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Abstract

Let p be a prime. This paper deals with solutions of functional equations

in either formal Laurent series or in analytic functions. Examples connected to special modular
functions are considered.

Many years ago, in several papers dealing mainly with questions of
transcendency, I have studied (Mahler 1929, 1930a, 1930b) functional equations
of the type

f(z") = R(z,f(z)),

where n g 2 is a fixed integer, and R (z, w) is a rational function of its arguments
the numerator and the denominator of which are at most of degree n -I'm w.

From the theory of transformation equations of modular functions one is
led to study the related type of functional equations

(E) / ( z T ' + Z^r' + S t cnf(z')'f(Zy = o
r-0 s-0

where the coefficients cr, are constants satisfying the symmetry conditions

(S) crs = csr for all r, s.

Here the unknown function f(z) is assumed to be analytic with at most a pole at
2=0.
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66 K. Mahler [2]

Although this kind of functional equation can be studied for any integer
n g 2, the theory becomes particularly simple when n = p is a prime. It is
therefore this special class of functional equations which will be considered in
the present paper. It would have some interest to investigate also the case of
general n, and further to study the more general class of functional equations
where the symmetry conditions (S) are not satisfied.

The first two chapters deal with solutions of the equation (E) that are formal
Laurent series f(z) in an indeterminate z, and we determine in particular the
number of independent parameters on which the set of all possible solutions f{z)
of this kind may depend. The third chapter contains then a proof that the formal
solutions /(z) do in fact converge for 0 < | z | < y where y denotes a sufficiently
small positive constant. This allows to prove that /(z) may be continued into the
whole unit circle, but may then possess an infinity of algebraic branch points.

In the last chapter we finally discuss connections of our results to special
modular functions and some of their transformation equations. Here the group
properties of the modular functions play only a very implicit role.

1. The basic modular function /(w) of level 1 is invariant under the full
modular group of all linear substitutions

(a, /3, y, 8 integers satisfying a8 - /3y = 1).

The function ;(<u) is regular in the upper halfplane Im(«)>0 and has a simple
pole at infinity which is made evident by the convergent Fourier expansion

/(«•»)= 2 ahe2"1"" where a_, = 1, a0 = 744, etc.

Of fundamental importance are the transformation equations for j(a>). Let
n § 2 be any integer. There exists then a unique irreducible symmetric polyno-
mial

of the exact degree

<A(n)=nll

in both X and Y, with the highest terms

X*{n) and

such that
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[3] A class of functional equations 67

Fn(j(mo),j((o)) = 0 identically in &>.

More exactly, if {A, B, D} runs over all ip(n) triplets of integers satisfying

A >0, O S B i D - 1 , D>0 , AD = n, (A,B,D)=\,

then the equation

Fn(X,j (w)) = 0

has as its roots exactly all the ^(n) transformed functions

Of particular interest for us is the special case when n = p is a prime and
therefore ij/(p) = p + 1. Now the transformation equation

has the p + 1 roots

and the transformation polynomial FP(X, Y) has the explicit form

FP(X, Y) = - (X" - Y)(Y" - X) + 2 2 crsX' Ys

where the coefficients c,s are certain integers divisible by p and satisfying

crs = csr, cpp = 0.

2. Put

2 = e2m" and j(o) = f(z),

so that

/ » = /(2)= 2 a,2"
h=-l

becomes a Laurent series in the integral powers of z which converges for

(The new variable z corresponds to the quantities q2 of Jacobi and r of Klein.) In
terms of f(z), the roots of the transformation equation

https://doi.org/10.1017/S1446788700013367 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013367


68 K. Mahler [4]

Fp(X,/(z)) = O

can be written as

where

e = e2"'"'

is a primitive pth root of unity.
If FP(X,/(z)) is written in its explicit form as a polynomial in X,

F p ( X , f ( z ) ) = X p + 1 - s l X p + s2X
p-1- + ••• ± s p + 1 ,

then the coefficients su s2, • • •, sp+] are the elementary symmetric functions of its
roots,

*2 = f(zp)f(z"") + f(z")f(ezUp) + • • • + /(e""2 z " P ) / ( E ' - ' Z""),

(1)

Each of the elementary symmetric functions is a polynomial in /(z) with
constant (integral) coefficients, and while su s2,---,sp are at most of degree p in
f(z), Sp+i has the exact degree p + 1 in f(z).

3. The properties just quoted have their analogues for other modular
functions, including those of higher level. In this paper, we shall try to extend
several of these properties to the solutions of a more general class of functional
equations

where F(X, Y) is a symmetric polynomial in X and Y of degree p + 1. The more
general kind of functional equation

where n g 2 is a composite number, can be treated similarly, but requires the
discussion of more cases.
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[5] A class of functional equations 69

Chapter 1. Formal Laurent Series

4. For the present we shall not be concerned with analytic functions of w or
z, but rather with formal Laurent series in one indeterminate z.

Denote by p a fixed prime and by K an arbitrary field not of characteristic p
which contains a root e/l of the equation x p - l = 0; its p roots
1, e, e2, • • •, ep~' are then all distinct. Elements of K will be called constants.

Next let z be an indeterminate over K, and let K [[z]] denote the field of all
formal ascending Laurent series

with coefficients ah in K. If the trivial case f(z) = 0 is excluded, the notation can
always be chosen such that am^ 0. Then m is called the order of /(z); this order
may be negative, zero or positive.

With the series /(z) there can be associated the set, 1f say, of the p + 1
derived Laurent series

in z", and z"p, respectively, and we can further form the elementary symmetric
functions st, s2, • • •, sp+, of these series, as defined in (1).

We now say that f{z) is an Sp-series if

(A) No two of the elements of 2/ are identical; and
(B) Every elementary symmetric function su s2, • • •, sp+i of the elements of 2/ can
be expressed as a polynomial in / ( z ) with coefficients in K.

5. A number of simple properties of such Sp -series /(z) follow immediately
from this definition.

Firstly, by (A), /(z) cannot be a constant since then all the elements of 1,
would be equal to the same constant.

Secondly, since then f(z)g K, it can easily be proved that /(z) is transcen-
dental over K.

Thirdly, if C o ^0 and C, are arbitrary constants, also Cof(z)+Ct is an
Sp-series and this series has the same order as /(z), unless /(z) has the order 0.

Fourthly, if n is any positive integer, also f(z") is an Sp-series, but of order
mn.

Fifth, the representations of the elementary functions sk as polynomials in
f(z) with coefficients in K are unique by the transcendency of /(z).

The last property implies that we can associate with every Sp -series /(z) a
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unique polynomial F(X, Y) in two independent indeterminates X and Y by
putting

F(X, /(z)) = {X- /(z'))fi (X - f(e'z"'))

^ = Xp+> - SlX
p + S2X"-'- + • • • ± Sp + 1.

This polynomial F(X, Y) has again coefficients in K; we call it the polynomial of
f{z). Before studying this polynomial, we establish a general property of certain
symmetric polynomials.

6. Denote by <1>(X, Y) = 4>( Y, X) any symmetric polynomial in X and Y of
the form

, Y) = Xp+1 + Yp+1 + 2 2 y,sX
r Vs

with coefficients yrs = ys, in K. The following result can then be proved.

THEOREM 1. Letf(z) be a series in K [[z]] such that all the elements of X, are
distinct. If any one of the p + 1 equations

Q(f(z'),f(z)) = 0 and <t>(f(eiz1"'),f(z)) = O, where j = 0,1, • • • ,p - 1,

is satisfied, then f(z) is an Sp-series and <t>(X, Y) is its polynomial.

PROOF. It evidently suffices to prove that each of these equations implies the
other p equations; for then the elementary symmetric functions s* of the
elements of 2/ become polynomials in f(z) with coefficients in K since they are
the roots of the monic equation

If, firstly,

then, on replacing z by e'zUp, it follows that also

, / (yz l " ) ) = 0 (/ = 0,1, • • • , ? - ! ) ,

and the assertion is an immediate consequence of the symmetry of <I>(X, Y).
Secondly, let for some j

If now e'z"p is replaced by z, and hence (e'zllpy = z by z", we obtain the
equation
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and so, by the symmetry of 4>(X, Y), we are back in the first case in which the
assertion has already been proved.

7. The following theorem is basic for the further theory.

THEOREM 2. Let f(z) be any Sp-series, and let F(X, Y) be the polynomial of
f(z). Then this polynomial is symmetric in X and Y and hence is of the form

(3) F(X, Y) = X p + 1 + Yp + 1 + 2 2 crsX'Ys

with coefficients c,s in K satisfying the symmetry conditions

crs = csr (r, s = l , - -- ,p) .

PROOF. Since F(X, Y) is monic in S, it suffices to prove the symmetry of
F(X, Y) because it has then the asserted form and the coefficients c,s satisfy
C = csr.

Two cases have to be distinguished. First assume that F(X, Y) is irreducible
over K. Since both f(zp) and /(z"p) lie in 2,, evidently

),/(z)) = 0 and

On replacing z by zp in the second equation, it follows that also

The irreducible equation

(4) F(X,/(z)) =

and the equation

have therefore the root f{z") in common and therefore share all the p + 1
elements of 2, as roots. This requires, firstly, that F(X, Y) is at least of degree
p + 1 in Y. Secondly, F(Y, X) necessarily is divisible by F(X, Y) and hence has
the form

(5) F(Y,X)=h(X,Y)F(X,Y)

where h(X, Y) is a certain polynomial in K [X, Y]. Here the degree in Y of
F(Y,X) is exactly p + 1, and that of F(X, Y) is at least p + 1. Hence both
polynomials are exactly of the same degrees p + 1 in both X and Y, and so the
factor
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h(X, Y)=h

is a constant. On applying twice the identity (5), once after interchanging X and
Y, it follows that

F(Y,X) = hF(X, Y) = h2F(Y,X),

hence that h2 = 1. Here h cannot have the value - 1 since then F(Y,X)
= - F(X, Y) and therefore F(X,X) = 0 so that F(X, Y) is divisible by X - Y,
contrary to the irreducibility of F(X, Y). Hence h = +1 and F(X, Y)
= F(Y,X), whence the assertion.

Secondly let F(X, Y) be reducible. It has then a factorisation

F(X,Y)=G(X,Y)H(X,Y)

where both G(X, Y) and H(X, Y) are polynomials in K [X, Y] which have
positive degrees in X. The two equations

(6) G(X,/(z)) = 0

and

(7) H(X,/(z)) = 0

together have all the p + 1 elements of 2, as their roots. Without loss of
generality the notation can be chosen such that the first equation (6) is
irreducible and has f(zUp) as one of its roots. Replace zUp in this equation (6)
successively by ezUp, e2zllp, • • •, e"~lzxlp. These substitutions leave both z and
f(z) unchanged, but transform f(z"p) into f(ez"p),f(e2zl/p), • • • ,f(e'"'z"p),
respectively, which therefore likewise satisfy the equation (6). This equation
cannot have more than p roots, and so the remaining element f(zp) of 2/
necessarily satisfies the second equation (7). This equation (7) is linear and so is
also irreducible.

