
Appendix D

Rank-Level Duality (A Brief Survey)
(by Swarnava Mukhopadhyay)

Introduction. Representation theory of GL(r) and the intersection theory
of Grassmannians Gr(r,N) are deeply connected. In particular the structure
constants of the Grothendieck ring of representations of GL(r) can be read
off the structure constants of the cohomology ring of the Grassmannians. Let
λ = (λ1 ≥ · · · ≥ λr ≥ 0) ∈ Zr parameterize rows of a Young diagram and the
corresponding representation of GL(r) will be denoted by Vλ. Let Yr,s denote
the set of Young diagram, with at most r rows and s columns. For any λ ∈ Yr,s ,
we obtain a new Young diagram λt ∈ Ys,r by interchanging the rows and the
columns of λ. We consider λ,μ,ν ∈ Yr,s such that the total number of boxes
|λ|+|μ|+|ν| = rs. Then, using the natural duality Gr(r,r+s) � Gr(s,r+s),
it follows that

dimC(Vλ ⊗ Vμ ⊗ Vν)SL(r) = dimC(Vλt ⊗ Vμt ⊗ Vνt )SL(s).

The above ‘strange’ dimension equality is not only numerical but it turns
out that the vector spaces are canonically dual to each other (see (Belkale,
2004b) and (Belkale, Gibney and Mukhopadhyay, 2015). It is natural to ask
for similar results for groups of other types. However, easy computations with
Littlewood–Richardson coefficients show that such equalities do not hold in
general. Since conformal blocks are refinements of the spaces of invariants of
tensor product representations of semisimple Lie algebras, it is natural to con-
sider conformal blocks as the right objects to study such dualities. They were
motivated by direct connections in Goodman and Wenzl (1990); Kuniba and
Nakanishi (1991) and Naculich and Schnitzer (1990) between the fusion rules
of the Wess–Zumino–Witten models of conformal blocks associated to sl(r) at
level s and sl(s) at level r . In this section, we sketch a general approach to for-
mulate rank-level duality questions and recall known rank-level duality results
without proof. We mostly focus on the genus zero case due to its direct connec-
tion with conformal blocks dealt in the book and only briefly comment on the
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geometric counterpart of rank-level duality which is known as strange duality.
For strange duality questions on surfaces, we refer the reader to Abe (2010,
2015); Marian and Oprea (2009, 2013, 2014) and the references cited there.

D.1 Conformal Embeddings

We will use the notion of conformal embeddings of Lie algebras to formulate
rank-level duality questions as a natural map between conformal blocks
associated to embedding of Lie algebras and their associated affine branching
rules. We refer the reader to Section A.1 of this book for a definition of the
Dynkin index of an embedding of simple Lie algebras.

Definition D.1.1 If (ϕ1,ϕ2) : s1 ⊕ s2 → s is an embedding of a semisimple
Lie algebra into a simple Lie algebra, we define the Dynkin multi-index to be
(dϕ1,dϕ2 ), where dϕi is the Dynkin index of the embedding si → s.

Example D.1.2 Consider the natural embedding of ϕ : sl(r) ⊕ sl(s) →
sl(rs) given by the tensor product of vector spaces and linear operators on
them. The normalized Cartan Killing form on sl(r) is given by

(X,Y )sl(r) = Trace(X.Y ),

where X,Y are (r × r)-matrices with zero trace. The image of X under ϕ is
rs × rs matrix given by s-diagonal copies of the matrix X. Hence it follows
that the Dynkin multi-index of the embedding is (s,r).

Conformal Embeddings and their Classifications

Consider an embedding of Lie algebras ϕ : s1 ⊕ s2 → s as before and extend
it to a map ϕ̂ : ŝ1 ⊕ ŝ2 → ŝ of affine Lie algebras as follows:

ϕ̂(X ⊗ f ) = ϕ(X)⊗ f,
ϕ̂(c1) := dϕ1 .c and ϕ̂(c2) = dϕ2 .c.

