decomposition, it is not difficult to verify that (1.2) defines PSL(2, p). I t 
would be desirable to have a similar direct proof of Theorem A. 

Our proof proceeds indirectly. We adopt a general method for proving the 
finite presentation of generalized unit groups (cf. 1). After a suitable specializa
tion, we obtain the following theorem. 

THEOREM B. Let Z<2> = (x/2<, x, t G Z). The group SL(2, Z<2>) can be 
presented as follows: 

(1.3) (ABY = (UB)2 = (UA2BY = B2, B* = 1, U^AU = A\ 

The relations (1.3) are fulfilled by the elements 

' - ( ! ! ) • *-(-!$)• *-(?!)• 
In (3) it was shown that any subgroup of finite index in SL(2, Z(2)) contains 
a full congruence subgroup. From this result and from Theorem B one can 
deduce Theorem A. This is carried out in the next section; §§ 3-5 contain the 
proof of Theorem B. 

2. In this section, we shall deduce Theorem A from Theorem B. Let 

(2.1) G = SL(2, Z<2>) 

be the group defined in Theorem B. G is generated by the elements A, B, and 
U given in Theorem B, and it is presented by the system (1.3). 
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We shall define some subgroups of G. Let m be odd. By Qm we denote the 
normal closure of the element 

' l 0N 

(2.2) Am = . 
w 1 

in G. Let Nm be the full congruence subgroup modulo m of G. In a previous 
paper (3), it was shown that 

(2.3) Nm = Qn. 

Let SL(2, m) be the special linear group of rank 1 over the ring Z/mZ. From 
Theorem B and from (2.3) we deduce that the following is an abstract presen
tation of the group SL(2, m)\ 

(2.4) Am = 1, (ABY = (UB)2 = (UA2BY = B2, B* = 1, U~lA U = A\ 

We shall now simplify the relations (2.4). The exponents of A can be looked 
at as elements of the ring Z/wZ. Eliminate U in (2.4) : 

(2.5) U = A^BA 2BA*B~\ 

Clearly, the following relations form a system which is equivalent to (2.4): 

(2.6) Am = 1, (^l^)3 = B\ B± = 1, 

(2.7) UBU = B, U~lA^U = A\ 

(2.8) U = A^BA2BAX*B-K 

We shall modify the relations (2.7). After eliminating Z7, the first relation of 
(2.7) reads as follows: 

(2.9) (A*BA2BA?)2 = B\ 

and the second relation of (2.7): 

(2.10) A^BA2BA^B = BA2BA^BA\ 

(2.9) and (2.10) imply that 

(2.11) (A2BAX*B)Z - 1. 

Conversely, (2.9) and (2.11) imply (2.10); thus, we can drop (2.10). The 
relation (2.9) is a. consequence of (2.6). Therefore, we have proved that the 
set of relations 

(2.12) Am = 1, {ABY = B\ B* = 1, (A2BA*BY = 1 

is equivalent to the set (2.4). (2.12) is a presentation of the group SL(2, m). 
By specializing m = p a prime, we obtain a presentation of SL(2, p). Finally, 
by adding the relation B2 = 1, we obtain a presentation of the group PSL(2, p) : 

(2.13) Av = G4£)3 = B2 = (A2BA^+»BY = 1. 
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Thus , assuming Theorem B, we have completed the proof of Theorem A. 

3. F i n i t e p r e s e n t a t i o n of SL(» , Z ( P ) ) .* I t was shown in (1) t h a t for some 
classical groups G, the group G(ZS), where Zs denotes a Hasse domain in the 
field of rationals, can be finitely presented. Especially, we obtain a finite 
system of defining relations for SL(2 , Z ( p ) ) , b u t it seems to be very hard to 
describe it explicitly and to reduce it. By earlier specialization to G = SL and 
by some improvements of the method of (1), we obtain a be t te r system, b u t 
then it seems necessary to sketch the whole proof and to refer to (1) only for 
some details. 