It follows then that

'"),/(z)) = 0 and H(J(zp),f(z)) = 0,

hence, on replacing z by zp and z"p, respectively, that also

G(/(z),/(zp)) = 0 and H<j{z),f{zilp)) = 0.

It has thus been shown that /(z1/p) is a root of both irreducible equation (6) and
of the equation

H(f(z),X) = 0,

and similarly that f{z") is a root of both the irreducible equation (7) and of

G(f(z),X) = 0.
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These properties require that H(Y,X) be divisible by G(X,Y) and
G(Y,X) be divisible by H(X, Y), hence that G(X, Y) also be divisible by
H(Y,X). Hence there is a constant h?0 such that

G(X, Y) = hH(Y,X)

and therefore that

F(X, Y) = G(X, Y)H(X, Y) = hH(X, Y)H(Y, X).

This identity shows that also in the present case F(X, Y) is symmetrical in X and
Y.

8. Let again f(z) be an Sp-series, and let

F(X, Y) = Xp+1 + Yp+1 + 2 2 crsX'Ys (crs = c )

be its polynomial. We know already that if Co / 0 and Ci are arbitrary constants,
then also

g(z)=C0/(z)+C,

is an Sp-series. Denote by

G(X, Y) = Xp+1 + Yp+1 + 2 2 d,sX' Y\
= 0

the polynomial of g(z).
The set 2g consists of the p + 1 Laurent series

g(2 ' )=C 0 / (z ' )+C, ;

g(e'21"')=Co/(e'21/' ')+C1 where / = 0,1, • • • ,p - 1,

and these series are all distinct and satisfy the equation

G(X,g(z)) = 0,

while similarly the elements of 2,f are the roots of the equation

(4) F(X,/(z)) = 0.

Here both polynomials F(X, Y) and G(X, Y) are monic with respect to X
and to Y. They are therefore connected by the identity

(8) Cg+1 G(X, Y) = F(C0X + C , Co Y + C,),

from which it easily follows that
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(9a) cr dm=2 cr + i i cRS crs,
O S O

fp-s + 1 j _ (P +

S=O

(9c) C 5 - ~ + 1 d s = S i c
R=r S = s

In the special case when Ci = 0 and therefore

g(z)=Co/(2),

these formulae take the simpler form

(10) drs = C'0
+s-"-1 cn ( r , s=0 , l , - - - ,p ) .

We further note that, under no restriction on C>, the equations (9c) imply in
particular that

9. There is one further set of transformation formulae which will soon be
needed.

Let again f(z) be any Sp-series and let F(X, Y) be its polynomial. We say
that /(z) is an Rp-series if also its reciprocal f(z)~' is an Sp-series. Thus both /(z)
and f(z)~l are simultaneously Sp-series and i?p-series.

Assume that f(z) is such an Rp-series, and denote as before by F(X, Y) the
polynomial of f(z) and similarly by

F°(X, Y) = Xp+'+ Yp+1 + 2 2) clX'Y' (c°rs=cl)
r=O 5-0

the polynomial of f(z)"1. The set 2 r " consists of the p + 1 Laurent series

nz')-i;nzvpr\nezi"ri,---,f(e'-iz1")-1,
and both F(X, Y) and F°(X, Y) are monk and of the exact degrees p + 1 in X
and in Y. These two polynomials are therefore connected by the pair of
identities

(12) F°(X, Y) = Xp+1 Yp+l F(X\ y - 1 ) , F ( X , Y ) = X p + 1 Y p + 1 F ° (X~\ Y').

The explicit formula (3) for F(X, Y) implies then that F°(X, Y) is given by
p p

F°(X, Y) = Xp+1 + Yp+1 + 2 S crsX"-'*' Y""+\
r = 0 s-0
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ind here both exponents p - r + 1 and p - s + 1 are at least 1. But F° (X, Y) may
lot contain any terms divisible by Xp+I Y or by XYp+l. Therefore necessarily

13) cOs = c!O = 0 (s = 0,1, • • - , ? ) .

tfence in the present case F(X, Y) has the special form

14a) F(X, Y) = Xp+1 + Yp+l + £ 2 C " X ' y*»
r = l s = l

ind similarly F°(X, Y) has the form

p p

;i4b) F°(X, Y) = XP+I+ yp+1 + 2 S c°sx
rys

r - l s = l

.vith the coefficients

1 5 ) C°,= Cp-r+l,p-, + l (j, S = 1 , 2 , •• - , p ) .

By the complete symmetry in F(X, Y) and F°(X, Y) we can then conclude that
The conditions (13) are both necessary and sufficient for f(z) to be an

Rp-series.
It is useful to note that both the double sums SP=,SP_, in (14a) and (14b) are
divisible by XY, hence are equal to zero if X = 0 or Y = 0.

10. The following theorem shows the special role of series of positive order.

THEOREM 3. Every Sp-series of positive order is also an Rp-series.

PROOF. Let / (z ) be any Sp-series of positive order. It suffices to show that
:he polynomial F(X, Y) of f(z) has the form (14a), i.e. that its coefficients crs

satisfy the conditions (13).
Assume this assertion is not true. There exists then a suffix a in the interval

) S o - g p such that

c o , = 0 for s = 0,1, • • • , o - - l , but that cOa 7^0.

We apply the identity

),f(z)) = f(zpri + f(zY^+t t cnf(z')'f(zY=0.

Here by hypothesis

f(z)=amzm + ••• a n d f(zp) = amzmp + • • •

where m > 0, am ̂  0, and the dots denote terms in higher powers of z. The
identity implies then that
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(16) ar 1 z m ( / > 2 + l > > +--- + aS,+1zm(''+1)+--- + 2 2 cn (a'* »2
m""+I)+ • • •) = 0.

If now O S f f i p - 1 , then there is in this identity only one term
involving the lowest occurring power of z, and this term cannot be cancelled by
any other term. If, however, er = p, then Cu, = cOi = 0 by the definition of a, and
so Copa^zmp, which is now the term involving the lowest power of z, again cannot
be cancelled by any other term. This proves the assertion.

We shall soon show that there are Sp-series of negative order which are not
also Rp-series. There is thus an essential difference between the Sp-series of
positive and of negative orders.

11. The next problem to be discussed concerns the question whether, for a
given integer m and a given constant am/0, there exists an Sp -series

/(z)=2 ahz"

of order m and with the first coefficient am. The answer will depend on whether
m is positive, zero, or negative, and the conditions will be different in these three
cases.

We begin with the easiest case when m is negative, and we apply again the
identity (16) where now, however, m is a negative integer.

On writing the double sum in this identity as a Laurent series, the term in
the highest occurring negative power of z evidently is

r n2

t-ppt* m

2p- 7
m<P2+'>)

Similarly, the term in the highest occurring negative power of z arising from

is equal to

These two terms must cancel one another, whence there follows the necessary
condition

(17) cpp=-a~m^

for am. This equation shows in particular that
the coefficient cpp of the polynomial F(X, Y) of f(z) is distinct from zero if

m < 0, and - cpp is then the (p - l)st power of an element of K.

12. In order to derive also sufficient conditions, it is convenient to put
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f(z) = amg(z), where g ( z ) = z m + £ b>zh

is again an Sp-series of order m < 0 , but with the special property that 1 is the
coefficient of zm. Such a series is said to be normed.

As in §8, denote by

i - VP + I -G(X, Y) = Xp + I + Y'+ 1 + 2 , Z d,sX
r Ys (drs = d,,)

the polynomial of g(z). By (10), this polynomial has the coefficients

(18) dn = a'*-''1 cn ( r , s = 0,1, • • - , ? ) .

In particular, the necessary condition (17) takes now the simple form

(19) dpp = - 1.

This formula suggests to write G(X, Y) in the equivalent, but more,
convenient form

(20) G(X, Y)= - ( X p - Y ) ( Y p - X ) + £ E DnX"Y' (Drs = Dsr),
r=O $=0

where

(21) Dpp = dpp + 1 = 0, D u = d,, + 1, and otherwise Drs = drs

(r, s = 0,1, •• -,p).

Denote now by D the set of all coefficients

Drj, where 0 i r S s S p,

with the exception of the trivial coefficient Dpp = 0. Further, if n is any integer
greater than m, let Bn be any polynomial in

bm.n, bm+2, •• •, bn and in the elements of D

with coefficients in K. The symbol Bn need not always denote the same
polynomial.

13. The following basic existence result can now be proved.

THEOREM 4. Let G(X, Y) be any symmetric polynomial of the form (20) with
coefficients Dr, in K where Dpp = 0, and let m be any negative integer. Then there
exists one and only one normed Sp-series g(z) of order m such that G(X, Y) is its
polynomial.
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PROOF. In analogy to earlier proofs, we apply the identity

(22) P p

= (g(z")p-g(z))(g(z)"-g(z'')) + 2 2 D -*0
r=0 s = 0

Here

g(z) = Zm + | ) fc(l + mz'1 + m, g(z")= Zmp + 2 ^ + mZ("

hence

g ( z ) * = z"" + sfom+1zms+1+ 2 (s^+m +B)l+m-1)zms+'1
h-2

Further, since p is at least 2,

g(zp)p - g(z) = zmp2+ 2 Bh+m-lz"">2+h

h-2

and

oo

g(z) p -g (z p ) = pfcm+1z'""+1+ 2 (A+m +B(,+m-,)z""'
h-2

whence

= pbm+lz
m^+")+1+ 2 (pfe,.+m + 5 , ^ - 0 2 m ( p 2 + p ) + h .

d=2

On the other hand,

Dr sg(zpyg(z) ' = Drsz
m«"+S>+ 2 BM+mzm(p'+J)+l1

h = l

( r , s = 0 , 1 , • • - , ? ) .

On substituting these Laurent series in (22) and equating the coefficients of
all the different powers of z to zero, we obtain an infinite system of recursive
formulae

(23) pfem+i = £>p,P-i; pbh+m= Bh+ml for h = 2,3,4, ••• .
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These formulae allow to determine step by step all the coefficients bh+m and
prove both their existence and uniqueness.

The proof implies the following result.

COROLLARY. The coefficients bh+m ofg(z) can be expressed as polynomials in
the elements of D with coefficients in K.

By means of a slight change of method one can show that, conversely, all the
elements of D can be written as polynomials in finitely many of the Laurent
coefficients bh+m with coefficients in K. This is also implicit in the definition of
G(X, Y) by means of the elementary symmetric functions of the elements of Sg.