Let � be a non-negative integer and given a weight λ ∈ D�(s), consider
the highest-weight, integrable irreducible ŝ-module Hλ(s,�) of highest weight
λ. The module Hλ(s,�) gets ŝ1 ⊕ ŝ2-module structure via the map ϕ̂. Since
Hλ(s,�) is integrable as a ŝ-module, it follows that Hλ(s,�) is also integrable
as a ŝ1 ⊕ ŝ2-module at level (dϕ1 .�,dϕ2 .�). By complete reducibility of
integrable ŝ1⊕̂s2-modules, we get that Hλ(s,�)will decompose as a direct sum
of integrable ŝ1 ⊕ ŝ2-modules at level (dϕ1 .�,dϕ2 .�). However since Hλ(s,�)
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are infinite dimensional, the number of components in the decomposition may
not be finite in general. This motivates us to consider only a special class of
embeddings known as conformal embeddings.

Remark D.1.3 The notation H (λ�) was used in Chapter 1 to denote the
irreducible integrable representation of highest weight λ at level �. However
to stress the dependence on the Lie algebra and the level, we use the notation
Hλ(s,�) in this section.

Definition D.1.4 An embedding ϕ : s1 ⊕ s2 → s is conformal at level k if
the following holds:

dϕ1k. dim s1
dϕ1k + h∨(s1)

+ dϕ2k. dim s2
dϕ2k + h∨(s2)

= k. dim s

k + h∨(s)
, (1)

where h∨(g) is the dual Coxeter number of a simple Lie algebra g and dϕi is
the Dynkin-index of the embedding si → s.

It was pointed out in Kac (1990) that (1) is satisfied only when k = 1. Con-
formal embeddings have been classified independently by Bais and Bouwknegt
(1987) and Schellekens and Warner (1986). We give some examples below:

• sl(r)⊕ sl(s) → sl(rs) with Dynkin multi-index (s,r).

• sp(2r)⊕ sp(2s) → so(4rs) with Dynkin multi-index (s,r).

• so(r)⊕ so(s)→ so(rs) with Dynkin multi-index (s,r), with r,s ≥ 5.

• g2 ⊕ f4 → e8 with Dynkin multi-index (1,1).

• so(r)→ sl(r) with Dynkin index 2 for r ≥ 4.

We now list two important properties that make conformal embeddings special.
We refer the reader to Kac (1990) for more details:

(i) An embedding ϕ : s1 ⊕ s2 → s is conformal if and only if any irreducible
integrable ŝ-module H�(s,1) of level one decomposes into a finite direct
sum of s1 ⊕ s2 modules of level (dϕ1,dϕ2).

(ii) If ϕ : s1 ⊕ s2 → s is a conformal embedding, then the action of the
Virasoro operators are the same, i.e. for any integer N , the following
equality holds as operators on H�(s,1):

L
s1
N + Ls2N = LsN ∈ End(H�(s,1)),

where we refer the reader to Section 3.2 for a definition of Virasoro
operators.
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Branching Rules of Conformal Embeddings

The theory of conformal embeddings has found very interesting applications
in theoretical physics. Given a level-one highest-weight irreducible, integrable
ŝ-module H�(s,1), it is interesting to find the finite list of representations of
ŝ1 ⊕ ŝ2-representations that appear in the decomposition of H�(s,1) along
with their multiplicities. In Kac and Peterson (1981), ‘string functions’ were
introduced to study branching rules of conformal embeddings. Branching rules
for conformal embeddings were derived by studying asymptotics of these
string functions. We recall the following results on the branching rules for
some conformal embeddings and we refer the reader to Altschuler, Bauer and
Itzykson (1990); Cellini et al. (2006); Hasegawa (1989); Kac and Sanielevici
(1988); Kac and Wakimoto (1988); Levstein and Liberati (1995) for more
details.