3.1. Lattices. W e denote by Qv the field of ^-adics, Zv the ring of £-adic 
integers, and, a Zp-module in Qp

n, which contains n linear independent vectors, 
will be called a latt ice. Le t L 0 be the latt ice spanned by the uni t vectors and 
for some g G SL(n, Z(p)) let L = gL0 be the latt ice spanned by the columns of 
the matr ix g and 8 the set of all lattices gL0 for g G SL(n, Z{v)). W e define a 
distance d in the set 8 by 

d(Lu L2) = mm{n\ pnL1 Ç L 2 Ç p~nL^, (Lu L2 G 8) . 

d is invar iant under the group SL(w, Z ( p ) ) . For g G SL(w, Z{v)) we set 

|g| = d(L0} gL0). 
Then we have t h a t 

|g _ 1 | = |g|, \glg*\ ^ \gl\ + \g2\-

LEMMA. Let Lu L2 , M G 8 with d(Lh L2) = d ^ 0. There exists a lattice 
L G 8 with 

(a) d(L1} L) = d - 1, d(L, L2) = 1, 
(b) d(L, M) ^ max{d(Li, M ) , d(L2, M)}. 

T h e lemma is essentially a consequence of the e lementary divisor theorem 
(cf. 1, pp. 131-132). 

3.2. Generators of SL(# , Z ( z 0 ) . I t is well known t h a t SL(w, Z ) can be finitely 
generated; choose a finite system E0 of generators, which, with g, also contains 
g - 1 . T h e set ïït = \L G 8| d(L, L0) = 1} (neighbours of L0) is finite; for each 
L G 8, choose an element g G SL(« , Z ( p )) with L = gL0 and call the set of 
these elements and its inverses Ev. I t is easily seen t h a t E = E0 VJ Ep is a. set 
of generators of SL(w, Z ( p )) (cf. 1, Satz 1). 

3.3. Defining relations of SL(w, Z(2?)). W e now consider relations between 
elements of E and relate with each of them a sequence of latt ices in 8. Le t 
r: a\a2 . . . an = 1, at G £ , be a relation; then we call ^>a//z 0/ r the sequence 
P(r) = (LQJLX. . . ,Ln), defined by Lt = a^a2 . . . atLQ (Ln = aia2 . . . a n L 0 = 
L 0 ) . W e call Z>(r) = max{d(Lz-, L 0 ) , i = 0, 1, . . . , n] the distance of r and 
the number of pairs (Lu Li+1) with Lf =̂  Li+1 (i = 0, 1, . . . , n — 1) the 
length of r. 

*The definition of Z ( p ) is analogous to the definition of Z(2) given in the introduction. 
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We now construct , by induction with respect to the distance D, a finite set 
Rp of relations of length less than or equal to 6, so t h a t we can reduce each 
relation by means of relations in Rp to a relation which contains only elements 
of E 0 and we know t h a t SL(n, Z) can be finitely presented (cf. 1, Satz 4 ) . 

If D(r) = 1, then for each point Lz- of the pa th P(r) we have t ha t 
d (Lu L0) ^ 1, which means t h a t \a,i... at\ ^ 1 and therefore there exists an element 
bi Ç E with a~l . . . ai~l L0 = biL0. I t follows t ha t the products bi~lai+ibi+1 

keep L 0 fixed, we multiply each of them by a (fixed) product of elements of 
Eoj and we obtain a finite set of relations of length less than or equal to 3. 

Now we assume t h a t D(r) > 1 and take a pair (Lu Li+1) of P(r) with 
max{d(Lz-, L 0 ) , d(Li+u L0)} = D(r). By the lemma, there exist lattices Mi 
and Mi+i in £ with d{Lu Mt) = d(Li+lj Mi+1) = 1 and ms.x{d(Mi} L 0 ) , 
d(Mi+i, L0)} < D(r). We can choose bt and bi+± £ E such t h a t Mt = a± . . . 
dibfLo and M i + i = a,\ . . . a*+i&i+] L0. We have t h a t d(Mu Mi+i) = d(a i . . . 
afiiLo, ai . . . a i + i i i + i L 0 ) = d(L0 , b^a^ibi^Lo) ^ 3. By repeated appli
cation of the lemma we obtain lattices Ni, . . . , NT (r ^ 2) with d(Mu Ni) = 
d(Nj, Nj+1) = d(Nr, Mi+1) = 1 and d(Njt L) g msLx{d(Miy L ) , d ( M i + i , L)} 
for L G ?, especially for L = L0; thus , we have t h a t d(iV^, L0) < 2?(r). 
Again we have elements Ci, . . . , cs (s ^ 3) with 

Nj = ai . . . afii Ci. . . Cj L 0 (1 ^ 7 ^ r) 
and 

ikf i+i = «i . . . a^- £i . . . cs L0 . 

