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We consider a dissipative reaction—diffusion equation on a thin L-shaped domain (with
the thinness measured by a parameter &); we determine the limit equation for ¢ =0 and
prove the upper semicontinuity of the global attractors at ¢ = 0. We also state a lower
semicontinuity result. When the limit equation is one-dimensional, we prove convergence
of any orbit to a singleton.

1. Introduction

In many applications, we encounter partial differential equations (PDE) defined on
domains for which the size in some directions is much larger than the size in others.
It is natural in such situations to attempt to determine a PDE on a lower-dimensional
domain which will reflect all of the dynamics of the original problem. For very
general domains which are thin in the normal direction over a lower dimensional
bounded domain Q, Hale and Raugel [12, 13, 15,16] have discussed this problem
in detail for a dissipative parabolic equation and for a linearly damped hyperbolic
equation. In particular, if the order of thinness is measured by ¢, they constructed a
limit problem on the lower-dimensional domain and proved upper semicontinuity
of the attractors at ¢ = 0. For gradient systems, it is also known that the attractors
are lower semicontinuous at ¢ = 0 provided that the equilibrium points are hyperbolic
[16, 29]. Raugel and Sell { 30, 31] have considered similar problems (including global
existence) for the Navier—Stokes equations on a three-dimensional bounded domain
Q x (0, &). Thin domain problems have also been considered by several other authors
from different points of view; see, for instance [4,22,25,26] and the references
therein. For time-dependent problems, see also [28].

In this paper, we prove the upper semicontinuity of the attractors as well as
other properties of a dissipative parabolic equation on thin L-shaped domains.
A very special case of such a domain in R? is the set {(x;,x;):0<x,<1,0<
X, <eyu{(x;, x):0<x,<¢0<x,<1}. The junction region of this domain is
defined to be (0, &) x (0, ¢).

Ciarlet [4] and Le Dret [23-25] have considered such problems for linear and
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nonlinear PDE, including problems in mechanics concerning shells, plates and rods.
The first problem that is encountered is to scale the domain in such a way as to
obtain problems on domains which are independent of ¢. For the above simple
example, the idea of Ciarlet and Le Dret is to scale the different parts of the domain
independently of each other, but counting the junction twice. The idea of scaling the
different parts of a multi-structure independently of each other, but counting the
junction twice, first appeared in the work of Ciarlet, Le Dret and Nzengwa [5, 6].
They obtained two domains Q! = (0, 1) x (0, 1), Q*> =(0, 1) x (0, 1) with the junction
being J! =(0,¢e) x (0,1) in Q! and J?>=(0, 1) x (0, &) in Q> For the resulting PDE
on the product domain, a solution u=(u,,u,) is required to satisfy a junction
condition in order to yield correct information about the original problem. A natural
limit problem as ¢é—0 in this case consists of two one-dimensional PDE with a
matching condition at the origin. The above authors discussed convergence of
solutions on finite time intervals as ¢ > 0. Other approaches to such problems are
considered in [3. 7], for example. One could also apply the techniques of asymptotic
developments (see [ 4]).

Here, we use a type of scaling procedure similar to that of Ciarlet and Le Dret,
but for a more general L-shaped domain, we determine the appropriate limit equa-
tions and then extend the method used by Hale and Raugel [13] to prove the
upper semicontinuity of the attractors at ¢ =0. To assist in the analysis, Hale and
Raugel [12, 13] used a projection operator from the higher-dimensional space to
the lower-dimensional space given by the mean value with respect to x,. Also, for
thin domains, the identity map is a natural embedding of functions on the lower-
dimensional space into functions on the canonical domain in the higher-dimensional
space. In the above coordinates, this embedding takes a function of ¢(x,) into a
function ¥(xy, x,) = @(x,) for all x,. Due to the junction conditions on L-shaped
domains, these artifacts will not work and this makes the analysis more difficult.
The detailed reason for this is described in the text.

An outline of the paper is as follows. In Section 2, we describe the variational
problems (P), and (P), corresponding, respectively, to the reaction—diffusion equa-
tions on the thin L-shaped domain and to the limit problem. There we also introduce
the main notation and state the upper semicontinuity result of the attractors ./, of
the problems (P), at e=0. In Section 3, we introduce our important auxiliary
mappings M, and I,. Sections 4-7 are devoted to the proof of the upper semicontin-
uity result. In Section 8, we compare the equilibrium points of the problems (P),
and (P),, when the equilibrium points of (P), are hyperbolic. Section 9 is devoted
to the comparison of the eigenvalues of the linearised problems corresponding to
(P), and (P),. We first give abstract results of comparison of eigenvalues, which can
be used in other situations. For special thin domains, Bourquin and Ciarlet [2] have
also made comparison of eigenvalues. We then describe two main applications of
our comparison results. The first application is the convergence, to a single equilib-
rium point, for each orbit of the reaction—diffusion equation on our thin L-shaped
domain. The second application is the lower semicontinuity of the attractors .7, at
¢ =0. Finally, in Section 10, we describe some generalisations to more complicated
two-dimensional thin L-shaped domains and to three-dimensional thin L-shaped
domains.
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2. Notation and upper semicontinuity results

For g,e€ C*([0,1];(0, ), i=1,2, and ee(0,1], we define a general L-shaped
domain Q, by the relations

0,=0:vQ7,
0 ={(x, %) e R:0< %, <8g,(%), 0<%, <1},
Q2= {(%,, %) e R2:0 < %, <eg,(%,), 0<%, < 1}.

We denote the closure of a set S by S. The set J, = Q! n Q2 is called the junction set
of @, and is the closure of the open set

Jo=1{(%), %,):0 < X, <eg1(%)), 0 < X; <eg,(X;), X, €(0, 1), X, (0, 1)}.
We set
[=Tiul?, T}=00:n{% =1}, I?=002n{x,=1}.

Suppose that G € W'=(0), where Q o Ug<,<;Q,. The conditions on G can be weak-
ened (see the detailed proofs in the next sections). Let fe C*(R;R) be given and
suppose that there are constants ¢ >0, 0 <y < oo, such that

7)< (1 +]s]") for seR, 2.1)
lim sup —’; © o, (22)

In view of the results of the first part of Section 9, the condition (2.2) can obviously
be replaced by the following one:

—f()

lim sup < A< 210, (2.2)

Js|> + o
where A, is the first (positive) eigenvalue of the operator 4, defined by (2.5),. Then,
of course, one has to choose ¢ small enough to ensure that the first eigenvalue 4,
of —A on Q, (with the boundary conditions u =0 in I}, du/dn, = 0 in 0Q,\I,) satisfies
the inequality A < A,,. For the sake of simplicity, we make the hypothesis (2.2).
We consider the parabolic boundary value problem

u,—Au=—f(uy— G in Q,,

u=0 in rea

(P) o
P in aQs\ras
on,

where n, is the unit outward normal to Q,. The initial data are chosen from the
space

Hi(Q)={ueH'(Q,):u=0inT}.

Let us now write the problem (P) in variational form. For this, as has been done
by Le Dret [25], it is convenient to write the inner product in the space L*(Q,) in
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the form

1
(u,0)120, = j uv d%; d%, + = f uv d%, d%,
o\J, 2 Je

1
+ J w dx, d%, + < J up d¥, dX,.
oNJ. 2 s,

With this notation, we can see that a function u is a solution to (P) if and only if,
for all we Ht,(Q,), we have

(13) (ue, Wir2(0,) + (Vu, VW)LZ(Q,:) =—(fW+G, W)LZ(Q,)'

To discuss the problem (P) or, equivalently (P), it is convenient to transform
coordinates to a canonical product domain Q= Q' x 0% Q'=0%=(0,1) x (0, 1).
To accomplish this, we need some notation. Let

Wsl A%y, xp) € Q_l'_’(xn &g (x1)xz) € Q—el’
925 (xy, X,) € Q%> (eg2(x2)x1, X,) € 02,

and define the map ¢,:0'00*—Q, as ¢,|Q/=¢{, j=1,2. Clearly the map
9.0, - 0'u 0 exists. We have

(@) ' =T = {(1,x,), 0 <x; < 1},
(@) =T?={(x,,1),0<x, <1}

We now want to determine ¢, !J,.