14. Denote by g(z\m) the normed Sp-series of order m < 0 given by
Theorem 4, and put

(24) g[*] = g ( z | - l ) -

The identity

G{g[z'],g[z]) = 0

implies that for every positive integer n also

and here, by §5, g[z"] is again a normed Sp-series, but of order — n. The
uniqueness proved in Theorem 4 implies then the identity

(25) g(z | m) = g[z~m] for every integer m < 0 .

Thus, once g[z] is known, we know all the normed Sp-series of negative orders
of which G(X, Y) is the polynomial.

On returning to the original Sp-series f(z) of order m < 0 with coefficient
am^0, Theorem 4 leads easily to the following more general result.

THEOREM 5. Let

p p

(3) F(X, Y) = Xp+1 + Yp+1 + 2 2 c"x' Y'
r-0 s-0

be any symmetric polynomial with coefficients crs in K where cpp^0, and let

f(z)= 2 ahz"
h = m

be any Sp-series of order m < 0 with the polynomial F(X, Y). Then am necessarily
is a root in K of the algebraic equation
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am — — Cpp,

and f(z) has the form

f(z)=am -g[z-m]

where g[z] is the unique normed Sp-series of order - 1 with the polynomial

G(X,Y)=a-J>+»F(amX,amY).

This result shows that it suffices to determine all normed Sp-series of order - 1 in
order to obtain all Sp -series of arbitrary negative order.

15. The symmetric polynomial F(X, Y) contains P = [{p + l)(p + 2)]/2 es-
sential coefficients, i.e., coefficients crs for which O i r ^ j g p . The most general
Sp-series f(z) of negative order depends therefore on P independent parameters
crs in K and in addition on the negative integer m which is its order. On the
other hand, the normed Sp-series g[z] of order - 1 involves only P-\
parameters for which we may take the elements of the set D defined in §12.

A further rather trivial reduction is possible. In the development

g[z] = z~' + X b"z"
lt-0

the constant term b0 plays no essential role, and we may consider the Sp-series

h[z] = g[z]-ao= z"' + 2 bhz
h,

instead of g[z]. Also h[z] is a normed Sp-series of order - 1; we call it a basic
Sp-series. Let

UCY V\ — — IV — V\(V — Y\ 4- X" ^ P V V* (P = P ^
n. \SL-, I ) — — \ A I ) \ I J\ ) T £j £j Crs J\ I \*-rs — t-'sr)r»0 s=0

be the polynomial of h[z]. By the proof in §12,

(26) Epp = 0.

To this condition we can add the further one,

(27) £ „ _ „ = £ „ _ , = 0.

It can easily be proved by evaluating the coefficient of the power

in the identity

E(h[z>],h[z)) = 0.
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It follows that the set of all basic Sp-series depends on only

ndependent parameters in K, viz., on the coefficients

E,s, where O ^ r g j g p ,

jut with the exclusion of the two trivial coefficients Epp = 0 and £p-i,p = 0.
We also see that, on allowing Co ¥" 0 and Cx to run over all constants, m to

•un over all negative integers, and h[z] to run over all basic Sp-series, the
jxpression

/(z)=C0fc[2-"] + C,

iescribes all Sp-series of negative orders.

16. Theorem 3 showed that if /(z) is an Sp-series of positive order m, then
f(z)~' is an Sp-series of the negative order - m. We found that in this case the
jolynomial F(X, Y) of /(z) and the polynomial F°(X, Y) of f(z)~l had the forms
14a) and (14b) in §9, respectively. Both these polynomials contained only

essential coefficients on account of the conditions (13). If

/(z)= £ ahz\
h = m

he reciprocal function f{z)"' has a Laurent series which begins with the term
a ' V " . Hence

g(z)=amf(z)-'

:s a normed Sp-series, and even, by Theorem 3, a normed i?p-series; it has the
negative order - m. If the polynomial is written in the form

G(X, Y)=-(X" -Y)(Y"-X) + 2 2 D"X' Y° (D,s = D,,),

then §9 and §12 imply that

Das = Ds0 = 0 for s = 0,1, • • •, p, and Dpp = 0.

Here the first conditions hold because g(z) is an Rp-series, and the last one since
g(z) is normed.
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Conversely, by Theorem 4, these properties of the coefficients of G(X, Y)
show that there exists to every negative integer — m one and only one normed
Sp-series g(z) of the negative order — m belonging to G(X, Y), and this series is
an Rp-series.

Denote again by g[z] the unique normed Sp-series of order — 1 the
polynomial of which is G(X, Y). Then for every positive integer m the normed
Sp -series g[zm] is the unique Sp-series of the negative order - m belonging to
G(X, Y). In terms of this series the original Sp-series f(z) can be written as

(28) nz)=amg[zT.

It has in the present case no advantage to express in this formula g[z] by the
corresponding basic series h[z].

We had put

0 =

From the conditions for the coefficients D,s of G(X, Y), the normed series g[z]
depends only on the Q - 1 essential coefficients

(29) Drs, where l ^ r g j g p ,

of G(X, Y) where the trivial coefficient Dpp = 0 has been excluded. The Q - 1
essential coefficients of G(X, Y) may run independently over K. Therefore the
set of all Sp-series f(z) of arbitrary positive orders depends on exactly Q parameters
in K because am?0 may still run over all constants. Naturally f(z) in addition
depends on its positive order m.

Since P > Q, the following result is obtained.

THEOREM 6. While the reciprocal of every Sp-series of positive order is again
an Sp-series, but of negative order, the reciprocal of an Sp-series of negative order is
not in general an Sp-series.

17. There remains the study of the Sp-series of order 0. Let

f{z)=*2, ahz
h, where ao/0,

h=0

be such a series. Since f(z) may not be a constant, there exists a positive suffix m
such that

fli = a2 = • • • = am-i = 0, but am/Q.
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Hence

(30) f{z)=ao + g(z),

where

g(*)= 2 ahz"
h=m

is an Sp-series of the positive order m and so, by Theorem 3, is an Rp-series.
This implies, by §9, that the polynomial G(X, Y) of g(z) has the form

G(X, Y) = X"+l + y + 1 + 2 2 d,sX' Y° (drs = dsr).

Let similarly
p p

I?fY V \ — Y"f> + 1 J- VP + 1 4- ^ ^ /- V r V s (n — r \
r\J\., I ) — j \ T I T £j £j Crs^ ' \<TS — (-sr)

r=0 s-0

be the polynomial of f{z). Then, by the relation (30),

(31) F(X, Y) = G(X -ao,Y- a0)

identically in X and Y, a formula which defines the polynomial of every possible
Sp-series of order 0. We see that such a series /(z) depends on altogether 0 + 1
parameters in K, namely the Q essential coefficients of G(X, Y) and the
coefficient a0 ̂  0. In addition, /(z) depends also on the arbitrary positive integer
m, and it may be written in the form

f(z)=ao+amg[zm]-\

where g[z]~' denotes the unique normed Sp-series of order 1 with the polyno-
mial G(X, Y).

18. As has just been shown, the set of all Sp-series of order 0 depends on
O + l parameters in K. On the other hand, we proved in §16 that the set of all
Sp-series of positive order involves only Q such parameters, and it follows from
§§9-10 that the same is true for the set of all i?p-series.

Therefore, in general, an Sp-series f(z) of order 0 is not an Rp -series and
hence its reciprocal f(z)'1 is not an Sp-series.

The question arises then whether there do exist exceptional Sp-series of
order 0 which are Rp -series. This question can be answered as follows.

Let /(z) be such an Rp-series of order 0, and let again g(z) be the series of
positive order defined by the equation (30); it is of positive order and therefore is
an i?p-series. Let G(X, Y) be the polynomial of g(z) as given in the last section,
and let similarly F(X, Y) be the polynomial of f(z). This polynomial has now the
simpler form
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F(X, Y) = Xp+1 + Yp+1 + 2 2 cnX' Y' (crs = cw).

The identity (31) can also be written as F(X + a0, Y + ao)= G(X, Y) and is
equivalent to

(X + ao)
p+1 + (Y + ao)ptl + 2 2 c, (X + ao)

r (Y + ao)
s =

r - l s - l

(32) , ,
— A. T i T ^ ^ ars .A r .

r - l s = l

On expanding the binomials on the left-hand side and comparing the coefficients
of the different power products of X and Y, we find that the terms in Xp+1 and
Yp+1 cancel out, and that the terms in X'Y1, where r and s run from 1 to p, just
allow to express the coefficients drs of G(X, Y) as unique linear polynomials in
the coefficients crs. The only remaining conditions still to be satisfied are that the
coefficients of the powers 1, X, X2, • • •, Xp are equal to zero; by symmetry, this
implies then the same for the coefficients of the powers 1, Y, Y2, • • •, Yp.

These p + 1 conditions can also be obtained by simply putting Y = 0 in (32).
They are then contained in the single condition that

(33) (X + aoy
+1 + aj+ 1 + 2 2 ^ (X + a0)'a'o = Xp+1

r - l s - l

identically in X.
If now the prime p is equal to 2, then on putting X = - a0 we obtain the

condition that al= (- aof, hence that a0 = 0, contrary to hypothesis. Thus the
following special result holds.

THEOREM 7. There are no R2-series of order 0. In other words, if f(z) is an
S2-series of order 0, then its reciprocal f(z)'1 is not an S2-series.

A completely different position holds if the prime p is greater than 2.

Now, on replacing X by X - a0 in (33), this identity takes the form

Here the terms in Xp+1 and in a?+1 cancel out, and the remaining terms lead to
the following system of p linear equations

(34) tc,sa;, = (P + 1)(-aoy-'+1 (r = 1,2,
\ r I
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for the coefficients cn. Each of the p diagonal coefficients cn occurs in one and
only one of these equations and has the coefficient a'o^ 0. These p equations are
therefore non-contradictory and allow to express the cn linearly in terms of the
remaining

O - p = 2

essential coefficients

(35) crs, where 1 ^ r < s ^ p,

and of the coefficient a0. Thus the following result has been established.
For p g 3 the set of all Rp-series of order 0 depends on Q - p + 1 parameters

in K, viz., on the coefficients (35) and on a0.
Since both sides of the equation (34) have the common factor a0, we further find
that if F(X, Y) is given, a0 has at most p - 1 possible values. For otherwise these
equations are satisfied identically in a0, and hence

c,,p-r+1 = ( - l)p-'+1 ( p J for r = 1,2, • • -,p, and otherwise cr, = 0.

Therefore

F(X, Y) = Xp+1 + y + 1 + 2 ( - l)P"r+1 (P + 1)xr Y"-'+l = (X - Y)p+l.
\ r I

However, the only Laurent series f(z) of order 0 satisfying the functional
equation

is an arbitrary constant and so is not an Sp-series.