On the other hand, we have t h a t Mi+i = a± . . . a i a i + i& i + iL 0 ; therefore, 
bi+i~lai+i~lbiCi . . . cs keeps L0 fixed. We mult iply it by a (fixed) product of 
elements of E0 so t h a t we obtain a relation rt of length less than or equal to 6. 
If we do this for each pair with maximal distance D (r) (using the same lattice 
Mi and the same bt for the pairs (L*_i, Lt) and (Lu Li+1)) and go into r 
with the relations b i+ir tb i+i~1 we finally obtain a relation r' with D(rf) < D(r). 

3.4. Reduction of the system of defining relations. 
Length 6. W e obtain relations of length 6 in our defining system only if 

\bi~lai+\bi+i\ = 3 (cf. § 3.3). Then we have t h a t d(N2j Lt) ^ ma,x{d(Mu Lt), 
d(Mi+1,Li)} ^ 2 (since d(Mi+1, L^ ^ d(Mt+1, Li+1) + d(Li+lj Lt) g 1 + 1), 
which means t h a t d(a,\ . . . af>iC\C2L^ a,\ . . . atL0) = d(biCiC2L0, L0) ^ 2. 
There exist elements d\, d2 G E and a product 6 of elements of E0 such t h a t 
biCiC2 = edid2; this is a relation of length less than or equal to 5. If we subst i tu te 
biC\C2 by ed\d2 in rt we also have a relation of length less than or equal to 5. 

Length 5. Modulo relations of length less than or equal to 3, we can assume 
t h a t we have r: a\a2aza^a^e = 1 , |a*| = 1, e a product of elements of EQ. If we 
do not have the case \a\a2\ = \a2a^\ = |a3a4 | = |a4a5 | = 2, we can immediately 
insert a relation of length less than or equal to 3 to obtain a relation of length 
less than or equal to 4. 

Length 4. Again we can assume t h a t r: aia2aza±e = 1, \at\ = 1, e a product 
of elements of E0. If \aia2\ = \a2a^\ = 2, we set L\ = aiLQ, L2 = aia2L0l 

https://doi.org/10.4153/CJM-1968-144-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-144-7


1436 H. BEHR AND J. MENNICKE 

L3 = aia2a^L0l and the lemma provides us with a lattice M G 2 with 
d(M, L0) = d(M, Li) = d(M, L2) = d(M, Lz) = 1, and that means that we 
can reduce r by relations of length less than or equal to 3. If \aia2\ = l o r 
|a2a3| = 1 we can at once reduce to relations of length less than or equal to 3. 

3.5. Remark. All previous results are valid for each group for which the 
lemma holds. 

4. The group SL(2, Z (P)). We shall now give the generators and describe 
the defining relations for n = 2. Some of them will be given explicitly; some 
series of relations will only be computed for p = 2 in the last section. 

4.1. Generators of SL(2, Z™). We set 

"-(:?)• *-(-?;)• * - ( î j - . 
A and B generate SL(2, Z) ; with the notations of §3.2 we have, therefore, 
that E0 = {A, B, A-1, B~l). Furthermore, we have to consider the elements 
which transport the unit-lattice L0 into a neighbour of it; these are matrices 
which have at least one coefficient e-p~l, e a p-adic unit. For each neighbour, 
one has to choose such an element, we can take the following matrices: 

(5-.;) *•«-.' >-->•($ i-)- d-< -$) 
for y = 1, 2, . . . , p — 1. 

Thus, we have that 

Ep = {(A^U-1)^1, (B-iA-nU-1)*1, x = 0Jl,...,p
2-l,y = l,2,...,p-l} 

4.2. Relations of length 5. At first, we exclude the exceptional case of 
relations of length 5. For this purpose we give a list of products aia2, at £ EP 

with |<2ia2| = 2. 

(a) A'U-^A'U-1 = 1^_2 , ... °2 

2 

xp~* + x p' 

(b) B^A-^ir^A'ir1 = fe1 x
 0

P \ 

(c) UA-*-A«lTi=(\x,_x)p-, j ) , ^ x m o d p , 

(d) ^•^-^1=fe„-1 + ̂  "*'), 

(0 

(g) 

\—p —x + yp I 

UA^B-A'U-1 = (* ,_2 , „_! ^ J . 
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4.3. List of relations of length less than or equal to 3. We shall write on the 
left-hand side a product a^a^a^ at £ E, with |<2ia2a3| = 0, on the right-hand 
side, a product of elements of EQ (the choice of which is not unique) and in 
some cases, only an element of SL(2, Z). The list will not be complete, but if 
we add the inverse relations of the relations in the list we shall have all relations 
of length less than or equal to 3 which cannot be trivially reduced to relations 
of length 0, i.e., relations in SL(2, Z). 