From the Implicit Function Theorem, there exists a constant ¢, >0 and a
neighbourhood W of (0,0) in R2? such that, for 0<e=<sgy, the equation
X; — eg,(eg,(x)x,) =0 has a unique solution x,(g, x,) in W for 0= x, =<1 with
x1(0, x,) = 0 and the equation x, — &g, (eg,(x;)x;) = 0 has a unique solution x,(e, x;)
in Wfor 0 < x, £1 with x,(0, x;) = 0. Moreover, the functions x, (¢, x,) and x,(¢, x;)
are of class C? from [0, 5] x [0, 1] into W. Also, it is not difficult to show that there
is a positive constant C such that, for 0 < ¢ <¢;, we have

Fi , 14 2
0<xlox)sCs |EX) (pp 1 Oalex) 00 o)
x2 -0 & 5x2
a ) (23)
$] . 1 bd
0<nex)sCs |20 cop i LOREX) 00
axl £-0 € (3x1

Since min,, ¢ o,1;8:(x;) >0, for i=1,2, we can also show that there exists a positive
constant C, such that, for 0 <& < g,

x1(&, )2 Coe, 05x,£1,
(23)
X8, %) 2 Coe, 0Zx, 1.
This allows us to determine ¢, 1J,:
o =J; I,

(p2) M. =J; ={(x;,x,) € Q* 0 <x < x(8 %), 0< x5 < 1},
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(@)™ =J7 = {(x1, x;) € 0210 <X, < X3(8, X4), 0 < x; < 1},

We now introduce some spaces which arise naturally from the transformation
. 1:0,-0'uQ% We let H=1I2%Q)=I*0") x [*(Q?) and we introduce the space
H,=H,(Q, J,)~ H with the norm |- ||z, induced by the inner product

2 1
& On,= ) <J ¢ dx, dx, + 2 J - 8;€;¢idxy dx2>,
J=1 N\ JONJ? Ji

where ¢ = (¢, &), {=((y,(5). We let HY(Q)=H'(Q") x H'(Q?) and we denote by
H!(Q) the space H'(Q) equipped with the norm |- | 1y defined by

2 2
llner = { Nuling + || 24 1o )
H:(Q) HY(Q) 82 axz 82 axl 20%) ’

for wu=(u,u,). Let HEQ)={ueH (Q):u|ll'=0}, j=1,2. We let

V= H:(Q") x Hi2(Q?) and
H,=H(Q={(6, &) e Heilio(pd) e =E0(92) 7 | J, ae,
Vo=@ = {1, &) eVidie(p) T = E0(02) ! |, ae).

We can equip ¥, with the norm of ||y, but later we equip 7 with a more
adequate norm.

If we now make the change of variables ¢, and let G,(x;, x,) = G(x;, £2,(x1)x,),
G, (x1, X,) = G(eg,(x;)xy, X;), then the variational problem (P) is equivalent to find-
ing a function u° € ¥/ such that, for every w € ¥, we have

(P). (45, W, + 4,0, W) = —(f@) + G, W,
where f(u), G, belong to J#, with
fw)=(f), f@)), G.=(Gy,, Gy,)s

and the bilinear form q,(&, {) is defined as follows. If

¢=[€]=[@L6q C=[0]=Fﬂxb]
= Le & = L2 G867

are two vectors in H, x H,, we set

2(Q"Y

2 o1 o | .
&Ou,= Y [J gléiCH—J g:1¢il + J gzé%(ﬁ—f gzééCi]-
j=1 oh\J? 2 g} 03\J? 2 12

For & =(¢,, &,) € ¥;, we introduce the ‘gradient vector’

L= (L1.8, Z3:8)

81x 1
B (ful - gll xz‘fuz,;g“z 62.\:‘>
B l 82x
<£ C1xys Cox, — gzz x162x1>
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and, for £ e ¥, (e ¥, we set
a,(& ) = (L, LE ),

We equip ¥, with the norm ||-||4-, defined by |ull,-, = (a.(u, u))t. Actually, we can
define a,(uy, u,) if u,, u, are only elements of V. For this reason, we denote by V,=
V.(Q) the space V equipped with the norm |ully, = (a.(u, u))}, ue V. We remark that
there exist positive numbers &,, &, C, such that, for 0 <¢ < &,

50““”;1}@) s ”u”Ve = co ||u”H;(Q)» uel,. (2.4),

The inequalities (2.4), are a direct consequence of the hypotheses imposed on g;,
i=1,2, and on the Poincaré inequalities on @', i=1, 2.

To define the limit problem for e =0, we let Hy = I?((0, 1)) x I2((0, 1)) with the
inner product

1 1
(S On, = f 816101 dx + J 828,05 dx;
0 0

and let
Yo=1{E=(, &) e HY((O0, 1)) x H'((0, 1)):&,(1) = &,(1) = 0, £,(0) = £,(0)}.
For v =(vy, v) € %5, £ = (&4, §2) € 75, we set

1

1
ap(v, &)= J 81V1x, C1x, dX1 + J‘ 82V2x, 25, 4%,
0

0

and we equip 7, with the norm ~H'II,«0 defined by flully-, = (ao(v, v))t. Actually, we
can choose the constants &, and C, in (2.4), so that

Gollv ”H‘((0.1))><H1((0,1)) = vl Yo = Golv ||H1((0.1))>< H((0,1)) (2.4),

for all v = (v, v,) € H((0, 1)) x H}((0, 1)) with v,(1) = v,(1)=0.
If we also let G,o(x;) = G(x;,0), Go(x,) = G(0, x,), Go = (G4, Gyo), then the limit
variational problem is to find a function v € ¥ such that, for £ € ¥5, we have

(P (Ve O, + Ao, &) = —(f(v) + Go, &),

This problem is equivalent to finding a v = (vy, v,) € ¥, such that

1 .
Ui — g_ (& U1x1)x1 = —f(v1) =Gy in (0, 1),
1

1 .
(P)y Uy — g— (g2v2x2)x2 = —f(v2) — Gy in (0, 1),
2

01(19 t)=02(19 t):O5 Ul(o’ t)=U2(O, t),
81(0)1,,(0, 1) + £2(0)v,,,(0, 1) = 0.

REMARK 2.1. In the special case where g,(0) = g,(0) and gy, (0) = g,,,(0), it is easy
to show that (P), is equivalent to an equation on a line. In fact, if v=(v{,v,) is a
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solution of (P),, and we set

U*(S, t) — {vl(s’ t)’ 0 é N é 1’ g*(S) - {gl(s)’ (1)

UZ(_S’ t)) -1 §s§09 gZ(—*s)) -

(s {Gm(s), 0<s<1,
S)=
Gypo(—s), —1=s=0,

then v* satisfies the equation

or ot = = (g*0F) =~ G* in(~L.1)

v*(—1,t)=v*(1,t)=0.
Also, if g, =1, then g*=1.

Now let Q,={(%,%,):0<%,<eg*(%), —1<x, <1}, T?=00Q,n{% =—1},
T!'=00,n{% =1}. In [13], it was proved that the limit problem at ¢ =0 of the
reaction—diffusion equation

u—Au=—f(w)— G in Q,,

u=0 in 0T},

o _

on,
is the problem (Q)*. This means that, if the L-shaped domain has the property

£1(0) = g2(0), g1,(0) = g,.,(0), then the limit problem for ¢ =0 is the same as that
for a thin domain over a line segment defined by the function g* above.

in 0Q\(I7UT?)