19. In the preceding sections we studied in detail on how many parameters
does the general Sp -series /(z) depend. The results were found to depend on
whether /(z) was of negative order, of positive order, or of order 0.

It was also found that every Sp-series could be expressed in terms of the
normed Sp-series g[z] of order - 1, and when we were dealing with Sp-series of
negative order, this normed series could be replaced by the corresponding basic
series h[z] in which the constant term was equal to zero.

In the next chapter we shall deal in detail with the relation between such a
basic series h[z] and its polynomial H(X, Y).

Before studying this question, it is, however, appropriate to add some
remarks on the Sp -series f(z) for which the corresponding polynomial F(X, Y) is
reducible.
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20. Let for the moment f(z) be an Sp-series of arbitrary order, but with the
property that its polynomial F(X, Y) is reducible. By §7, F(X, Y) allows then a
factorisation

F(X, Y) = hH(X, Y)H(Y, X)

where h ^ 0 is a constant, and H(X, Y) is an irreducible polynomial which has
the exact degree 1 in X and p in Y, hence without loss of generality, may be
assumed to have the form

H(X, Y) = - X + 2 y. Y'

1-0

where y0, • • •, yP-u yP^ 0 are certain constants. Hence

(36) F(X,Y) = h(- Y + 2 yrX')(-X + f, y.Y').
\ r-0 / \ 5-0 /

Since Xp+I is the term of F(X, Y) in the highest power of S, it follows at once
that

hyp = - 1.

Let now, firstly, /(z) be the negative order m, and let it be normed,

/ ( 2 ) = 2 m + - - - .

The identity

which has already been used before, takes the explicit form

- ( 2 " ' + - - - ) + £ y , { z " + • • • ) • = 0 .
5=0

Its term in zmp has the coefficient — 1 + yp which must vanish; hence

yP = l, fc=-l.

Hence the following result holds for reducible F(X, Y).
If f(z) is normed and of negative order, then its polynomial has the form

(37) F(X, Y) = - ( X" - Y + § %*') ( V" - X + § 7»H ,
\ r-0 / \ j-0 /

hence depends on p parameters y0, yu • • •, -yp_, in K.

We must add am ^ 0 as a further parameter if /(z) is not normed. A similar proof
shows that if f(z) is basic, then also yp-, = 0.
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21. The two remaining cases lead to rather trivial results, as follows.
Let, secondly, /(z) be of positive order and normed. Then, on one hand, the

reducible polynomial F(X, Y) has the form (36). On the other hand, it follows
from §9 that F(X, Y) has the special form

p p

(14a) F(X, Y) = Xp+1 + Yp+1 + S S c"x' *">

and here, by §§11-12,

cpp = - 1 .

On comparing these two expressions for F(X, Y), it follows immediately that

To = y, = • • • = Tp- i = 0 , yp = 1, h = - 1

and that therefore

F(X, Y) = - (Xp - Y)(Y" - X).

The corresponding equation

),/(z)) = /(zp)- /(z)p=0

is easily seen to have no other normed solution of the positive order m than the
monomial f(z)= zm. The general Sp-series of positive order with a reducible
polynomial F(X, Y) has the form f(z) = amz m where again am ̂  0 is a constant.

Thirdly, let f(z) be of order 0 and not necessarily normed. Since /(z) - an is
of positive order and still has a reducible polynomial, it follows now that /(z) is a
polynomial

/ (z )= ao+ amzm, where a o / 0 and a m ^ 0

are arbitrary constants and m is any positive integer. The polynomial F(X, Y) of
f(z) has then the special form

F(X, Y)= - ((X - aoy - ( Y - ao))(( Y - flo)" - (X - a0)).

In future an Sp -series /(z) will be called general or special, according as to
whether its polynomial F(X, Y) is irreducible or reducible, respectively. By what
has just been proved, special Sp-series of non-negative orders are monomial or
binomial polynomials and so have little interest. On the other hand, special
Sp-series of negative orders have non-trivial properties.

Chapter 2. Basic series and their polynomials

22. As was found in the first chapter, Sp-series of negative orders are more
general than those of non-negative orders, and the latter can always be
expressed in terms of Sp-series of negative orders.
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It is for this reason that we shall from now on consider only Sp-series of
negative orders. It will, in fact, be sufficient to deal only with basic series, i.e.,
with normed series of order — 1 in which the constant term is missing.

Let

(38) /i[z] = z - ' + 2 bhz
h

be such a basic Sp-series, and let, as in §15, its polynomial H(X, Y) be written in
the form

p p

(39) H(X, Y)= - ( X p - Y ) ( Y p - X ) + £ £ EnX'Y' (£„=£„).
r=0 s=0

As was then already mentioned, the coefficients of H(X, Y) satisfy the condi-
tions

(40) £pp = £p_,,p=£p,p_, = 0.

We note once more that every Sp-series of negative order m can be expressed in
the form

/(z)= aa+amh[z~m]

where a0 and am ^ 0 are arbitrary constants, and that then, by §8, the polynomial
F(X, Y) of f(z) is given by

a"m
+i F(X, Y) = H(a0 + am X, a0 + am Y).

23. Theorem 4 and its corollary imply that, when H(X, Y) is given, the
basic Sp-series h[z] is unique, and all its coefficients bh can be expressed as
polynomials in the coefficients E,s of H(X, Y). It was then already mentioned
that, conversely, it is similarly possible to write the coefficients Hts as polyno-
mials in a certain finite number of the coefficients bh. This representation will
now be established, but explicitly only in the lowest two cases when p = 2 and
p = 3 because for larger primes p the formulae become rather complicated.

The idea, on which this calculation is based, is, however, quite simple. It is
founded on the definition of H(X, h[z]) as the monic polynomial in X of degree
p + 1 which has as its zeros the p + 1 elements

of the set 1h. It is thus required to evaluate the p + 1 elementary symmetric
functions, s,, s2, • • •, sp+1 say, of these p + 1 series, and then

H(X, h[z]) = Xp+1 - s,Xp + a " " 1 - + • • • ± sp+l.
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Here the main problem lies in expressing the s, as polynomials in h[z] and in the
Laurent coefficients bh.

24. To begin with, the definition (38) of h[z] is easily seen to imply an
infinite sequence of identities

z-
2=h[z]2-2bt

z-<=h[z]i-4blh[z]2-4b2h[z] + (2b2-4b})+---,

etc., when the dots denote formal power series in negative powers of h[z].
Further positive powers of z are expressible as formal power series in such
negative powers.

Consider now, firstly, the simplest case when p = 2. The set 1h consists of
the three series

h[z2] = z'2+t Kz2h,

/ i [ z 1 / 2 ] = z 1 / 2 + 2 b h z h n , h [ - z m ] = - z - 1 / 2 + 2 ( - l y V 2 -
h - l h = l

Here

Mz1/2] + M-z1 / 2] = 2 2 b2hz
h and h[zU2]h[- z'12] = - z~' - f, frz",

where the new coefficients /3h are defined by

/3o = 26,, f3, = 2bi+b2, and

ph=2b2h+l + 2'Z (-iy->bib2h-i+(-l)h->b2
h for ftg2.

i - i

The three elementary symmetric functions

s, = /i[z2] + li[z"2] + ^ [ - z 1 / 2 ] ,

can therefore be written as the Laurent series
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s, = z~2-2b, + •• •,

( 4 2 ) s 2 = ( 2 b 2 - l ) z " ' + ( 2 b 4 - 2 b , ) + • • • ,

s , = - z - 3 - 2 b , z ' 2 - ( 2 b , + b ] ) z l - ( 2 b , + 2 b l b i - b l ) + - - - ,

where the dots now denote power series in positive powers of z.
Replace now in (42) the terms in non-positive powers of z by their

expressions (41); they become then Laurent series in h[z]. But we know that
5,, s2, and s, are polynomials in h[z]; hence the terms in negative powers of h[z]
must cancel out . The explicit expressions of s,, s2, and s, take therefore the form

s, = h[z]2-2b,,

s2 = (2b2- l)h[z] + (2b4-2b,),

s3= -h [zf - 2b,h [zf - (2b, + b2,- 3£»,)/i [z ] - (2b, + 2b,b, - b\- 3b2 - 4b2,).

From these expressions, it follows immediately that the polynomial
H(X, Y) of h[z] has the following explicit form,

H(X, Y)= - (X2 -

+ (2b, + b\- 3b,)Y + (2b5 + 2b,b,- b\- 3b2 - 4b2,).

By Theorem 2, H(X, Y) is symmetric in X and Y. Hence

(44) 2b< = 2b,+ b2-bl.

The essential coefficients H,s of H(X, Y) are given by

HO2=2b,, Hn = 2b2,

Ho, = 2b, + b2- 3b, = 2bt - 2b,, Hm = 2b, + 2b,b, - b\ - 3b2 - 4b2,

and, conversely,

2b, = H02, 2b2=Hu,

8b, = 4HOi — H02 + 6H02, 2b4 = Ho, + H02,

16fc5 = SHm- 4HO2HO, + H3
02 + 2Hl2 - 2H2,, + 6H,,.

Thus for basic S2-series h[z] the polynomial H(X, Y) is known if the first
five coefficients

(45) b,, b2, b,, b4, b,

are given where, however, these five coefficients have to satisfy the condition
(44). Theorem 4 shows that no further restrictions on the coefficients (45) need
be imposed. Thus, when the equation (44) holds, then there always exists exactly
one basic S2-series with the first five coefficients (45).
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It should now be possible to express all further coefficients bh (h ̂  6) of
h[z] in terms of the coefficients (45). As we shall in fact immediately prove,
these coefficients bh with h g 6 can be written as polynomials in the coefficients
(45), where the numerical coefficients lie in the prime field of K.

25. For this purpose, a set of recursive formulae will now be established
which allows to evaluate step by step the successive coefficients bh once the
coefficients (45) are given. Thus these recursive formulae depend only implicitly on
the polynomial H(X, Y) of h[z].

The construction is based on the two identities

s, = h[z2] + h[zU2]+:h[-zm] = h[z]2-2bu

s2 = h[z2](h[z"2] + h(- z"2])+ h[zV2]h[- zU2] = (2b,- l)h[z] + (2b4-2bl)

of the last section. If in these identities

h[z],h[z2],h[zl%h[-z"2}

are replaced by their Laurent series, the resulting identities contain only integral
powers of z. On comparing now the coefficients of these different powers and
putting their sums equal to 0, the required recursive formulae are obtained. By
means of a suitable linear combination, they can then be put in the following
forms where k runs over all positive integers, and empty sums are to mean 0.