We consider the conformal embedding sl(r) ⊕ sl(s) → sl(rs). The level-
one weights of D1(sl(rs)) = {ω0, . . . ,ωrs−1}. The level-s weights of sl(r) are
parameterized by the set Yr−1,s . If λ ∈ Yr−1,s , we define the reduced transpose
λT to be a Young diagram in Ys−1,r obtained by taking the usual transpose and
deleting any column of length s.

Theorem D.1.5 The module Hλ(sl(r),s) ⊗ HλT (sl(s),r) appears with
multiplicity one in the branching of Hω|λ|(sl(rs),1), where |λ| denote the
number of boxes in the Young diagram of λ. All the of the other components
are obtained by the permutations of the weights under the action of the
automorphisms of the affine Dynkin diagrams.

We refer the reader to Altschuler, Bauer and Itzykson (1990); Hasegawa
(1989) for complete details of the branching rules for this conformal
embedding.

Next we consider the embedding sp(2r)⊕sp(2s) → so(4rs). The level-one
weights of so(4rs) are {ω0,ω1,ω+,ω−}, where ω± are the spin representations.
The level-s representations of the Lie algebra sp(2r) are parameterized by the
set Yr,s . The branching rules for this conformal embedding can be found in
Hasegawa (1989). If Y is in Yr,s , then Y ∗ denote the Young diagram in Ys,r
obtained by first exchanging the rows and the columns and then taking the
complement in a rectangle of size (s × r).
Theorem D.1.6 The modules HY (sp(2r),s) ⊗ HY ∗(sp(2s),r) appears in
the branching rules of Hω+(so(4rs),1) (respectively Hω−(so(4rs),1)) if and
only if the number of boxes of Y is even (respectively odd). If (Y,Y ∗) appears
in the branching of ω+ or ω−, then the multiplicity is always one. Moreover
this list if complete.
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Next we consider the case G2 × F4 → E8. The only level-one representa-
tion of e8 is ω0. The level-one representations of g2 and f4 are {ω0,ω1} and
{ω0,ω4}, respectively.

Theorem D.1.7 The module (λ,μ) appears in the branching rule of
Hω0(e8,1) if and only if (λ,μ) = (ω0,ω0) or (ω1,ω4). Moreover if (λ,μ)
appears, they always appear with multiplicity one.

Next we consider the example so(r) → sl(r). Let r ≥ 5, if r is odd and
r ≥ 8, if r is even. With the above assumptions, the following result is due to
Kac and Wakimoto (1988, p. 213).

Theorem D.1.8 The module Hωi (sl(r),1) restricted to ŝo(r) decomposes
as follows:

(i) If i = 0, then Hω0(sl(r),1) � Hω0(so(r),2)⊕ H2ω1(so(r),2).
(ii) If 1 ≤ i ≤ 1r/22 − 2, then Hωi (sl(r),1) � Hωi (so(r),2).

(iii) If r = 2m+ 1, then

i Hωm−1(sl(2m+ 1),1) � Hωm−1(so(2m+ 1),2),
ii Hωm(sl(2m+ 1),1) � H2ωm(so(2m+ 1),2).

(iv) If r = 2m, then

i Hωm−1(sl(2m),1) � H(ωm−1+ωm)(so(2m),2),
ii Hωm(sl(2m),1) � H2ωm−1(so(2m),2)⊕ H2ωm(so(2m),2).

D.2 Rank-Level Duality: General Formulation

Let ϕ : s1 ⊕ s2 → s be a conformal embedding with Dynkin index (�1,�2).
For any level-one weight � of ŝ, we denote by I� the set of highest weights of
ŝ1 ⊕ ŝ2 that appear in the decomposition of H�(s,1) as ŝ1 ⊕ ŝ2-modules via
ϕ. Given an n tuple �� = (�1, . . . ,�n) of level-one weights of ŝ, we consider
two n-tuples �λ = (λ1, . . . ,λn) and �μ = (μ1, . . . ,μn) of level �1 (respectively
�2) of ŝ1 (respectively ŝ2) such that the following holds:

• For each 1 ≤ i ≤ n, we have (λi,μi) ∈ I�i .
• The multiplicity of Hλi (s1,�1)⊗ Hμi (s2,�2) is one.