For any h = (hy, h,) € #, we consider the problem: find u = (u,, u,) € ¥; such that
a,(u, w)=(h,w), forallwev¥,. (2.5),

Going back to the domain Q, and applying the Lax-Milgram Theorem, one shows
that, for any h e £, there is a unique solution u of the problem (2.5),. Moreover,
using (2.4),, one proves that, for 0 < ¢ L &,

)l gz < cllhllg, (2.6),

Likewise, for any ho = (hy0, hy) € Ho, we consider the problem: find v = (v, v,) € %
such that

ao(v, &) = (hy, &), for all &€ ¥;. (2.5)0

Thanks to the Lax-Milgram Theorem, for any h, € H,, there is a unique solution v
of the problem (2.5),. Moreover, due to (2.4),, we have

loll4, < cllfoll - (2.6)o

Writing the differential equations satisfied by vy, v,, and using the fact that the
functions vy, v, are functions of one real variable only, one shows in addition that

v |IH2((0,1))XH2((0,1)) Zcllho ||H0~ (2.7)

The triple {¥;, Hy, ao(*, *)} (respectively {¥;, #, a,(-, ')}) defines a unique unbounded
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operator A, on ¥, (respectively 4, on ¥;) with domain D(A,) (respectively D(4,)) in
the following way: an element v € ¥ (respectively u € ¥;) belongs to D(A,) (respect-
ively D(A,)) if the form

Eag(v, &) (respectively wi—a,(u, w))

is continuous on ¥; (respectively ¥;) for the topology induced by H, (respectively
#;). Then ay(v, &) = (Aov, &)y, Aov € Hy, which defines A, (respectively a,(u, w)=
(A.u, W)y, A.ue #, which defines 4,). The operator A, (respectively 4,) is self-
adjoint on H, (respectively #), is positive and is sectorial in the sense of [19].
Moreover, D(AE) = ¥; (respectively D(A})= 7). Argumg as in [19, Section 5.3],
and using the hypotheses (2.1), (2.2), one shows that (P), generates a C’-semigroup
T.(t) on ¥;. Arguing as in [10, Section 4.3] (see also [13, Section 27), one shows
that (P), is a gradient system and has a connected global attractor .«/,. Moreover,
&, is the unstable manifold of the set E, of the equilibrium points of (P),. We recall
that o/, is the global attractor of the semigroup T,(t) if </, is a compact subset of
v,, o, is invariant (that is, T (t)«/, = o, for t = 0), &, attracts every bounded set B
of 77,; that is, for each bounded set B, for each n > 0, there exists a time t = 1(B, )
such that, for r 2 t, T;(B) is contained in the n-neighbourhood 45 (<, n) of &, in
¥,. One shows also that the problem (P), generates a C°-sem1group To(t) on ¥,
which is compact for ¢t >0 and has a global attractor &/, in ¥;. Local existence of
solutions of (P), follows standard procedures. We remark only about the manner in
which the boundary and compatibility conditions in (P), lead to the global existence
of solutions and the existence of the global attractor. For v=(v,v,) € ¥, if
V(vy, v,) = Vi(t,) + V,(v,) is the energy for (P),, where

1
Vi(v;) = J g; [%(ij,-)z + F(v;) + Gjov;],

and F(s)= j’o f. then the derivative V(v,, v,) along the solutions of (P), is easily seen
to satisfy V(v,, v,)= — Io(ngu + g,v3,). The function V(v,, v,) is a Lyapunov func-
tion and serves as an equivalent norm in ¥5. This gives global existence of solutions
and defines the semigroup Ty(t). Obviously, Ty(t) is compact for ¢ > 0. Also, the
w-limit set of any solution must belong to the set of equilibrium points. Since the
set of equilibrium points is bounded, it follows that the global attractor exists (see,
for example, [107).

We can consider the attractor % as a subset of H}(Q). Our main result is now
stated in the following theorem. If Z is a Banach space and By, B, are two subsets
of Z, we set

0z(By, By) = SUP inf {|by — b, 5.
1€By b€ B,

THEOREM 2.2. The attractors <f,, 0 < ¢ < &y, are upper semicontinuous at ¢ = 0; that is,
om (A, Hp)—>0 ase—0. (2.8)

&«
We also give an estimate on the distance between the solutions of the problems
(P), and (P), on any finite time interval.
In spirit, the proof of Theorem 2.2 follows along the lines in [13] for a parabolic
equation on a thin domain. However, there are several important differences.
For PDE on a thin domain Q, over a line segment defined by Q,=
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{(X1, %,):0 < %, < eg(%,), 0 < X; < 1}, the first step of the analysis is to map Q, onto
the canonical domain Q =(0, 1) x (0, 1). In this case, there is a natural embedding
of the solution space for the limit equation on the line into the solution space for
the perturbed equation on Q. Also, there is a natural projection in the opposite
direction using a restricted mean value operator which takes a function u on the
square Q to the function (Mu)(x,)= Ll) u(x,, x,) dx, on the line segment [0, 1]. In
the case of L-shaped domains, neither of these properties is true because of the
junction region. Therefore, we must introduce an operator I, which will map 7; into
¥, and an operator M, which maps ¥ into ¥#;. The operator I, will be approximately
the identity, while the operator M, will be approximately a restricted mean value
operator (see Section 3 and the proof of Theorem 2.2). The necessity for the introduc-
tion of these operators I, and M, makes the estimates needed in the proof of
Theorem 2.2 much more complicated. We remark that the precise estimates of the
convergence of the attractors ./, to the attractor .o, will depend upon the manner
in which the operators I, and M, converge respectively to the identity and the
restricted mean value operator.

We present the outline of the proof to bring out the essential difficulties. We first
remark that, throughout the paper, C (respectively k(r)) will denote a generic positive
constant (respectively a generic function of r) independent of &. Using the properties
(2.1), (2.2), as well as regularity properties of T,(t) and Ty(t), and the fact that T,(z)
is a gradient system, it is possible to proceed as in [13] to obtain the following result:

LeMMA 2.3. There is a positive constant C, such that, for 0 <e < g,
19°lly, = Co, for all ¢° € o,. (2.9)

Moreover, for any r,> 0, there is a positive constant k(ry) such that, for 0 <e¢ < g,
and any uy € ¥, |uolly-, S 1o, t° = T,(t)u, satisfies

14 (), S k(ro), t20, (2.10)
t 2
J 7 (suf) || ds+ Ui |3, S k(ro)(1 + 12),
o S H,
) (2.11)
J 4 1%, ds S k(ro), t=0.
0
Finally, if v(t) = To(t)vo with [|vglly-, Z 1o, then
v ”H‘((O,l))x (O, 1) = k(ro), t=0, (2.12)
t
J [l v, ||12,2((0,1))>< 12¢0.1)) 48 £ k(ro),
0
t d 2
J s (sv5) ds+ | tv, ”%11((0,1))XH1((0,1)) <k(ro)(1+1%),
0 s L2((0,1)) X L*((0.1))
i d , (2.13)
J s (sv) ds+ ftv ||%12((0,1))x112((0.1)) < k(ro)(1 + %),
0 S H2((0,1)) X H2((0,1))

t
J 01 320,17) x H20,1y) 48 < k(ro)(1 + 1),
o
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fort=0.

Proof of Theorem 2.2. Since s, is the global attractor for (P),, for any >0 and

any r;>0, there exists a positive number t, such that, for t=1,, for

v Il a2 0,1y x B 0.1 = P15

o (To(t)oo, ) S 3. (2.14)

We construct a linear mapping I, : ¥, — ¥, with the property that it is the identity
on a subset of §, of (0, 1)> x (0, 1)? w1th the measure of (0, 1)? x (0, 1)>\J, approach-
ing zero as ¢--»0 and such that there exists a positive constant C such that, for all
$E Yo,

i1,¢ ||~r8 =CJ¢ ”1’03 1€—1,¢ ”H, =Ce|¢ ||H‘((0,1))XH‘((0,1))- (2.15)

We also construct a linear mapping M, : ¥, — ¥, with the property that, on a subset
of approximately full measure, it is the restricted mean value with respect to x, on
Q! and with respect to x; on Q2 and such that there exists a positive constant C
such that, for all ue v,

IMully, = Cllully,, [u—Mul2g = Celuly,. (2.16)

We then prove that, for any r, > 0, there is a positive constant k(r,) such that for
luolly-, < o, for t 20, we have

It To()Meuo — tT,(£)uo iz o) < ekiro)e ™. (2.17)

By (2.9) and (2.16), | M,p,lly-, £ CCy; we set r; = CCy. From (2.17), we deduce that,
for 0<t=< 1, for g, € o,

It To()Mep, — t (D). 7i2(g) < ek(Co)e .

We now choose ¢, so that

=

1
— gok(Cp)eCorn < — (2.18)
7, 2

From (2.14) and (2.18), we conclude that Jg19,(T.(t,)9., %) < n. By the invariance
of .o/, this implies that dg1)(;, %) < n and the theorem is proved. O

The next few sections are devoted to introducing the operators I, and M, and
proving the inequality (2.17).