(46a) b4k = b2k+, + 2 b,b2k-,+ (bl-bk)/2,

k 2k-,

(46b)
+ zZ bjb4k-4,- b2b2k + (b\ + , - bk + ,)/2 + (b\k+ b2k)/2,

/->
k

(46c) bik+2 = b2k+2+ 2 bjbzk-j+i,

2k

fc4k+3= b2k+4+ ZJ bib2k-i+} — 2J (— I ) ' " 1 bjb4k-i+2 +
,•=i > = i

(46d)
+ zZ b,b4k-*i+2~ b2b2k+i - (blk + i - b2k+i)/2.

/ -•

There is a third identity

Si=h[z2]h[zl'2]h[-zU2] =

= - (h[z]3 + 2b,h[z]2 + (2b, + b]- 3bt)h[z] + (2b5 + 2b,b>-b\- 3b2- 4b2,)),
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to which the same method may be applied. This leads then to a further set of
recursive formulae. But while the formulae (46) involve at most products of two
coefficients bh, and in addition have rather simple laws, the new formulae contain
products of up to three factors bh and are much more complicated. The first
three of the new relations are as follows.

2b1 + 2bib5-2b2bi+b\ =

= b,(3b, + 3*?) + 4b,b2 + (2b, + b\- 3bx)bu

= 2bl + (4/>4 + 4b,b2) + 2bt(2b, + b\) + (2b, + b2,- 3bt)b2,

2bu + 2b,b9 - 2b2bx + 2b,b7 - 2b4b6 + b] =

= bx(2b, + b2) +b2 + (365 + 6btb, + 3bl + b]) +

+ 2*>,(2&4 + 2blb2) + (2b, + b2,- 3bl)b,,

and the further ones get even more involved. We can fortunately disregard all
these formulae because, by Theorem 4, they are necessarily consequences of (44)
and of the recursive formulae (46).

26. Next let p = 3, and let

be any basic S3-series. The corresponding set 2fc consists of the four series

h[z3] = z'3+f, bhz
ih,

and h[s'zm]=e-iz-U3+'Z bhe
hizhn where / = 0 , l ,2 .

h = l

Here e denotes a primitive third root of unity in K.
The problem is again to express the elementary symmetric functions su s2,

s,, st of the elements of 1h as polynomials in h[z]. This can be done just as for
p = 2, but the calculations become now more complicated. On substituting the
expressions so obtained for the s, in H(X, Y), this polynomial assumes the
following explicit form:
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H(X, Y) =

= - ( X 3 - Y ) ( Y 3 - X ) + 3ft,(X3Y + XY3) + 3ft2(X
3 + Y3) + 3ft3X2Y2 +

+ (3ft4 + 3ft,ft2)X
2 Y + 3ft6XY2 + (3ft5 - 3ft,ft3 + 3bl + ft3 - 4ft,)X2 +

+ (3b9- 6ft,ft3 - 3ft,) Y2 + (3ft7 + 3ft,ft5 + 3ft2ft4 -3b2,- 9ft?)XY +

(47) + (3b,- 3blb6 + 6ft2ft5 - 3ft3ft4 + 3b]b4 - 3b]b2b, + b\ - 9btb2 - 4b2)X +

+ (3bw + 3blb« + 3b2bi - 6b,b6 + 3b4b5 - 6b,b4 - 6b2b2 - 9b,b2 - 3b2) Y +

+ (3ft,, - 3ft,ft9 + 6ft2fts- 3ft3ft7 + 3ft2ft7 - 3ft4ft6 - 3ft,ft2ft6 + 3ft^ +

+ 3ft^ft5 - 6fc,ft5 - 3ft,ft3ft5 + 3ft,ft^- 3ft2t3*4 + b\ + 6ft2ft3 -

Since H(X, Y) is symmetric in X and Y, the Laurent coefficients bh that
occur in this representation must satisfy the following three symmetry condi-
tions:

b6 = b4 + bxb2,

ft9=ft5+ft,ft3+ft2
2 + (ft]-ft,)/3,

* ' bw= -blbs+bs-b2b1 + 2b3b6-blb6-btbs + 2b2b5-b,b4 +

+ b\b< + 2b,ft4 - ft,ft2ft3 + 2ft2ft2 + (bl - ft2)/3.

Thus for p = 3 the eight Laurent coefficients

(49) ft,, ft2, ft3, ft4, ft5, ft7, ft8, ft,,

of h[z] determine ft6, b9, and ft,0 and hence also determine the polynomial
H(X, Y).

The formulae (47) and (48) allow to write the eight essential coefficients

(50) fin, £o3, E22, E,2, E02, En, Eoi, Eoo

of H(X, Y) as polynomials in the eight Laurent coefficients (49) of h[z], and
conversely, the latter can be expressed as polynomials in the coefficients (50) of
H(X, Y).

27. Just as for p = 2, so also in the present case p = 3 we can establish
recursive formulae for the coefficients bh of h[z]. It is to be expected that these
formulae will be rather more complicated. They again involve the coefficients of
H(X, Y) only implicitly.
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Put

k(z)=t
h l

The four elements of 2,, can then be written in the form

/i[e'z1/3] = e-'2-1/3+fc0(2)+e'z1/3fc,(z)+e2'22/3fc2(z) for j =0 ,1 ,2 .

On evaluating their elementary symmetric functions, the terms in fractional
powers of z cancel out, and the s, become polynomials in z, k(z), ko(z), fci(z),
and fc2(z). On the other hand, the expression (47) for H(X, Y) allows to write
them also as polynomials in h[z] and in the first eleven coefficients bh of h[z].

On carrying out these trivial calculations, we obtain the following set of
formulae.

st = h[z]3-3b1h[z]-3b2= z~3+ k(z)-3kB(z),

s2 = 3b3h[z f + 3b6h[z] + (3b9- 6btb3 -3ft.) =

s3 = - 3blh[zY - 3b6h [zf + (1 - 3b-, - 3b,b5 - 3b2bt + 3bj + 9b])h [z] -

- (3bs- 3&A + 6b2b5 - 3bib4 + 3b\b,- 3btb2b, + b\- 9b,b2- 4b2) =

= 3z-\ko{zf- kt(z)- z/c,(z)/c2(z))+ z -' + Jko(z)3+ zkl(zf +

+ 3k2(z) + 3zk2(z)2+z2k2(zf-3k0(z)kl(z)-3zk0(z)kl(z)k2(z) +

+ 3k(z)(ko(zf- k,(z)- zkt(z)k2(z)).

Here replace again h[z], k{z), ko(z), /c,(z), and k2(z), by their series and then
compare on both sides of the resulting identities the coefficients of the different
powers of z: For the lower powers of z this leads only to trivial identities, or to
the symmetry conditions (48), or to equations that follow from these conditions.

But for d § 4 the wanted recursive formulae are obtained. They have the
following forms:

1 h 1
(51a) b3h = bh+2 - bibh - - bh/3 + 2 bjbh-l+, + - 2 bhlbh2bh,,

where bh/3 denotes 0 if h is not divisible by 3, and in the multiple sum hu h2, h,
denote positive integers of the sum h;
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(51b) + 2J

where again bih+,)n denotes 0 if ft is not divisible by 3, and where in the last sum
hu h2, h, run over all positive integers of the sum h +3;

b,h+2 = | ( 1 - 367 - 3ft,fe5 - 3b2b4 + 3bl + 9b])bh - 2b6bh+2 - 3b,bh+2 -

(51c) - X M ^ - i ,

J h t + h2+hi— h +6

h+6

Zj bjbh-j+1
; - 1

T , _ l y

1 V h h h
~ -> Zj " 3*1+2''3*2+2°3*3+2)

where also b^+w denotes 0 if h is not divisible by 3, and where in the multiple
sums letters h, run over positive integers and letters /c, over non-negative
integers.

There is a further set of recursive formulae corresponding to the two
expressions for the symmetric function s4, but I have not tried to determine this
set since it is naturally a consequence of the three sets (51).

28. For p g 5 I have not tried to determine H(X, Y) and the full sets of
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recursive formulae analogous to (46) for p = 2 and (51) for p = 3; for they
become very complicated.

We note, however, that the first symmetric function

y-o

where e denotes again a primitive pth root of unity in K, may still easily be
written as a polynomial in h[z], so that at least for the special coefficients bhp a
set of recursive formulae can be deduced. This is done as follows.

In the formula (41) of §24, we had for 1 S n S 4 written the expressions for
the terms in non-negative powers of h[z] of the developments of z~" into
Laurent series in descending powers of h[z]. For n = 5 and n = 1 one similarly
finds that

(52) z"5 = h [z]5 - Sbth [z]3 - 5b2h [zf + 5(65 - b3)h [z] + 5(btb2 - 64) + • • •

and

+ 7 ( 2 b , b , + b l - b l - b s ) h [ z ] + 7(fc,fc« + b 2 b , - b \ b 2 - < > . ) + • • •

From the definition of Si as the first elementary symmetric function of the
elements of 1h it follows, on the other hand, that

(54) s1 = z-' + f

Replace now again h[z] in (52) and (53) by its Laurent series and compare
the coefficients of the different powers z \ where h ^ 1, in the resulting series
with those in the series (54). We obtain then the required recursive formulae for
bhp in the two cases when p = 5 or p — 1.

We shorten these formulae by adopting the following notations. Similarly as
before, put bh/p equal to 0 if h is not divisible by p. Further, for any two positive
integers m and n put

a{m ; n ) = 2 bh,K2-- • bhm

where the summation is extended over all sets of m positive indices h,, h2, • • •, hm

which satisfy the equation

ht + h2+ •• • + hm = n,

but put the sum equal to 0 if it is empty.
For p = 5 the resulting formula is still reasonably simple, viz.

https://doi.org/10.1017/S1446788700013367 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013367


[33] A class of functional equations 97

bsH = bh+4-3b,bh+2-2b2bh + l + (b2-bi)bh + 2o-(2; ft + 3 ) -

(55) -3b,(r(2;h + 1 ) - b2(r(2; ft) + 2tr(3; ft + 2)-b,a-(3;h) +

+ <r(4;h + l) + j(<r(5;h)-bhl5).

It becomes the trivial identity for ft = 1, but for 2 § ft § 5 is equivalent to

bm = b6+ b,b4 + b2b3,

b,5= bj+ blb5 + 2b2b4 + bl + b2b3 + b,b2
2,

b20= bs+ blb6+2b2b5 + 3bibi+ bl + 4b,b2b>+ b2
tb4+ bib,,

b2, = b9+blb1 + 2b2bh + b2b5 + 3b,b, + 2b2,- 2b,b2b4 + 3b2b, + b]b, +

Here the equations for bl0 and b,5 occurred already amongst the recursive
formulae for p = 2, and for p = 3, respectively.