(A) AXU~1-A • UA~X' = Ax-x'+*\ 

(B) A'U-^A*1- UA™B = Ax+™±p2B, 

(C) AXZJ-1-B±1- U-1 = AXB±\ 

(D) 
\x{yy — \)p + y —icy — pi 

for ^yj' — 1 = 0 mod p, 

(E) B-iA-wU-^A • UAv'pB = B^AM-v+^B, 

(F) B-iA-nU-^B^'U-1 = B~lA-ypB±\ 

-1A-VPTT-1 Tl-lA-V'PTT-l n-lA-V"PTT-l - ( W ~ W ~ ? (1 ~ jy')P (G) B-lA-vpU-L'B-lA~vvU-'B-lA-vvU-1 = I YJ
f „ x " i 

for y'y" — 1 = 0 mod p, 

(H) UA-x'A'Ax'U~l = A(x'-x+»p~2 for %' - x + 1 = 0 mod p\ 

(1) UA-*-B>A*'U-1=[X' n , ,vA-2
 P ) for 1 + xx' s 0 mod £2, 

\— (1 + XX ')£ — Xl 
(J) Z74-p-5-B-1^-Cp-i)i»[7-i = ^i-i , 

(K) UA-v-B-^B-iA-v-MU-1 = A~^B\ 

(L) UA-x.A*,U-1.B-1A-™Ur1=(„ , y, , 1 V l - i ~ t , ^ - i ) v y \ ( (x ' — x);y + \)p — ( r — x)p I 

for y(x' — x) = —£ mod £ 

(M) UAWB-A -B-'A-^U-1 =()+ y \ ^ , , ~P" ) 
\(y — y)p +yy 1 - ypl 

for y = y ' mod £>, 

(N) UAwB-B-1A^'vir1-B-1A-*"vir1={f ,J_'i „ , ,_i ~ / ) 
\(y - y )£ j + £ y - yl 

for / ' ( y - / ) + 1 = 0 mod £. 
4.4. A system of defining relations of SL (2, Z (p)). SL(2, Z) can be defined by 

the relations 
(1) B2 = (AB)\ BA = 1. 
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The relations (A), (B), (E), (H), and (J) in §4.3 are equivalent to 

(2) U^A U = Ap\ 

The relations (C) and (F) in § 4.3 are equivalent to the relation 

(3) {UBY = B\ 

With the help of (1), (2), and (3) we can eliminate (K). The results of §§ 3 
and 4 show that (l)-(3), (D), (G), (I), and (L)-(M) is a defining system of 
SL(2,Z<*>). 

5. The group SL(2, Z(2)). We shall now give all relations for p = 2 
explicitly. There are two cases of (I) and (L), only one case of (D), (G), and 
(M), and no case of (N): 

(DO y = y' = 1: AxU-uB-lA-2U-l-B-lA-2U-1 = AX+2B'\ 

(G') y = y" = 1: B-iA-^U-^B-iA-zU-i'B-iA-zU-1 = B~lA^yB~\ 

(l'a) x = 1, xf = 3: l/A^-B-A*!/-1 = B-lA±B~lA, 

(I'b) x = 3, x' = 1: UA-t'B'AU-1 = A^B^A^B, 

(L'a) y = l,x' - x = 2: UA^^-B^A^U'1 = AB~lA2B, 

(L'b) y = 1, x' - x = - 2 : UA^U^-B^A-^U-1 = ^ ~ ^ 2 ^ , 

(M') y = y = l : t / ^ 2 ^ . ^ . ^ - 1 ^ - 2 ^ - 1 = B-iA-WAB-1. 

The relations (DO and (GO are equivalent to the relation 

(4) (UA2B)* = B2t 

With the help of (2) and (3), we can also reduce (L'a) and (L'b) to (4) and, 
finally, eliminate (l 'a), (I'b), and (M') with the help of (1), (2), and (3). 

We have thus proved that (1), (2) (for p = 2), (3), and (4) is a system of 
defining relations for the group SL(2, Z ( 20, that is, Theorem B. 

Added in proof. The preliminary notes (3) are superseded by (4). 
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