3. The mappings I, and M,
If x,(g, x,) and x,(e, x,) are as defined in Section 2 (see (2.3)), we let

xuM— max x;(s, x,), xle,,,: min  Xx,(g, x;),
=xy=1 =x,=1

Xoep = MAX X5(8 X1), Xypm= min x,(s, x4).
0=x; <1 0sx; =1

From the Mean Value Theorem and (2.3), we deduce that
(X100 — X1em| = Caza 3.1)

|x28M - x2z:ml é C82-
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For n=1, 2, we define Onem = Q:sM X Q%SM’ where
erwM = (0, nxlaM) X (0’ 1)’ rzu:M = (0’ 1) X (0’ n'XZEM)’

and let H,,, =~ I*(Q,.) be the Banach space of functions on Q,. with the norm
Illa,,, induced by the inner product

(5, C)H"EM = j

Qrem
We also let H,,, = HY(Q,.0)-
For any v = (vy, v,) € ¥5, we define I,v = (I'v,, I?v,) by the relation

81818y dxy dx, + j 228205 dx, dx,.

Qrem

v1(xy) X1 € (2xy0p, 1],

L0y (xy, X2) = {01(2(X; — X1op)) X1 € (X1ear> 2X 100115 (3.22)
v1(0) x1 € [0, x1,0;
y(x;) Xz € (2x26p, 1],

105(xy, X5) =  02(20 — X2op)) X2 € (Xzenrs 2% 2015 (3.2b)
1,(0) X3 € [0, X0 ]-

It is clear that I,ve ¥;n¥,. Also, there is a positive constant C such that, for
0<eZegyand all ve 75,

2 [ 2xien 3
sup{llv—1Iv ”Hsa lv—1ILv ”LZ(Q)} =Ce <i§,1 J; Uizx,» dxi>
< Cellv ||H1«0,1))><H1((o,1))s (3.3a)
and, for all v € Y5 (H((0, 1)) x H*((0, 1)),
sup{llv—1I.v ||H,, lo—1I.v “1}(9)} < Ce'*? llv ||H2((0,1))><H2((0,1>), (3.3b)
and
sup{fjv—1I.v ”H,!(Q)’ lv—1I.v ”H‘((o,l)) xH‘((O,l))} =< Ce? llv ”H2((0,1))><H2((0,1))‘ (3.3¢)
Also,
||IeU ||L2(Q) =C| U||L2((0,1))><L2((0.1))a I IzU”n =Clv ||H1((o.1))xH1((0,1))- (3'4)

To prove (3.3), we observe

0 Xy € (2xlxM9 I:Ia
1
1 J‘ V1, (%1 + 501 — 2% )(2X 100 — X1) dS - Xy € (Xyenrs 2Xyepr 1,
vy —Io =4 Jo
1
J‘ Vx, (5%1)X, ds x1 € [0, xyepm s
0

with a similar expression for v, — I2v,. The estimate (3.3a) is now immediate. The
estimate (3.3b) is a direct consequence of (3.3a) and the continuous embedding
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of H%((0, 1)) into W"*((0, 1)). To prove the estimate (3.3c), we remark that, for

i=12,

1 XieM
J (Vix, — i)y, ) dx; = f Vi, (x;) dx; +
o

o

XieM

< dx; max Uizx,- < Cell; “%{2«0,1»,

0=x;51

2XieMm
J (Vix,. (x;)— 205, (2(x; — Xient))? dx;

which, together with (3.3a), implies (3.3¢c). The first estimate in (3.4) is obvious and
the second one follows by differentiating I, v.

To define the operator M,:¥,— ¥;, we need some additional notation. For any
function & € L?((0, 1) x (0, 1)), we define partial averages by the relations

1 1
’nlf(xx):J E(xy, x5) dxy, myé(xy) = f E(xy, x5) dxy
0 0

and, for u; e I7(Q), j=1, 2, the “average” of u; over Ji by the relations

1
miu, =
1
f g1(x1) dx, dx, %
7
1
th'h:

&

f £:(x;) dx dx, %
J2

81(x)uy(xy, x2) dx, dx,,

'g2(X2)us (X1, X2) dx dx,.

We now define the operator M,u = (Mlu,, M2u,) for u € ¥; by the relations

myu(x;) X1 € (2% 1epr, 1],
X1 — X1am 2X 1 — Xy _
Mu, = < - myug(x;) + - mg‘h X1 € (X1ons 2X 120,
X1eM X1:M
\”_’lslul X1 € [0, xgop];
myty(x;) X3 € (2x550, 1],
X2 — Xoem 2Xpm = Xp _
Mf U, = < : myty(x,) + - MUy Xy € (Xpem, 2X5m )
X2eM X2eM
mlu, X2 € [0, Xzep];

It is clear that M,: ¥, — ¥, since

-1
n_'lg ul = Tﬁz'uz = (J\ dil dx~2> J\ u(il, )?2) dff?l diz
Js Je
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We also remark that M,: ¥;— 7,. We want to prove that there is a positive constant
C such that, for 0 <¢ Z ¢, and all u € ¥, we have

lu—M,ullg, < Cellully, (3.6)
(i) I1M,u ”LZ(Q) =Cllu “LZ(Q)a

(i) Mt 2,0 < Cll el 2,000 (3.7)
(iil) | M ullgg = Cliully,.

The estimates (3.7)(i) and (3.7)(ii) are obvious.
To prove (3.6), we observe that, for x; € [x,,\, 2X1,p ], the quantities

X;—X 2X1om — X
g1 LM g g M 1
X1eMm X1eM
are in [0, 1]. Therefore,
1. 12
[l ey — Mel Uy “iZ(Ql) <2 uy —myuy ||%,2(Q‘) + 2| uy ~ g uy ||L2(Q§EM)- (3.8)

By the Poincaré inequality (see [13], Lemma 3.1]), we have

2
luy —myu, "12@‘) < C1f'12 = C132 lu, H%JQ(Q)- (3.9)

2Q"Y)

=
g 2

It remains to estimate the second term of the right-hand side of (3.8). If u; belongs
to C®(Q3,s), we can write

Xy Xy
ul(xl, xZ) = ul(x(l)s xg) + J‘ ulxz(x(l)s SZ) dSZ + J‘O ulxl(sls XZ) dsla
x(z’ X1

or, also,

1 1 Xiem o o 0
uy(xy, x3) = uy (x§, x3) dx§ dx3
o Jo

X1eM

1 X1eM [ %1 o
+ ulxl(sls X) ds; dx]
X1eM L Jo %0

1 fxiem (X2
+ f J f Uy, (x3, 5;) ds; dx§ dxg:l. (3.10)
o Jo x9

Using the equality (3.10), the estimates (2.3), as well as the Cauchy-Schwarz
inequality, we prove that

1 1 Pxeem
uy(xyg, Xz) — uy(sy, 5;) ds,ds,
X1eM Jo Jo

L*(Q3m)

] . (3.11)
L2(Q3.a1)

Likewise, using the equality (3.10), the estimates (2.3) and (2.3'), as well as the

1
=Ce |:|| Uix, “Lz(QieM) + ” E Uix,
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Cauchy-Schwarz inequality, we show that

1 1 1 X1eM
m, | ug — uy(sy, S5) dsy ds,
X1M Jo Jo LA(Qbuap)

) ] (3.12)
L@}

<Ce l:” Uix, 201,00 T 2t

The inequalities (3.11) and (3.12) at once imply that

}. (3.13)
L2(Q3.p)

By density of the space C*(Q3,,) in H*(Q3,4), we deduce the above inequality for
any u; € H*(Q%,5)- Using similar arguments, we show that the estimates (3.8), (3.9),
(3.13) still hold if i =1 is replaced by i = 2. Thus, the estimate (3.6) is proved.

It remains to prove the estimate (3.7)(iii). By the definition (3.5), we can write

ey — myug Y201, < Ce [\I Ui, 120800 T 7 s,

d
— M!u < ||lmyu 201
“ dxl [t LY = “ 1%1x) "L Q%)
C —1
+ Ny — myu 201,00 + Ty — M ug l12003,,0)»
X1eM

which, by the estimates (3.9), (3.13) and (2.3'), implies that ||(d/dx,)M}u, || ;201 <
Cllully,. Since a similar estimate holds for MZ?u,, we have proved the estimate
(3.7)(iii).