For the prime p = 7 the expression for b-,h is far more complicated.

b7h = bh+b-5b,bh+4-4b2bh+3 ( ( )

(2blb,+ b\-b]-b5)bh +3a-(2;h + 5 ) - l0b,a(2; h + 3 ) -

- 6b2a-(2; h+2)+ 3(2b] - fc,)o-(2; h + 1) +

(56) + (3blb2- b4)(r(2; h) + 5<T(3; h + 4 ) - 106,<r(3; h + 2 ) -

- 4fe2o-(3; ft + 1) + (26? - />3)er(3; ft) + 5cr(4; ft + 3) -

- 5bta(4; ft + 1 ) - b2<r(4; ft) + 3<r(5 ft + 2 ) - 6,o-(5; ft) +

+ cr(6;ft + l) + l(tr(7;h)-bhn).

For ft = 1 this formula becomes again the trivial identity, but for ft = 2 and ft = 3
it becomes

fen = bK + fe|/>6+ bibs + 6364,

621 = 69+ 6167+ 2 6 A + 2ft3fc5+ fe?fc5+ bl + 2b, b2b4 + 6,fc2,+ 6 ^ , .

These two equations occurred already amongst the recursive formulae for p = 2,
and for p = 3, respectively.

29. As we mentioned already, the explicit determination of H(X, Y) for
p ^ 5 in terms of the Laurent coefficients bh of ft[z] becomes excessively
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complicated. But it is still possible to formulate some general laws about this
interdependence.

By the corollary to Theorem 4, each of the Laurent coefficients bh can be
expressed as a polynomial over K in the coefficients Ers of H(X, Y). Conversely,
the formulae (43) and (44), and (47) and (48), show that for p = 2 the £„ are
polynomials in the four Laurent coefficients

b\, b2, bi, and b5,

and for p = 3 in the eight Laurent coefficients

b\, b2, bj, ba,, />5, b7, bs, and bu.

In each of these two cases a multiple of the highest coefficient (2b5 or 3bn) occurs
in the constant term Eoo of H(X, Y).

An analogous result is still valid for p =? 5. Also here the highest occurring
Laurent coefficient, bh- say, arises in the constant term Em of H(X, Y), and its
suffix h* can be found by the following simple consideration.

The highest elementary symmetric function sp+, of the elements of 2h is the
product

sp+.= (z-p + i t>hzh-)fi (e-'z-l"+'Z bhs'hzh/").
\ (1 = 1 / /-0 \ fi = l /

Since p is odd, it can also be written as

sp+l = h[z]-+l+2 E0,h[z]:

On replacing in the second formula h[z] by its Laurent series, two different
developments of sp+i into Laurent series are obtained, and on comparing them, it
is obvious that the coefficient of 2° will form a part of Eoo and at the same time
will involve the Laurent coefficient bh-. The product formula for sp+J shows easily
that the coefficient of z° involves a term

but none with a factor bh where h g p2 + p. Hence h* = p2 + p — 1. It is also clear
that bh',cannot occur in any one of the other elementary symmetric functions
S\, S2, " ' *, Sp.

Thus H(X, Y) is already determined if all the Laurent coefficients

(57) b h , where I ^ h ^ p 2 + p - l ,

are g i v e n .
On the other hand, H{X, Y) depends by
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(40) Epp = £„_,,„ = £ „ _ , = 0

on exactly

P-2 =

essential coefficients Em and the p2 + p - l Laurent coefficients (57) can be

expressed as polynomials in the latter.

This implies that the coefficients (57) have still to satisfy

(58) (p2 + p-\)-

independent algebraic conditions. Denote by Cp this set of p(p - l)/2 conditions.
For p = 2,

and for p = 3,

in agreement with the results in §24 and §26.
The proof just given does not supply any information about the form of the

equations in Cp. Presumably these equations will again be equivalent to the
symmetry conditions

E,s = Esr (r,s = 0,1, • • - , ? ) .

It seems further plausible that in each of the equations of Cp the coefficient bh of
largest suffix will occur linearly, just as it was for p = 2 and p = 3.

The Laurent coefficients

(59) bh, where h^p2 + p,

do not occur in the explicit expression for H(X, Y), but, by the corollary to
Theorem 4, they can be expressed as polynomials in the coefficients E,s of
H(X, Y). The latter, on the other hand, can be written as polynomials in the
p2 + p-l Laurent coefficients (57). Hence the coefficients (59) can all be
expressed as polynomials in the coefficients (57). This suggests that they are
already polynomials in only certain

1
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of the coefficients (57). This assertion certainly holds in the two lowest cases
p — 2 and p = 3, as is obvious from the form of the equations (44), and (48),
respectively.

Chapter 3. Analytic Sp-functions

30. So far, only formal Sp-series over a field K have been considered. Here
the only restrictions on K were that its characteristic was distinct from p and that
it contained a primitive pth root of unity.

Now specialise K and assume that it possesses a non-trivial valuation VV(JC).

The question arises then whether a given Sp -series over K has a region of
convergence relative to the metric induced by the valuation if the indeterminate
z is replaced by a variable in K.

We shall restrict the discussion of this problem to the particularly interesting
case when K is the complex number field C, and w(x) is the absolute value \x |
in C.

A given Sp -series

f(z)= 2 ahz"
h = m

with coefficients in C may now possibly converge for

if y is a sufficiently small positive number. If this is the case, then f(z) becomes a
single-valued analytic function for | z | < y with at most a pole at z = 0.

It will be sufficient to study this convergence problem for basic Sp -series

For by the results of the first chapter every Sp-series can be expressed in a trivial
way in terms of a suitable basic series.

31. Let then h[z] be any basic 5p-series with complex coefficients, and let
further

(39) H(X, Y)= - ( X p - y ) ( Y p - X ) + 2 2 E,SX'Y' (Er, = Esr)
r-0 s-0

be its polynomial. We shall apply the following result which is a special example
from the theory of algebraic curves.
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(60) There exists a unique formal Laurent series

U(X) = X"p + 2
h-l

with complex coefficients uh such that

r (A, U (A )) = U.

PROOF The equation for U(X) has the explicit form
p p

(6i) (xp - t/(x)) (u(xy - x) = 2 2 E" xru(xy,
r-0 i-O

where again

F = F . = F , = 0
L^pp L^ p — \p l>p,p- l \J

since /i[z] is basic.
Similarly as in previous proofs, denote by Uh any polynomial in

Mi, «2, • • •, uh with complex coefficients; this polynomial may vary in different
formulae.

Then evidently

xp - u(x) = xp- xUp - 2

L/(X) — A = pUiX + ^ (pwft +
h=2

hence

On the other hand,

xru(xy = xipr

/t=2

Here the sum pr + s for the terms ErsX'U(X)' with Ers/ 0 on the right-hand side
of (61) does not exceed the value p2 + p — 2 obtained for the pair of suffices r = p,
s = p - 2. Hence, on comparing the coefficients of the different powers of X"p

on the two sides of (61), we obtain the following infinite system of recursive
formulae,

pu, = Ep.p-2, puh = f/h-i for I i g 2 ,

which step by step determine all the Laurent coefficients uh uniquely.
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To the result (60) we can add the following corollary.

(62) There exists a positive constant T such that

K l ^ r " (h = 1,2,3, •••)•

For, if X runs over C, U(X) defines an algebraic function of X in the
neighbourhood of a branch point at infinity, and so the Laurent series for U(X)
necessarily converges for all sufficiently large finite values of

32. By definition, the algebraic equation

H(X,h[z]) = 0

has the p + 1 roots

a n d h[ejzVp]= e-'z-"" + ••• f o r / = 0 , 1 , • • -,p - 1.

On replacing here X by Y and z by zp, it follows similarly by the symmetry of
H(X, Y) that the equation

H(h[zp], Y) = 0

has the p + 1 roots

a n d h [ e j z ] = e - i z ~ l + - - f o r / = 0 , 1 , • • - , p - 1 .

On the other hand,

H(X, U(X)) = 0.

Here choose

X = h [ z " ] = z - p + •••,

so that

[/(X) = X"" + 2 uhX~h'p=z-' + •••

becomes a Laurent series in ascending powers of z beginning with the term z~\
But U(X) must be one of the series (63), and by the first terms of these series
U(X) is necessarily identical with h[z].

It has thus been established that

(64) h[z] = h[zPY"'+'Z uhh[zp]-h".
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33. In this identity write

h[zp] = z"(l + s) where s = 2 bhz
(h+i)p = b,z2p + b2z

3p + b,z4p + • • •.

Then for every real number r,

[] t

It follows therefore from (64) that

The left-hand side of this identity is the Laurent series

*[*] = *"'+2 bhzh.

Also the right-hand side can be written as such a Laurent series. On comparing
then again the coefficients of the different powers of z, we obtain a new
representation of the Laurent coefficients bh of h[z].

It is, however, advisable first to break off both sides of (65) at a suitable
finite power of z, and for this purpose we introduce the following notation.

Let M and N be any two positive integers. Then firstly, denote by

the polynomial in z which consists of all those terms in the formal power series
for s" that involve only the powers 1, z, z2, • • -, zM of z. Secondly, let LN be the
sum

(66) LN = z ' ' + X bhzh

of all terms on the left-hand side of (65) that involve only the powers

z-\z,z\---,zN

of z, and let RN be the analogous sum of terms on the right-hand side of (65). It is
obvious that

(67) LN = RN,

and it further follows from (65) that

(68) R» = z-* + z-'± (lf
n

P)(s';N+l)+± ± uhz" ( ~ h/P)(s" ; N - h).
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Here the infinite sums can be replaced by finite ones. For the lowest term in
the power series for s" evidently is b"z2np, and hence

(s" ;M) = 0 unless M g 2np.

It follows therefore from (68) that also

(69) i?N = z-' + 2 -

where the sum £„ extends over all integers n satisfying

0S2np S N + 1

and the double sum Shn over all pairs of integers h, n such that

/ i g l , n 2 0, h + 2np S N.

34. The numbers bh and uh and the numerical coefficients that occur on the
two sides of the equation (67) are real or complex numbers. Denote by the
symbol * the operation which replaces all bh and uh and all these coefficients by
their absolute values and which simultaneously substitute 1 for z. If * changes LN

and RN into L% and Rti, respectively, it is obvious that

(70) L J = l + 2 l M

and

(71) LZ^Rl.

An upper estimate for R % can be obtained as follows. Denote by

[s";M]

the result of the operation * applied to (s" ; M). By the definition of s,

c " — V - . . V h • • • h r ' C i * • • + \ , + n)s ~ ZJ ZJ "hy DhnZ " ,

whence

(72) [ 5 " ; M ] = 2 \K,---b2 \ , h n

where the multiple summation is extended over all sets of n positive integers
h,,---,hn satisfying

•• • + hn + n)SM.

The number of terms on the right-hand side of (72) is therefore equal to
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and the suffices hu • • -,hn are all less than M/p.

We know already that

(62) \uh\srh (h = 1,2,3, • • • ) .