Taking tensor product over n chosen factors, we get a map

ϕ̃ :
n⊗
i=1

(
Hλi (s1,�1)⊗ Hμi (s2,�2)

)
→

n⊗
i=1

H�i (s,1). (1)
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Let (�, �p,�z) be a point of the Deligne–Grothendieck–Knudsen–Mumford

moduli stack M̂g,n of pointed stable curves with n marked points and a
choice of formal coordinates at the marked points. The map ϕ̃ is equivariant
with respect to the action of (s1 ⊕ s2) ⊗ H 0(�,O�(∗ �p)) on the left and
s ⊗ H 0(�,O�(∗ �p)) action on the right. Taking coinvariants with respect to
these, we get a map of the conformal blocks:

ϕ̃ : V�(s1,�λ,�1)⊗ V�(s2, �μ,�2) → V�(s, ��,1). (2)

The above map can be defined as a map of locally free sheaves of covacuas on

M̂g,n.

Question D.2.1 One can ask the following natural questions, all of which
are broadly known as rank-level duality questions:

(i) If s1 and s2 are both nontrivial and simple and dimC V�(s, ��,1), then is
ϕ̃ a perfect pairing?

(ii) Is there a natural section in V�(s, ��,1) that induces a duality between
V�(,s1,�λ,�1) and V †

�(s2, �μ,�2)?
(iii) If s2 is trivial, is ϕ̃ surjective?

The propagation of vacua (Section 2.2) identifies V�(g,�λ,�) associated to
any simple Lie algebra g with weights �λ at level � with the sheaf of covacua
V�(g,�λ,ω0,�). There is a natural commutative diagram

V�(s1,�λ,�1)⊗ V�(s2, �μ,�2) ��

��

V�(s, ��,1)

��
V�(s1,(�λ,ω0),�1)⊗ V�(s2,( �μ,ω0),�2) �� V�(s,( ��,ω0),1).

(1)

Here the horizontal maps are given by branching rules of conformal embed-
dings and the vertical maps are isomorphisms given by propagation of vacua.
Using Diagram (1), new rank results on rank-level duality results are obtained.

Remark D.2.2 The rank-level duality map of sheaves of covacua attached
to a family of pointed curves with formal coordinates does not descend to a
map of locally free sheaves of covacua on Mg,n. However, using the fact that
the embedding is conformal, it was shown in Mukhopadhyay (2016c) that up
to some correction factors involving the difference of trace anomaly and Psi-
classes, the map ϕ̃ descends to a map of locally free sheaves on Mg,n.

Remark D.2.3 In all the known examples, the rank-level duality map fails
to be an isomorphism/perfect pairing if � is nodal. The behavior of the rank-
level duality along the boundary of Mg,n has important implications regarding
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the first Chern class of conformal blocks bundles and their positivity on M0,n.
We refer the reader to Mukhopadhyay (2016c) for further details.

Applications of Verlinde Formula in Rank-Level Duality

The Verlinde formula has many applications to questions on rank-level
duality. The dimensions of level-one conformal blocks have been computed
in the works of Fakhruddin (2012); Mukhopadhyay (2016b); Nakanishi and
Tsuchiya (1992) using the Verlinde formula formalisms for three points and
factorization rules.

Theorem D.2.4 The following dimensions formula for level-one conformal
blocks hold:

(i) If s = sl(r), let �� = (ωi1, . . . ,ωin) and � be a stable curve of genus g,
then the dimension of V�(sl(r), ��,1) is rg if r divides i1 + · · · + in and
is zero otherwise.