REMARK 3.1. Actually, we can also define the operator M, on the space H!(Q). Of
course, if u belongs to HX(Q)\7;, then M,u is not in ¥,. However, arguing as above,
we can show that the estimates (3.6), (3.7) are also true for u in H!(Q). In particular,
we can prove the following estimates, for j=1, 2:

Euij+1

lu; — Miusll s, = Ce l:” Uje; 204,90 +

i|, (3.14)(1)
ZQ)er)

], (3.14)(ii)
12(Q%)

flu; — Méiuj”m(Qf) £Ce [” Ujs, | 12¢04) + ]

Zu.
g Ki+t

where x; denotes x;.
In Sections 4-7, we often use the following estimates (see [13]):

[ mu;llas gy < llu; e, (3.15)4)

Im;u;ll s, p = 1 45llargs, s (3.15)(ii)

1 e

llu; — mjujHHl(QJl‘EM) <Ce gujx,.ﬂ (3.15)(ii1)
L2(Q],p0)

REMARK 3.2. In Sections 8 and 9, we use the following property of the mapping
M.,I,:¥;—¥;. For 0 <& < ¢, for all ve ¥;n(H?((0, 1)) x H*((0, 1)), we have

fv—M.v ”H1(10,1))><H‘((0, 1) < Ce? o ||H2((0,1))><H2((0.1))- (3.16)
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To prove this, we observe that, if v = (v, v,) € ¥;, then

M:Iivl"'vl

0 X1 €(2%1,0, 1],
X;— Xy, 2X1om — X
= { T 01 (2% — Xyew)) — 01(%1) + o —0,(0) X, € (Xyen> 2%1em ],
1eM X1eM
01(0) —v, %1 € [0, X1,m]
(3.17)
and
d 0 xl € (2xlsM5 1],
K(Mélalvl —v)=4D X1 € (X1ears 2X1epr)s (3.18)(i)
1
—Uix, X1 € [0, x50 1
where
1 2(xg —x1em) 2(x — Xy,
D= j Dyx, (5) ds + 204 = Xiow) D1, (2061 = X100)) — D1, -
XieM Jo X1eM
(3.18)(ii)

Using the Cauchy—Schwarz inequality, we obtain
1 J* 2(x1 ~X1.Mm)
Vi, (5) ds
X1:M Jo '

Likewise, using the Sobolev embedding of H2((0, 1)) into L*((0, 1)) and the Cauchy-
Schwarz inequality, we show that

< Cet|lyy | 20,1 (3.19)
L2(Q3er)

2(xy — X150)

lel(z(xl — X1:00))
X1eM

I U1x, “Lz(Qé:M) +

L2(Q3. )

=< Cet |y "HZ((O,l))- (3.20)

From the equalities (3.18) and the estimates (3.19), (3.20), we deduce that

< Cet o1 20,1 (3.21)

d 171
d (Me Is U — vl)
X1 12((0,1))

A similar bound holds for | M}I}v; — v [l120.1) Since analogous estimates hold for
| M2IZ2v, — 05|l 10,1y (3-16) is proved.

4. An equation satisfied by the solution v = (v,, v,) of the problem (P),

We keep the notation of the previous sections; in Particular, M,u=(M!u;, M?u,) is
defined by (3.5). If v = (v4, v,) is any solution of (P),, then we have

(v, M ), + ao(v, Mou) = —(f(v) + Go, M )y, . (4.1)
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By integration in x,, x,, we obtain

2
Z . gilviMiu; + ijj(Miuj)xj] dx dx,
=)o

2
== J‘ (g;[f(v) + GjoIM{u;) dx; dx,. (4.2)
ji=1J0
If we use the definition (3.5) of M,u and perform some elementary calculations, we
deduce that (4.2) is equivalent to the following equality:
(00, W, + 8,0, W) = —(f(0) + Go, W,

+ R¥ (v, u) + S¥(f(v) + Gy, u) + L¥(v,, u), (43)
where

j 8iVjx, (g—”f‘> Xjr1ljy,, , 4%y dXa, (4.4a)
j=1JJ &
where we have let x; denote x;,

S*H(f©) + Go, w) = (J() + Go, u — M,t)y,,,,

1 2
) Z f g;(f(vj) + Gjo)u; dx, dx,, (4.4b)
L:(Uz’ u) = (vg, u— M u Hoere — Z g]-vj,uj dxl de. (44C)
) 1 J"

We also remark that, if v =(v,, v,) is any solution of the problem (P),, we can
write, for any ¢ =(¢y, &) € ¥4,

r, O, + a,(v, &) = —(f () + Go, O,

1
2;

IIMN

J &l + vjx,Eje, 1 dxy dx,y
Ji

1f

|
N |
SN

f_gj[f(vj)"'GjO]éj dxy dx,. (4.5)
L

ji=1

5. An equation satisfied by the solution #* of problem (P),
If w* = (5, u) is a solution of (P),, we have, for any ¢ = (¢,, &) € %5,
(4, 1), + a0, 1,O) = —=(f () + G, L&)y, (5.1)
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The definition of I, and a few elementary computations yield
(5, O, + 4,0, §) = —(f () + G, O,
+ R, &) + S.(f) + G, ) + LG, 2), (52)

where
2 8ix
Rs(us, é) = - Z J ) gj <u§xj - jl x1+1u1x1+1> (I é i)]x dxl dx2
Qhem

2
8x;
Z & <”§x, - ?11 xj+1uj:xj+l) fjxj dxy dx,, (5.3a)

S.(f)+ G, &) =(f¥) + G, € — 1O, ,,
1 2
-3 g J g(f5) + G)(E — E(0) dx, dx,,  (5.3b)

j
Le(ut, &) =(u;, £ — 1.On,,,, — Z giui(&;— ¢;(0)) dx, dx,. (5.39)
_] 1JH

We remark that the expression a,(u%, £) has a rather simple form due to the fact
that ¢ € ¥;. In fact,

2
& & g—l i £
a, (", &) = '21 .L'\J‘gj (ujx,-_ ; xj+1ujxj+1> Ejx, dxy dx;
= J\ yJ J
8ijx; .
PO N I
] 1 JJ J

6. Estimate of || 7,@)M,uy — T, || 2oy for g € 7",

For given u, € ¥, we let u® = T,(t)uy, v = To(t)M,u,. Using the variational equalities
(P), and (P), satisfied by u* and v, as well as the equalities (4.3), (4.4), (4.5), (5.2)
and (5.3), we obtain

(U — v, u* — )y, + a,(° — v, —v) = —(f ) = @), u* — )y, — (G, ~ Gy, u* — D),
+ B%(u?, v) + BL(u, v) + B2, v), (6.1)

where

Bg(uca U) = - (uf’ v— IsU)HZEM - (U,, u — Meus)Hle

+ = Z giv;(uf—v;) dx, dx,

JlJ’

+5 Z gt (v; — v;(0)) dx; dx,; (6.22)

JlJ’
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By, v) = —(f ) + G, v — L), — (f@) + Go, u* — M)y,

+3 Z gi(f(v;) + Gjo)(ui —v)) dx, dx,

le’

+3 Z gi(f W) + Gjo)(v; — v;(0)) dxy dx;; (6.2b)

]1]’

B} (v, v) = B} (", v) — gV, dxy dx,
jVix;

] 1 JJi
2
+ Z &iVix; (M “.Ei)x,- dx; dx,
Qdem\JL
+ Z g5t (Tiv; — v));, dx, dxy; (6.2¢)

=1 JQdom

2
3 gjx-
Br. (ucs v)= Z Ji gjujxj—g—lxj+luj'xj+1 dxl de
Q i

j=1

2

i 8ix; .