Assume that there further exists a constant C satisfying

(73) C g 5 and C S; 2 p -T p + 1

such that

(74) | M = C* for l S / t g J V - 1 ,

where N is a certain integer not /ess f/ian 6. For N = 6 this assumption is
certainly admissible.

35. Let

M^pN,

an inequality which holds in particular when M = N + 1. The suffices ft,, • • •, ftn

in (72) are smaller than Af/p and hence cannot exceed N - 1. The hypothesis
(74) may therefore be applied to all the coefficients bh in the multiple sum (72).

Since this sum has at most 2M/P terms, and since h t+ • • • + hn is for all these
terms at most (Af/p)- n, it follows that

[sn ;M]S 2M/P • C(M/P)-" for 1 =s M S pN.

By the definition of /? & the equation (69) implies then the upper estimate

R£ I ( l l
n

p ) 12<N+') /

|\ « ' I
Here the sums 2 n and 2/,,,, are defined as in §33.

In the first sum,

1 for all n, and | c - " = ^

by the first assumption (73). Hence

(75) 2 I (1/P) I 2<N+1)/P- C((N+1)/P)~" g (2C)(N+1)/P 2 C"" < 2(2C)(N+I)/P
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In the second sum,

( * j has the same sign as (-1)",

so that

Therefore, by the second assumption (73),

X T I ~ I 2iN~hVp • C«"-'1Vi>)-» < V pfc n _ (~<-\yi>lp
h,n I \ n / I /, = !

(76)
= (2C)N/p 2 (r"p • 2(C - l))"/p < (2C)N/P £ 2" = (2C)*"P.

On combining the two upper estimates (75) and (76) with the earlier
formulae (70) and (71), it follows finally that

L £ = l + 2 \bh\^R%^\ + 2(2C)<N+1)/P+ (2C)N/P < 1 + 3(2C)(N+1)/p,

whence, in particular,

(77) | f c N | < 3 ( 2 C r + 1 ) / p .

36. This estimate can finally be replaced by

(78) | bN | < CN,

provided it can be established that

This inequality will be satisfied if

3 x 2<N+1)/P

or equivalently, if

This formula is, in fact, true. For JVg6 and p =£ 2, hence

p[(p - 1)N - I]-1 S 1/2 and (AT + l)[(p - 1)N - I]"1 § 3/2,

and further

3I/2 x 23/2 = 24,/2 < 5 ;

while, on the other hand, C is at least 5 by the first assumption (73).
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The inequality (78) is therefore valid. Hence the induction hypothesis (74),
which was assumed to be true for N, holds also for N + 1. As it could be assumed
for N — 6, it holds then for every positive integer N, and so

(79) \bh\^C (fc = l ,2 ,3 , - - - ) -

37. These inequalities (79) mean that the formal Laurent series h [z ] is in fact
convergent for

0 < | z | < 1/C.

In other words, h[z] is a single-valued analytic function for \z\< 1/C with a

simple pole of residue 1 at z = 0.

This result has been proved for every formal basic Sp-series with complex
coefficients. It can immediately be generalised as follows.

THEOREM 8. Let f(z) be an arbitrary formal Sp-series over C. Then there
exists a positive constant y such that f(z) converges for 0 < \z \ < y and hence
represents a single-valued analytic function for \z\< y. The origin z = 0 is a pole
of f(z) if f(z) is of negative order, but is a regular point if the order of f(z) is
non- negative.

PROOF. If the order m of f{z) is negative, then by §15 there exist a basic
Sp-series h[z] and two constants C o ^ 0 and C, such that f(z) = Coh[zm] + C,.
If the order m of f(z) is positive, then Theorem 3 shows that /(z)"1 is an
Sp-series of the negative order — m. Hence in this case f(z) itself can be written
in the form

If, finally, f{z) has the order 0 and a0 is its constant term, then / ( z ) - a0 is an
Sp-series of a certain positive order m, and so / ( z ) allows a representation

Our general convergence result for basic Sp-series implies then the assertion
since in the last two cases / ( z ) can be expressed as a power series convergent in a
neighbourhood of z = 0.

38. If / (z ) is any Sp-series over C, then the same symbol f{z) is used to
denote the analytic function which is defined by the series in its region of
convergence is from here extended into its whole domain of existence by analytic
continuation. Such an analytic function is called an Sp-function. In the special
case when / ( z ) = h[z] is a basic Sp-series, we speak of basic Sp-functions. It
would evidently suffice to study basic Sp-functions.
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There are basic Sp-functions which exist and are single-valued in the whole
z-plane; for instance, the rational functions z'x and z~l + z are for every prime p
of this kind. I do not know whether there are also non-rational algebraic basic
Sp -functions. On the other hand, I conjecture that there exist transcendental
basic Sp-functions which can be continued into the whole z-plane, but may be
multi-valued.

There do exist basic Sp -functions which can be defined only in the unit circle

U:\z\<l,

and which in U are regular and single-valued except for the pole at z = 0. A
particularly important example of this kind of function can be derived from the
modular function

j(o))= 2 ahe
2pU" (a-i = 1, ao = 744, etc.)

h=-\

by putting

and subtracting from y(w) its constant term a0 = 744. The transformation
equations for /(«) imply that the derived Laurent series

defines for every prime p a basic Sp-function. Since /(«) exists only in the
complex upper halfplane, g[z] is denned in U, but has the circle \z | = 1 as its
natural boundary. It is single-valued and regular in U except for its pole at z = 0.

39. For arbitrary Sp-functions only a weaker result can be proved.

THEOREM 9. Every basic Sp-function can be continued into the whole of U,
but may become multi-valued by having a certain set of branch points in U, all of
finite orders. The function is regular at every point distinct from its pole z = 0 and
from these branch points.
The same result holds for general Sp-functions of negative orders. For general
Sp-functions of non-negative orders the same result remains valid except that now
there is no pole at z = 0, but there may be poles elsewhere.

PROOF. It evidently suffices to prove the assertion for basic Sp-functions
h[z]. In this case we know already that the only singularity of h[z] in a certain
region \z\< 1/C is the pole at z = 0.

Let the assertion be false. There exists then a largest open disc
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where 0 < p < 1, in which the assertion is still true. We shall prove that this
assumption leads to a contradiction by constructing a larger open disc in which
h[z] has still the same properties.

For this purpose denote by p' a constant satisfying

p'p <p<p'< 1,

and let then V] and V2 be the discs

V , : | z | s p " and V2:\z\Sp',

respectively. Thus V, is contained in V, and V is contained in V2.
If H(X, Y) is again the polynomial of h[z], denote by A(X) the algebraic

function of the complex variable X which is defined by

H(X,A(X)) = 0.

(The formal Laurent series U(X) of §31 defines thus one of the branches of
A(X) at the point of infinity.) Since H(X, Y) is monic in X, A(X) is regular for
finite X except at its branch points, but also these branch points are not poles of
MX).

We know that

H(h[z],h[z>]) = 0

identically in z. The definition of A(X) implies therefore that

Let now z run over the closed disc V2 so that zp runs over the closed disc V,
and hence lies in a closed subset of V. By the hypothesis about V the only
singularities of h [zp] are then its pole at z = 0 and a certain set of branch points
of finite orders; here this set can consist at most of finitely many branch points.
Since h[z] is an algebraic function of h[zp], it has the same properties for z in
V2. But by the definition of p', V is a proper subset of the interior | z | < p' of V2.
This implies our assertion and proves the theorem.

40. For the special case when p = 2 and H(X, Y) is reducible, we shall now
construct a basic Sp-function h[z] which is multi-valued and in fact has infinitely
many branch points in U.

By the remark to the formula (37) of §20 the polynomial H(X, Y) must have
the form

H(X, Y)= - ( X 2 - Y + c)(Y2 - X + c);

here c lies in C. For simplicity, let c be a positive constant.
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In the present case the basic function

h[z] = z-l+f, bhz
h

h - l

satisfies the functional equation

h[z]2-h[z2] + c = 0

from which it easily follows that h[z] is an odd function, hence that

b2h=0 for h = 1,2,3, ••• .

We further find by the usual method that
h —1

b i = - c / 2 a n d 2 b 2 h + i = - 2 b 2 j + i b 2 h - 2 l - 1 + b h f o r h ^ l .
I-o

These formulae show in particular that all the coefficients b2h+\ are negative.
Thus, on taking only the term with j = 0 in the sum for 2b2h+i, it follows that

2 b 2 h + 1 ^ - b r b i k - t i f h ^ \

and therefore that

b2h+l^-(c/4)h (fc =0 ,1 ,2 , • • • ) •

Hence, if z is positive and the left-hand series converges,

2) bhz
h = 2 b2h+iz

2h+1^ - 2 z 2 (cz2/4f = - 8z(4- cz2)~\

Denote by y the radius of convergence of 1Z=\ bhz
h. This estimate for the

series, and the fact that y is positive by Theorem 8, imply that

0<y<2c-112.

Choose therefore c > 4; then

0<-y < 1 .

Since all the coefficients bh are negative or zero, the point z = y on the
positive real axis is a singular point of h[z], but by y2< y naturally is a regular
point of /i[z2]. By Theorem 9, z = y necessarily is a branch point of h[z]. The
functional equation requires then that

h[y2] = c.

Therefore h[z2]-c has a convergent development of the form

h[z2]-c=± c'h{z-y)\
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where c[/0, in a certain neighbourhood of z = y. Hence, by the functional
equation, h [z] allows in a possibly smaller neighbourhood of z = y a convergent
development

where d / 0.
On applying now the functional equation repeatedly, we see that also the

infinitely many points

_ 2irim -2 " 1—n / m = 0 , l , - - - , 2 " - l
\ n= 0 , 1 , 2 , - ••

are branch points of h[z], possibly of higher order. These branch points
converge to every point of | z | = l. This circle forms therefore the natural
boundary of h[z].

The same proof leads to the following result.

THEOREM 10. A basic Sp-series h[z] defines a basic Sp-function with at least
one branch point inside the unit circle if and only if its radius of convergence is less
than 1.

For there is again at least one singular point of h[z] on the circle of convergence,
and if its radius is less than 1, then by Theorem 9 this singular point must be a
branch point.

Just as in the example, if h [z] has at least one branch point inside | z | = 1, it
probably has an infinite sequence of branch points tending to this circle which
therefore becomes again a natural boundary.

Unfortunately, the actual determination of the radius of convergence of a
general basic Sp-series h [z] when its polynomial H(X, Y) is given does not seem
to be an easy problem.

Chapter 4. Modular functions and Sp -functions

41. In this final chapter we shall study relations between the theory of
Sp-functions and that of certain modular functions.

To begin with, let

j(co) = 2 ahz
2^ (a-! = 1)

be the modular function of level 1. Put
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and

/ ( z ) = z ~ ' + 2 ahz
h and h[z] = z'l+ j>) ahz

k,
fc-0 h-1

so that / (z)= h[z] + o0.