(ii) If s = so(2r + 1), the level-one weights are ω0,ω1 and ωr . Let
�� = (ω1, . . . ,ω1), then the dimension of VP1(so(2r + 1), ��,1) is
1-dimensional if n is even and is zero otherwise. Let n = m1 +m2 and
�� consists of m1-copies of ω1 and m2-copies of ωr . Then the dimension
of the space of covacua VP1(sl(2m+ 1), ��,1) is 2

m2
2 −1 if m2 is even

and is zero otherwise.
(iii) If s = so(2r), let �� = (ωi1, . . . ,ωin) and Sigma be a stable curve of

genus g, then the dimension of VP1(so(2r), ��,1) is one if
ωi1 + · · · + ωin is in the root lattice and is zero otherwise. If
�� = (ω0, . . . ,ω0), then the dimension of the space of covacua
V�(so(2r), ��,1) is 4g , where g is the genus of �.

(iv) Let s be of type G2 or F4, and �� = (ω1, . . . ,ω1) for s = g2 or
�� = (ω4, . . . ,ω4) for s = f4. Then the dimension of V�(g, ��,1) is(

1 + √
5

2

)n(5 + √
5

2

)g−1

+
(

1 − √
5

2

)n(5 − √
5

2

)g−1

. (1)

Here � is any n-pointed stable curve of genus g.
(v) If s = e6, the level-one weights are ω0,ω1 and ω6. The representation

ω6 is dual to ω1. Let �� = (ωi1, . . . ,ωin), then the dimension of
VP1(e6, ��,1) is one if 3 divides (i1 + · · · + in) and is zero otherwise.

(vi) If s = e7, the level-one weights are ω0,ω7. The representation ω7 is self
dual. Hence the only nontrivial three-pointed conformal blocks on P1

are associated to the weights (ω0,ω0,ω0) and (ω0,ω1,ω1). The
dimension is one in all these cases.
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(viii) If s = e8, the only level-one weight of e8 is ω0. The dimension of
V�(e8,ω0,1) is always one, where � is any stable curve of genus g.

We can now use the above calculations to check when the condition that
the dimension dimC V�(s, ��,1)= 1 related for Question D.2.1 is satisfied.
We can also use the Verlinde formula to compare the dimensions of the
V�(s1,�λ,�1) and V�(s2, �μ,�2) appearing in the rank-level duality questions.
Such comparison involves identities involving the determinant of matrices
whole entries are certain cyclotomic polynomials evaluated at the root of
unity that appear in the Verlinde formula via the Weyl character formula.
We refer the reader to the papers of Altschuler, Bauer and Itzykson (1990);
Abe (2008); Donagi and Tu (1994); Mlawer et al. (1991); Mukhopadhyay
(2016a,b); Mukhopadhyay and Wentworth (2019); Naculich and Schnitzer
(1990); Nakanishi and Tsuchiya (1992); Oxbury and Wilson (1996); Zagier
(1996) for detailed calculations.

Results on Rank-Level Duality

In this section, we give a brief survey of the known rank-level duality
isomorphisms.

The Case sl(r) ⊕ sl(s) → sl(rs)

Let �� = (ωi1, . . . ,ωin) be such that rs divides i1+· · ·+in. Then, the following
holds (Nakanishi and Tsuchiya, 1992):

Theorem D.2.5 For any choice of �λ and �μ such that (λi,μi) ∈ I�i (see
Section D.2 for notation), the following rank-level duality map is a perfect
pairing:

ϕ̃ : VP1(sl(r),�λ,s)⊗ VP1(sl(s), �μ,r)→ VP1(sl(rs), ��,1) � C.

Hence, it induces an isomorphism between V †
P1(sl(r),�λ,s) � VP1(sl(s), �μ,r).

Rank-level duality in this case for curves of positive genus has been studied
by Belkale (2008a, 2009); Marian and Oprea (2007); Oudompheng (2011)
using methods from enumerative geometry. This question was formulated
using the language of non-abelian theta functions and is also known as
the strange duality conjecture (Donagi and Tu, 1994). The level-one case
was proved by Beauville, Narasimhan and Ramanan (1989) and the strange
duality conjecture for generic curves was proved by Belkale (2008a). Later,
Belkale used the notion of conformal embeddings, uniformization theorems
and showed that the strange duality map is flat with respect to the Hitchin
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connection, hence proving the result for all curves in Belkale (2009). We
describe the statement below.