+ Y gi(v; — Hv;),, ; Xjs Ui, , dXy dxp. (6.2d)
j

QoI i

In the estimation of the quantities in {6.2), we repeatedly use the following relation.
For any £;e H'((0, 1)), j =1, 2, we can write

I éj l LX(Qhord) = Cet I fj I LP((0,1)) = < Cet I é, ||H1((o 1)) (6.3)

Next we choose 0 <eg;<1 and assume that |uylly, S 7. We now estimate the
expressions in (6.2), beginning with B°(«*, v). Thanks to (3.3) and Lemma 2.3, we
may write, for 0 < e < g,

12
’(uiﬁ v— IEU)HZEMI + 5 Z

i=1

_ gius(v; —v;(0)) dx; dx,
7l

< Celui || gy, 10 120,10 x B GO1Y)
< Ce( |4 |I,,,, + K(ro)). (6.4)

”szM
From (2.10) and (3.6), we deduce the inequality
(v, ° = Myu)y,, | < Cellv |y, |6 Iy, < Celk(ro) + Il v, |17, - (6.5)

Using (2.10), (3.9) and (6.3), we can write, for any positive number 4,

j g} Jt J)dxl dx J g, ﬁ "’vj)dxl dxz

+Z

g] vi(mu; —us) dx, dx,
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2
= Cluvlla,,, (8 lwlly, + Y, etllmus—v; "H‘«o,m)

i=1
Sollw—v|f, + Cellwlly, + C(1+ 6 Mellv |z, -

(6.6)
From Lemma 2.3 and (6.2a), (6.4)—(6.6), we deduce that
| B2, v)] £ 01w — vllf, + Celk(ro) + |41, + 0., )- (6.7)
We now estimate | B! (¢, v)|. We first observe that the Mean Value Theorem implies
that
Il Ge — Go ||L2(Q) SCe|lG ||H1(Q), (6.8)
and that the hypothesis (2.1) and the estimates (2.10) and (2.12) imply that
I f(uj) _f(vj) “iZ(Qf) < Chy(ro)ll uj' - vj”%il(Qj)s (6.9)

where k,(r,) is a positive constant depending only on r,.
Taking into account the estimates of Lemma 2.3 as well as the estimates (3.3),
(3.6), we obtain

I(f@w?) + G, v — Isv)HM| +1(f@) + Go, v — M)y, |
+3 Z

< Cek(ro)(| f@®) + G, llu,,,, + | f®) + Gollm,.,,)- (6.10)

Likewise, using, in addition, the estimates (3.9) and (6.3), we can write, for any
positive number 4,

J‘ g](f(u + jS)(v Igvj) dxl de

2
2 Z J ) &i(f(v)) + Gjo)(u; — vj) dx; dx,
i=1J4
2
<X J &i(f(v)) + Gjo)(m;u; — uj) dx, dx,
j=11JJ;

2
+ 2
i=1

g f(vy) + Gjo)(mjuj — vj) dx, dx,
g

) ) 2
sClfW+ Gollg,,, <5 futlly, + Z et mju;— Uj“H‘((O,l)))

j=1
<olut —vl3 + Ce | f©) + Go |}, (61 + 1) + Cek(ro). (6.11)

From (6.2b), (6.10) and (6.11) as well as the hypotheses made on f and G, we deduce
at once that

| B; (", v)] < 6|t — vl + eC(1 + 67 Hk(ro). (6.12)

We now turn to the estimate of B2(u*, v). At first, we remark that, in the expression
of B2(w", v), we can replace the expression %, by & x ¢~ '(u5—v;), ., . Taking into
J+1

JXj 41
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account this remark as well as the estimates (2.12) and (3.4), we can write
| B2 (', )| < Cell vl gig) | 4° — vl g1q) S Ce?6 ™ Hkro) + 81w — vl (6.13)

It remains to estimate the last two terms of B2(u’, v). Using Lemma 2.3 and the
estimates (3.7) (see also Remark 3.1) and (6.3), we have, for any positive number 9,

M

I

j _ gj”jx,-(Mg”; - u;)xj dxy dx,

=1 JQd. M\

2
= Z _ .gjvjxj(MsJ(uj'_vj)_(uj'_vj))xj dx; dx,
i=1 JO A\

2
+ Z » ‘gjvjxj(M{:Ul'*Uj)xj d.xl dx2
i=1 JO3.p\J
< Cet lv ||H2((o,1))x112«o,1))( lut—v ”Ve +Clv ||H‘«o,2xuM))xH‘«o,zxzw)))
So|lur—v ”%/, +Ce(1+0 _1) lv “%IZ((O,I))XHZ((O,I))- (6.14)

We write the last term in (6.2¢c) in the following way:

> J gj“j'xj(livj = )y, dxy dx,
(18

i=1

2
= Z . gj(uj'xj - ijj)(lévj - Uj)xj dx, dx,
j=1 JQ%nm

2
+ ) 28505, (07, (2(x — Xjem)) — (X)) dxy dXy
=1 JO3.Mm\Qim

2
+ ) g% Xjem) — g0 M, (x5 + Xjen)) dx g dx,
i=1 JQinm

2
Y| 0,55 a0, (5))P) dixy dixs, (6.15)
j=1 JQim

which, thanks to Lemma 2.3, and the estimates (3.3) and (6.3), implies that, for any
positive number 4,

2

Z I . gju;x,-(lgvj - Uj)xj dx, dx,
Qbem

i=1

<Co™ e v ”%12«0,1)) x H2((0,1)) + Olut—v ||%/t

+ Ce¥ | vl 20,1 x B20.1

2
+Ce® ), I &, o0, 10 15l H2(0,1) - (6.16)
j=1

From (6.2¢), (6.2d), (6.13)—(6.16) as well as from Lemma 2.3, we obtain
| B2, v)] < 8|l uf — v}, + Ce(1 + 6~ v | F20,1)x H20.1)

+ Ce(1+ 8 DYk(ro). (6.17)
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Finally, from the equalities (6.1), (6.2) and the estimates (6.7)-(6.9), (6.12), (6.17),
we deduce that, for any positive constant o,

| @

lu; = v,lIF, + a. (" — v, u* — v)

N}
D

t
Sou—olly, + C(L+ 0" ky(ro)) I — v,
+ Ce(1 + 6 Y (k(ro) + 1)
+ Ce(1+ 6 ™M) vl 20,1 x #20,1)

+ Ce(llu i, + v lF,)- (6.18)

If we choose J sufficiently small and integrate the inequality (6.18) from O to t, we
obtain that, for ¢t > 0,

t
lu*(8) — v(0) I, + J lu* = vlI$, ds < Clluo — M,uoIZ,
0

t
+ Cek(ro)t + C(1 + ky(ro)) J lu* — v, ds
0

t
+Ce f (g ||%15 + |l v, “%i; + v "%{Z((O,l))tz((O,l))) ds. (6.19)
)

Finally, applying the Gronwall lemma to (6.19) and using Lemma 2.3 and the
estimate (3.6), we conclude that, for t 20, for uge ¥, [lup |4, <79,

t
I T.(t)uo — To(t)M, o 320y + '[ I T(s)uo — To(s)M,uo ¥, ds < Cek(ro)e™".  (6.20)
0

7. Estimate of || tTo()M_ uy — tT @t )uy | (o) fOr uy € ¥,

As in the previous section, for given u, € ¥;, we let u* = T,(t)uy, v = Ty(t)M,u, and
we assume that |u ||, <r,. We also use the notation z° = tu*, z° = rv. Since z* and
z° belong to ¥, and ¥;, respectively, we can use the variational equalities (P), and
(P), satisfied by u° and v, as well as the equalities (4.3)-(4.5), (5.2) and (5.3), to
obtain

1d
1z* =2 NI, + 5 — auz® — 2% 2 — 2°%)

2dt

= —t(f () — f(v), 2t — 20)u, — (G, — Gy, 2 — 20y,
+ (W — v, 2 — 20)g, + BY(w', v) + BL(u", v) + B2(u", v), (7.1)
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where

Bg(ue’ U) = _(tuf9 Z? - ISZ?)H2£M - (tl),, Zf - Mszf)HZEM

12
+3 2 f 18,025 — %) dxy dx,
j=1JJ

+3 Z tgj“;r(z?t - z?,(())) dx, dx,;

_]IJJ

Blw, v)= —t(f) + G,, 20— 1,20, ,, — t(f 0) + Go, 2 — M,Z0),,,

12
+ 5 Y ' tgi(f ;) + Gj)z% — 2%) dx, dx,
j=1 Jui
1 2 3 (1] 0
5 Z tgj(f(“j) + G )z5 — 23:(0)) dx; dxy;
2
BXwr, v)= B3, v) + 3. . tgjvjxj(Mg'zj, — 25y, dx, dx,
j [ 18Y;

2
Z J‘ . tgjujx (Is jt jt)x,- dxl dx?.
%zM

j=
12 R
E Z tgj[vjx (thx, thj) + u;xl-zjtxj] dxl de;
2
~ 8ix. .
B, v)= Z o tgjf xj+1“5'xjﬂ(2?: - Iizgr)xj dx, dx,
j=1 &M 7

2
gjx4

+ Z f tgjujxj—lxjﬂzj,xjﬂdxl dx,
j=1Jg’ &;

l 2
E Z J g 1+1(u1x1+1 j!XJ+UJJKJ er,ﬂ)dxl dxz

i

(7.22)

(7.2b)

(7.2¢)

(7.2d)

Our next objective is to estimate the terms B°(u,v), Bl(w’, v), B*@’ v) and
B3(w, v). Thanks to Lemma 2.3 and to the estimates (3.3) and (3.6), we may write,

for 0 <e<¢,

2

> J; tg;u, (2% — 2%(0)) dx, dx,
Jﬁ

|(tu;:a Z? - Izz?)HZEMI + 5

ji=1
= Ce| tug ||H¢ I Z? ”Hl((o,l)) x H((0,1))
< Cek(ro)(1 + t2),

and

(101, 26~ M2ty 0| S Cell 10,1y, 1 2 1, S Ceklro)(1+ ).