Hence /(z) is a normed Sp-function of order - 1, and h [z] is a basic Sp-function,
both for every prime p. Both functions are regular for | z | < 1, but have the circle
| z | = 1 as their natural boundaries; the origin is a simple pole of f(z) and h [z].

One has computed the coefficients ah for all suffices h § 500. Here are a few
of the first coefficients.

a0 = 744 a7 = 4465,69940,71935

a, = 1,96884 a8 = 40149,08866,56000

a2 = 214,93760 a, = 3,17644,02297,84420

a3 = 8642,99970 a10 = 22,56739,33095,93600

a4 = 2,02458,56256 a,, = 146,21191,14995,19294

a5 = 33,32026,40600 al2 = 874,31371,96857,75360

a6 = 425,20233,00096

For every prime p, the function /(«) satisfies the transformation equation

where Fp (X, Y) is a symmetric polynomial of degree p + 1 in X and Y which is
monic in both. Hence f(z) satisfies the functional equation

and is by Theorem 1 a normed Sp-function with the polynomial FP(X, Y).
Similarly, h[z] is a basic Sp-function.

Since we may substitute the ah for the bh, the coefficients ah satisfy for every
prime p the corresponding infinite system of recursive formulae which allows
successively to determine all the coefficients with I i g p 2 + p as polynomials in
these coefficients with l § / i S p 2 + p - l ; in addition, the latter satisfy
[pip -1)]/2 conditions.

For the lowest cases, we found for p = 2 the recursive formulae (46)
together with the one condition (44), and for p = 3 the recursive formulae (51)
together with three conditions (48). For the next two cases p = 5 and p = 1 we
determined only the recursive formulae for the coefficients with suffices 5/» and
Ih, respectively, as well as a few other coefficients.
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Included in these recursive formulae and conditions are in particular the
following simple equations,

a4= a3 + (a5- a,)/2, a9= a5 + axa,+ al + ( a ? -

ag= as+ a,a} + (a\- a2)/2, ai2 = a6+ aia4 + 2a2a3+ a?a2.

From the earlier table of the numerical values of the coefficients they can easily
be checked.

It needs scarcely be stated that the recursive formulae for p = 2 are useful
for the computation of the coefficients ah of /(*>)> i.e., of h[z].

42. Denote by K(p) the set of all recursive formulae and conditions that
hold for the prime p and for every basic Sp-function h[z]. The function h[z]
derived from /(«) is an Sp-function for every prime p and is basic, hence satisfies
K(p) for every prime p. Therefore the infinitely many sets of formulae

K(2),K(3),K(5), K{!),-• •

all hold for this special function h[z] and so are consistent with one another.

Our original investigation of basic Sp-series and Sp-functions involved only
one set K(p) belonging to a single prime p. It is then rather surprising that the
existence of the modular function j{u>) and its property of satisfying all the
transformation equations of prime orders should imply certain relations between
the different sets K(p). It would have great interest to study these relations.

43. The theory of Sp -functions allows to prove two theorems that explain in
how far the modular function /(w) is determined by its transformation equations
of any prime order.

THEOREM 11. Let p be a prime and FP(X, Y) the transformation polynomial
of j((») of order p. Let further

z~l+'Z ahz"

be a formal Laurent series with coefficients in C such that

Then <f>(z) converges and defines a single-valued regular function for 0 < \z \ < 1,
and

;(«)= He2"*'

identically for all a> in the complex upper halfplane.
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PROOF. The polynomial FP(X, Y) is symmetric, monic, and of the exact
degree p + 1 in X and Y. Further the formal series

0(zp), and ^(e'z1"") where ; = 0,1, • • -,p - 1,

obviously are all distinct. It follows then from Theorem 1 that 4>(z) is a normed
Sp-series of order - 1, and that FP(X, Y) is its polynomial. But the series f{z)
denned in §41 had exactly the same properties. Hence, by §12 and by Theorem 4,
the two series <t>(z) and f(z) are identical, whence the assertion.

THEOREM 12. Let p be a prime, and let

be a formal Sp-series such that

ah=ah for 0^h^p2 + p-l,

where the ah are the Fourier coefficients of j(u>) as defined in §41. Then <f>(z)
converges and defines a single-valued function for 0 < | z | < 1, and

identically for all w in the complex upper halfplane.

PROOF. The coefficients ah of /(z) coincide for 0 2= h Sp2 + p - 1, from
which it follows that the polynomials 4>(X, Y) of <j>(z) and FP(X, Y) of f{z) are
identical. For both polynomials are determined uniquely by the same set of
coefficients ah = ah with O^h sip2 + p - 1. The assertion is therefore contained
in Theorem 11.

A completely different characterisation of j(<o) by its transformation
equations was given by Siegel, (1964). It depended on the behaviour of /(«) near
fixed points of elliptic transformations.

44. There are modular functions of higher level which for suitable primes p
lead to 5P-functions.

As a first example consider the cube root of j(a>). In the notation of H.
Weber, (1908), p. 179, put

y2((O) = j(coyi3=h[z] = z-1+2 bik+2z
3k+2,

t=o

where now, in the series for h [z], z denotes the cube root of the previous z,

z = e2"'""3,

and where the first coefficients b3k+2 have the values
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b2 = 248, b5 = 4124, bg = 34752.

By Weber, (1908, I.e. p. 248), h[z] certainly is a basic S2-function. For, as he

shows, the three functions h[z2], h[z1/2], and h[- z"2] are roots of

F(X,h[z]) = 0,

where F(X, Y) in the present case denotes the symmetrical polynomial

F(X, Y) = - (X2 - Y)(Y2 -X) + 496XY - 54000 = 0.

Since h[z] is an S2-function, its coefficients bh must satisfy the former
condition (44) and the recursive formulae (46) of §§24-25. Here (44) trivially is
valid since bh always vanishes when h^2 (mod 3). For the same reason, the
recursive formulae (46) take now the following sfmpler form:

k - l

(79a) b,2k+2 = b6k+2+ 2 ^S/ + 2^6*-3;-l,
; - o

k - 1 2 k - l

bnk+5 = ^6k+5 + 2u 0 3;+20 6k-3;+2 ~ ^J ( ~ 1 / O 3,+2O 12k-3j + 2 +

(79b) v-i1
+ ZJ b}i+2bi2k-i2i-A- b2b6k+2 + (blk+2- b3k+2)/2 +

1-0

(79C) bl2k+S= b6k+5+ Zl ^3/+2^6).-3,+2+ (blk+2~ fc3k+2)/2,
i-o

k 2k

bl2k + ll = b(,k+S "I" 2u bij+2D(,k-i)+5~ 2^ ( ~~ ^ / O3/ + 2O 12IC-3/+8 +
y-o /-o

(79d)
+ 2 b^+2bi2k-ui+2— b2b6k+5~ (blk+5— b6k+5)/2.

i-o

Here as usual empty sums mean 0, and k may be any non-negative integer.
These recursive formulae can again be used to evaluate any number of

coefficients 63k+2 of h[z]. For the lowest suffices,

ft,, = 2,13126, bu = 10,57504, b17 = 45,30744, b20 = 173,33248.

It would be interesting to decide whether h[z] is an Sp-function for all
primes p = 2 (mod 3). The function in fact has this property when p = 5, as
follows from the form of the transformation equation between j(w) and j(5w) as
given in R. Fricke, (1922), p. 393.

45. As a second example consider the Jacobi module
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u(<o) = fc"4 = 2mqim fl ± + 1m-i =

where
q = e1

Put

z = e*""8 and
so that

h[z] = z-if\ l-±-^
i t Z

where the lowest coefficients are

bl = &63 = + 1 , bl5 = btl = ft55 = 6 7 9 = — 1, &23 = ^31 = i>39 = ^71 = 0 .

Let now p be a prime satisfying

p = ± 1 (mod 8).

Then «(w)=u(pw) is connected with u(<o) by a symmetric transformation
equation which in the lowest case p = 7 has the form (Fricke, I.e., p. 501)

u 8 + t > 8 - w u ( 8 u V - 2 8 u V + 5 6 u V - 7 0 u V + 5 6 u V - 2 8 K D +8) = 0.

It follows from Theorem 1 that u is an .R7-function of order + 1. By §9, this
explains why in this equation all terms different from «7 + v1 are divisible by uv.

We deduce by a trivial change of variables in this equation that the
polynomial H(X, Y) of h[z] is given by

F(X, Y) = - (X7 - Y)(Y7 - X) +

+ 7(X6 Y6 - 4X5 Y5 + 10X4 Y4 - 16X3 Y3 + 16X2 Y2 - 9X Y) = 0.

There are thus particularly simple explicit expressions as polynomials in h[z] for
the elementary symmetric functions su s2, • • -,sg of the elements of Sh. These
would allow again to derive recursive formulae for the coefficients b»k+1.

It is clear that h[z] is a basic Rp-function for all the primes 8n ± 1.

46. As a final example consider the Schlaefli modular equations which
concern the function (Fricke, I.e., pp. 502-8)

s(a>) = 21/3(fcfc')1/12 = 2 " V ' 2 4 f l (1 + I2"'1)'1 =f
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where again q = e w"°. Put now

so that

h[z] = q"2if\ (l + q 2 " + 1 ) = z - I + 2 b24k^z2tk+",

with the lowest coefficients

b23 — bni = bgs = ^119 = bl43 = fcl67 = + 1 , b47 = 0 ,

bl9l = Z»215 = &239 = 2>263 = + 2 .

Denote by p any prime not less than 5. Then the functions s(a>) and
t(a>) - s(p<o) are connected by a symmetric algebraic equation with the highest
terms sp+1 and tp+l. Hence Theorem 1 leads again easily to the result that in the
present case h[z] is a basic Sp-function (and even a basic Rp-function) for all
such primes.

For the lowest primes p = 5 and p = 7 the transformation equations are

s 6 +f 6 +s r ( sV-4) = 0 and s*+ tg- st(s6t6- 7s V + 8) = 0,

respectively. This means that for p = 5 the polynomial H(X, Y) of h[z] is equal
to

H(X, Y) = - (X5 - Y)(Y5 - X) + 5XY,

and for p = 7 equal to

//(X, Y) = - (X7 - Y)( Y7 - X) + 7(X4 Y4 - XY).

Of particular interest is the simple result for p = 5. From the explicit form of
H(X, Y) the elementary symmetric functions of the elements of £,, are given by

s, = h[z]5, s2 = S3 = s4 = 0, s5=-h[z], s6= h[z]6.

By means of these formulae it would again not be difficult, but rather tedious, to
derive recursive formulae for the coefficients b24k+23- But since evidently buk+2i is
equal to the number of partitions of k + 1 into distinct odd integers, there is no
need to do so.
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