Theorem D.2.6 Let � be a smooth curve of genus g ≥ 2. Consider the
moduli stack SU�(r) (respectively U�(s,s(g − 1))) of rank r (respectively
rank s) vector bundles on curve � with trivial determinant (respectively of
degree s(g − 1)). There is a natural duality between H 0(SU�(r),L

⊗s) and
H 0(U�(s,s(g − 1)),�⊗r

s ), where L (respectively �s) (see Chapter 8) is the
generator of the Picard group of SU�(r) (respectively the generalized theta
divisor on U�(s,s(g − 1))).

R. Oudompheng (2011) proved a parabolic version of the above result.
Later, C. Pauly (2014) showed that Theorem D.2.5 in Nakanishi and Tsuchiya
(1992) combined with the strange duality result in Beauville, Narasimhan and
Ramanan (1989) gives the strange duality stated in Theorem D.2.6.

Remark D.2.7 We could not find a complete reference for sl(r) to the
proof of the second part of Proposition 1 in Nakanishi and Tsuchiya (1992,
Section 5, p. 363). We can use the result of Oudompheng (2011) and results in
Mukhopadhyay (2013) to derive Theorem D.2.5. We refer the reader to Section
8.2 of Mukhopadhyay (2013) for further details.

The Case sp(2r) ⊕ sp(2s) → so(4rs)

Let n be an even integer and we write n = 2a + 2b. Let �� = ( �ω+, �ω−),
where �ω+ (respectively �ω−) be a 2a (respectively 2b) tuple of the weight
ω+ (respectively ω−) of so(4rs). We state the following theorem (Abe, 2008;
Belkale, 2012a):

Theorem D.2.8 Let � be any 2m-pointed smooth curve of genus g, then
there is a natural duality between V�(sp(2r), �Y,s) and V�(sp(2s), �Y ∗,r),
where �Y = (Y1, . . . ,Yn) is an n-tuple of Young diagrams in Yr,s and

∑2m
i=1 |Y |

is even.

In Theorem D.2.8, the natural duality is induced by a canonical projectively
flat (Belkale, 2012a) ‘Pfaffian’ section (Beauville, 2006). We now state a
genus-zero version of the rank-level duality result which is due to T. Abe
(2008):

Theorem D.2.9 The rank-level duality map ϕ̃ induced by the branching
rules with �� as above is a perfect pairing for any smooth genus-zero curve
with n marked points.
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Combining Theorem D.2.9, along with the factorization theorem and a
result on projective flatness of Pfaffian sections in Belkale (2012a), Theorem
D.2.8 follows directly. Moreover, new rank-level dualities for genus-zero
smooth curves with n marked points can be obtained from Theorem D.2.9
by applying diagram automorphisms. We refer the reader to Mukhopadhyay
(2013) for further details.

The Case so(2r + 1) ⊕ so(2s + 1) → so((2r + 1)(2s + 1))

Let d be such that 2d + 1 = (2r + 1)(2s + 1) and consider an n-tuple �� =
(�1, . . . ,�n) of level-one weights of so(2r + 1) such that

(i) Each �i is either ω0 of ω1.
(ii) The number of ω1 is even.

The following theorem can be found in Mukhopadhyay (2016c):

Theorem D.2.10 Let �� be as above, then the rank-level duality map ϕ̃ given
by the branching rules is a perfect pairing for any smooth genus-zero curve
with n marked points.

Remark D.2.11 Let �� = (ω1,ωd,ωd), then the level-one conformal
block on P1 with three marked points is 1-dimensional. Unlike the previous
cases, it was shown in Mukhopadhyay and Wentworth (2019) that the rank-
level duality map is not in general an isomorphism. We refer the reader to
Mukhopadhyay and Wentworth (2019) to computations with Verlinde formula
that show that the source and the target are of different dimensions. However an
injectivity result (Mukhopadhyay and Wentworth, 2019) involving the maps of
conformal blocks still holds. This shows that the monodromy representations
of Knizhnik–Zamolodchikov connections on the space of covacua associated
to so(2r + 1) with spin weights are not in general irreducible.