(7.3)

(7.4)

Likewise, using Lemma 2.3 and estimate (6.3), we obtain, for any positive
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number J,

2

Z J‘ ) tgjng(zj', - Z?,) dx;dx,| £Cllzt —z ||H2,M” tvz”szM
J]

i=1

2

<00z — 2|5, + Ced " Tk(ro)(1 +£2).  (7.5)
From the estimates (7.3)—(7.5), we deduce that
| B2, v)| < 6125 — 20 |17, + Ce(1 + 6~ Hk(ro)(1 + £2). (7.6)

We now turn to the estimate of Bl(«%,v). As in Section 6, taking into account
Lemma 2.3 and the estimates (3.3) and (3.6), we write

[t(f @)+ G,, 22 — 1,20y, | + t(f @) + Go, 22 — M, Z)m, |

2

)y J tg;(f(u5) + Go)(25 — 23(0)) dx, dx,
7

j=1
< Ce(1 + 22)(1 + k(ro)). (7.7)

Since we do not want to use a strong hypothesis on G, the estimate of the next term
in B‘(u‘, v) is a little more delicate. We can write

L
2

Py Z f tgi(f(v;) + Gjo)(25 — Z?z) dx, dx,
_]J

J 1
d .
d_ (1) — = Z gi(f () + Gjo + S )25 — Z?) dx; dx,, (7.8a)
J 1JJ

where

Bi(t)= Z tg;i(f(v;) + Gjo)(z5— z§) dx, dx;. (7.8b)

} 1 JJ
But, using the hypothesis (2.2), the estimates (3.9), (6.3) and Lemma 2.3, we obtain
2

2 > f &) + Gjo + (00, )(25 — 25) dx, dx,
=1

2
=C Z tl f(v;) + Gjo+ f 0zl 2l mjus — u || 200 + 115 — 01l 208)
=1

< CLI vl o,y x 2o, (1 + 10 1 Hi o, 1y x Hro,1) + 11 + k(ro))]

X (ellully, + e |uf — v g1g)

< Cle(1 + ) (1 + k(ro) + ' — vl ) (7.9)
From the equalities (7.2b) and (7.8) and the estimates (7.7), (7.9), we at once derive
that
1, 124 £ 0
|B; (W, v)| = = Z - tgj(f(vj)+Gj0)(zj_Zj)dx1 dx,
2 j=1 dt 7
+ llu* — vl + Ce(1 + 2)(1 + k(ro)). (7.10)
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It remains to estimate B2(u%,v) and B2(«,v). Arguing as for the estimate of
| B3(uf, v)| in Section 6 and using the estimates (3.4) and Lemma 2.3, we may write

|Bg(ue, v)| £ Cet(uf ”V I z? “H‘((o,u)xyl((o.l)) + ]z ”«r: v “H‘«o,l»xnl«o.x)))
< Ce(l + k(o). {(7.11)

Arguing as in the proof of the estimate (6.14) by using Lemma 2.3 and the estimates
(3.7) and (6.3), we obtain

2
> 180 (M2} — 25)x, dx, dx,
J=1 JQ%.n
d . 2 ,
=—B}(1)- z gj(wj:xj"' ijj)(Mizj‘—Z;')xj dx, dx,
dt j=1 QizM
d s 10,0
= 7 B:(t) + Ce* || 2/ || m2q0.10 x B2(0.1)
2
x [t —vlmg+t Y 10;latos,m]
j=1
d s 2 2
S - B+ u —vlgye
dt e
+ Ce( || 221320,19 x m20.10 + 10 320,10 x 20,1 )» (7.12)
where
~ 2 .
Bi(t)= 3, J. tg;0jx, (M2} — 23), dx; dx,. (7.13)
j=1 Q&eM

Using Lemma 2.3 and the estimates (3.4) and (6.3), we are able to estimate the next
term in B2(u?, v) — B3(u?, v) as follows:

2
i0 .0
Z J tgj“j‘xj(lizjr—zjz)xjd% dx,
QoM

i=1

Z J. i tgj(uﬁxj - ijj)(lgzg)t - th)xj dxl dxl
Q2:M

ji=1

2
+ 2 j 18505, (H2G — 23)),., dxy dx,
=1 JQ%n

2
g C Z (t “ uj‘xj - vjxj |'L2(Q£.:M) ” Z,(i)l ||H1(Q£zM)
i=1
+ 105, 204000 125 1 @400)
SePu—v “%1;(@ + Cet?|| v || F2¢0,1) x 20,17

012
+ Cell z; | a2¢0,1)) x H2(0.1)

<tuw—v H%x}(g) + Celz) ll?xz((o,l))xﬂz((o,l» + Cek(ro)(1 + t%). (7.14)
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Finally, we have:

12 o
5 Z , tgj[vjxj(zj'txj _Z?'txj) + u;‘szj!x_,v] dxl dxz
J=1 JJl

d 36 1&d 0 £ 0
= B:(t)= Ej;l 7 § 8Zjx,(Z5x, — Zix,) dXy dx;

12 d
22 | &) dxdx,. (7.15)
=14t Jy

Integrating the equality (7.1) from O to ¢t and using the equalities (7.2) as well as the
estimates (6.8), (6.9), (7.6), (7.10)—(7.12), (7.14), (7.15) and Lemma 2.3, we obtain,
for t 20,

Jt 12E(5) — () 1, ds + a,(z°(8) — 2°(2), 2°(8) — 2°(1))

0

SCe(1+ 24+ 831+ k(rg)+C J l|w(s) — v(s) I3, ds
o

+ C(1 +2)(1 + k(ro)) j 1°(s) — v(s) 240y ds
0

+ BY(1) + B (1) + B(1). (7.16)

Arguing as in the proof of the estimate (6.11), one can show that, for any positive
number J, for t >0,

B (1) S 11 2°(t) = (D) I, + Ce(1 + 6~ 1)(t + £2)k(ro)- (7.17)

Arguing now as in the proof of the estimate (6.14), we obtain, for any positive
number 9, for t >0,

B3 (1) <61i25(t) - 2°(2) ||f, + Ce(1 46~ HE||v ”%{2((0,1)) x H2((0,1))

SOz — 22013, + Ce(1 + 6~ 1)1 + £2)k(r). (7.18)
Finally, using Lemma 2.3 and the estimate (6.3), we have, for any positive number
9, for t >0,
Be(1) <6 2°(t) — 2°(t) "%}e + Ce(1 4+ 6N | vll32¢0.1) x H20,1))
<o 2°(t) — 22 (D)3, + Ce(1 + 6~ H)(1 + )k(ro). (7.19)

Choosing ¢ sufficiently small, we at once derive from the inequalities (6.20),
(7.16)—(7.19), the following estimate for ¢ = 0:

J s? || ui(s) — v(s) I, ds + £ | u*(t) — v(t) | r2q) < Cek(ro)e . (7.20)

V]

8. Comparison of equilibrium points of the problems (P), and (P),

Since we are interested at the beginning of this section only in local results, it is not
necessary to assume that the condition (2.2) holds. We recall that A; ! e L(#, 7,)
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(respectively Ay ' € L(H#, ¥4)) is the operator defined for , € H# by

A7'h,=v* if and only if a,(u’, w) = (A, W)y Y we ¥, (8.1),
(respectively, for Ay € I2((0, 1)) x I2((0, 1)),
Aytho=v if and only if ao(v, &) = (Rg, &g, ¥ € € ¥5). (8.1)
Moreover, for 0 <& < g;, we have (see Section 2),
1A Al S ClA, Im, (82),
and
max (|| Ag ol a0, x 20,105 1 46 o lag) £ Cllholli2qo.nx 2oy (8:2)o
We need the following auxiliary result.