Remark D.2.12 A conjectural dimensional equality between the source and
target of rank-level duality map for conformal blocks involving Lie algebras
of type Br was proposed in Oxbury and Wilson (1996). This conjecture was
proved in Mukhopadhyay and Wentworth (2019), however it was shown there
that the associated rank-level duality map is not an isomorphism. It remains an
open question to find a rank-level duality for conformal blocks of type Br on
curves of positive genus.

The Case G2 × F4 → E8

Consider �λ = (ω1, . . . ,ω1) (respectively �μ = (ω4, . . . ,ω4)) to be the n-tuple
of the weight ω1 of g2 (respectively the weight ω4 of f4) and �� be n-tuple of
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the weight ω0 of the vacuum representation of e8. The following theorem can
be found in Mukhopadhyay (2016b):

Theorem D.2.13 The map of the space of covacuas induced by the
branching rules is a perfect pairing for any n-pointed smooth curve � of
genus g.

V�(g2,ω1, . . . ,ω1,1)⊗ V�(f4,ω4, . . . ,ω4,1) → V�(e8,ω0, . . . ,ω0,1).

The equality of the dimension of the g2 and f4 conformal blocks in the
statement of Theorem D.2.13 follows from (1).

The Case so(r) → sl(r)

It follows directly from the branching rules of the conformal embedding
so(r) → sl(r) that for any stable nodal curve � of genus g, the following
map is surjective:

V�(so(r),ω0,2)⊕ V�(so(r),2ω1,2) → V�(sl(r),ω0,1).

If � is smooth, then using the uniformization theorem and the invariance of
the rank-level duality map under the action of two torsion points J2(�) of the
Jacobian, the following was shown in Mukhopadhyay and Zelaci (2020):

Theorem D.2.14 The natural map between the moduli stack BunSO(r)(�)

of SO(r)-bundles on a smooth curve � and the moduli stack BunSL(r)(�) of
SL(r)-bundles induces an isomorphism between SD : H 0(BunSO(r)(�),D) �
H 0(BunSL(r)(�),D) where D is the determinant of cohomology line bundles.
Moreover the isomorphism SD is flat with respect to the Hitchin connection.

Other Results
Strange duality results associated to some conformal subalgebra p of e8 was
considered in Boysal and Pauly (2010). Here p is the Lie algebra of a simply-
connected group P and the list of such P is the following:

• Spin(8)× Spin(8),

• Spin(16),

• SL(9),

• SL(5)× SL(5),

• SL(3)× E6,

• SL(2)× E7.

Their proof is based on flatness of rank-level duality, Verlinde formula
and representations of the Heisenberg group associated to the center of the
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simply-connected group P. Rank-level duality for level-one theta functions for
G2, SL2 × SL2 theta functions at level 2 and SL3 theta functions at level 3
was considered in Grégoire and Pauly (2013). We also refer to the results
in Beauville (2006); Pauly and Ramanan (2001); Mukhopadhyay and Zelaci
(2020) for level-one rank-level duality results associated to the group SO(r)
and theta functions on a Prym variety associated to an étale double cover of a
curve.

Remark D.2.15 There are several examples of conformal embeddings for
which rank-level duality questions have not been investigated in genus zero.
On curves of positive genus, Question D.2.1 usually has a negative answer due
to the action of torsion points of the Jacobians of the curves arising from the
center of the simply-connected group G. It is not clear how to modify Question
D.2.1 for curves of higher genus to accommodate the action of torsion points.
Part (1) of Question D.2.1 fails to be a perfect pairing for all curves in Mg,n;
it is interesting to study the stratum of stable nodal curves on which Question
D.2.1 holds.
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