Lemma 8.1. For 0<e=<e,, we have the following estimate, for any he #,
ho € L3((0, 1)) x I2((0, 1)),

max (| 4; 1A, — A5 holl s 1 A e — Ag *hollv,)
< CLIA—hollm, + (1A, g, + I hollm,)]- (83)
Proof. Let u* = A7 'h, and v = Ag 'hy. As in Section 6, we can write:
a,(u* — v, u* — v) = (h, — ho, u* — v)g_+ BL(u", v) + BX(", v), (8.4)
where B2(u, v) is given by (6.2c) and

Eg(uﬁ, U) = (hAea v— IeU)HZEM + (};O’ w— Mzus)HZEM

12
+E Z J\ g]hoj(vj—uj) dxl de
j=1J4
12
+5 Y jlgjhgj(vj(0)~vj) dx, dx,. (8.5)
j=1 s

Arguing as in Section 6 and using the estimates (2.4),, we obtain, for § >0 small
enough,

= vl S 01wt — vlEng + C 1A, — ko1,
+ Ce(1+ 0" Ao, + 1 hollary,n I A e, + & Aol i, 1 e 1m0 ],
which implies that
o — vk < Clh,—hollZ,
+ Ce[ll Ao, + o layop I 2 i, + &% (o N, | ey, - (8.6)
From the inequalities (8.6) and (2.4),, we deduce in particular Lemma 8.1. O

We assume now that v, € ¥; is a hyperbolic equilibrium point of the problem (B),
or (P),. Since the differential equation defines a gradient system, this is equivalent
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to: vy € Yo (H2((0, 1)) x H2((0, 1)) is a solution of the equation
Fov)=v+ A5 {(f(©) + Go) =0 (8.7

and the operator I+ Ay Df(v,) € L(¥5;¥;) is an isomorphism of ¥;. We set

ro = [0 ll 101 x H'0,1))-
We want to show that there exist positive constants r, and ¢; such that, for

0 <& =¢, the equation
Fw=u+A'(fw+G,)=0 (8.7),

has a unique solution u in ¥, N Bg1(g)(vo; 71), Where Byi(g)(vo; 71) denotes the closed
ball of centre v, and radius r, in H.(Q). To this end, as in [13] or in [29], we apply
a particular form of the contraction mapping theorem (see [8]). For this reason, we
are going to estimate F,(I,v,) and to show that DF,(I,v,) € & (¥;; ¥;) is an isomor-
phism on ¥;.

We set 6, = || F,(I,vo)lls1(g)- Applying Lemma 8.1 and using the estimate (3.3c) as
well as the hypothesis (2.1), we obtain, for 0 <& < ¢,

8, < 1o — Lvollax + C 1l fI,v0) — f(v0) I m,
+ClG. = Gollu, + Ce*(ll fL.vo) + G, I, + | f(vo) + Golla,)
or
8, £ C(ro)e?, (8.8)

where C(r,) is a positive constant depending only on r,.
We now show that DF,(I,v,) is invertible on ¥, and obtain an estimate of the
quantity [|(DF,(I,v5)) " | ¢(s-.5-,- We can write

DF,(I,vg)w = w + I, Ay ' Df (vy) M, w
+ (A7 Df (I,vo)w — I, A5  Df (v5) M, w). (8.9)

Applying Lemma 8.1 again and using the estimate (3.3c) as well as the hypothesis
(2.1), we have, for 0 < ¢ < ¢,

14, Df (I vo)w — I, A * Df (v) M, W | 51(q)
<1 471 Df (Lvo)w — Ag ' Df (wo)M,w |l g1y + (I — I,)Ag * Df (00) M, w | 11(q)
< CLe*(|| Df (,vo)w I, + | Df wo)Mw 1) + | DF (L 0)(w — M, W) |,
+(Df (I,vo) — Df (vo)) M, w |, + Ce* || Df (vo) M, w |, ],
which implies that
I A;lDf(IEvo)w - Ier_lDf(Uo)MsW ||H§(Q) < C("o)ﬁ% [ w ”}ig(Qy (8.10)

It remains to show that I + I, Ay ' Df (v,)M, is an isomorphism from ¥; onto 7. At
first, we remark that, for any v in 75,

(I + M,I,As ' Df (vo))o = (I + Ag *(Df wo)v + (M, I, — I) A5 “(Df (vo)))v. (8.11)
Since, thanks to Remark 3.2,
1M, I, — I)A5 ' (Df (0o)0 ll4-, < Ce? | Ag (DF (06))0 |l 520,19 < H2c0.1)
< Clro)et 0]y, (8.12)
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we deduce from the equality (8.11) that I + M,I, A5 Df(v,) is an isomorphism of
75, and there exists a positive constant K, independent of ¢, such that, for 0 <& < ¢,

(I + M, I, A5 ' Df (v6)) | oroig) < Ko- (8.13)

Now let U, be an element of ¥;. We want to show that there exists a unique element
w, in ¥, such that
U,=w,+1,A5 'Df (vo)M,w,. (8.14)
We note that (8.14) is equivalent to the system
(i) MU, = M,w, + M1, 45 ' Df (v5)M,w,, (5.15)
(i) (I — MU, =(I — M)w, + (I — M), A5 * Df (v,)M,w,.

Since I + M,I,A;'Df(v,) is an isomorphism of ¥, there exists a unique v, in ¥,

such that
MU, = v, + M,I,Ay * Df (vy), (8.16)
and, by (8.13),
o115 S KoM U 5, < CKo | U, Il 10)- (8.17)
We set
w,= U, — I,A; ' Df (vy)v,. (8.18)
From (8.16) and (8.18), we derive that
M,w,=M,U,— M.I,A; ' Df (vo)v, = vy, (8.19)
which implies, by (8.18),
U,=w,+1,A; ' Df (v5)M,w,. (8.20)
From (8.17) and (8.18), we at once infer that
[Wellg2g) < C(1 + Ko Clro)) | U, 1l 2g)- (8.21)

In a similar way, one shows that, if U, =0, then w,=0. We thus have shown that
DF,(I,v,) is an isomorphism of ¥; and that, for 0 <e < g,

(DF(Lvo)) gy vy = Ky (8.22)

where K, is a positive constant independent of ¢.
Using the hypothesis (2.1), one directly shows that, for 0 <¢ < ¢, for 0 <6 £ 6,,

sup | (DF,(I,vo) — DF,(u))w |l 520 < CI(DF(I,05) — Df u))w |,

ue By glgvo; 0)
= CO(Clro) + Clro + 0o)) [ Wl 2 s
or

ls(g)z sup ”DFf(IeUO)—'DFe(u) "3’(1”,;1”,)

u€ By (Igvo; 6)
< K,0C(ro + 6o), (8.23)

where K, is a positive constant independent of ¢.
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The contraction mapping is as given in [ 8, Theorem 3.1] asserts the following: if
2K 1,(2K6,) < 1, then, for any 6 = 2K, J, such that K,/,(0) < 1, the equation (8.7),
has a unique solution u§ in By q)(I.vo; )N 7¥;. Moreover,

[(DF(u§) ™" | o0 sv-y < 2Ky (8.24)
and
[l g — 1,00l a0y < Ky 0, (8.25)

From this assertion as well as from the estimates (8.8), (8.22) and (8.23), we deduce
the following result:

THEOREM 8.2. Assume that vy € ¥ is a hyperbolic equilibrium point of (P),. Then there
exist positive constants ¢, and ry such that, for 0 < ¢ < ¢, the equation (8.7), has a
unique solution ug in By (vo; 1) ¥, Moreover, we have

[(DF,(u§)) ™ | o9y = 2K (8.26)
and
4§ — vo ll @) < Ce?. (8.27)

From Theorem 8.2, we easily deduce the following global result. Let E, (respectively
E,) denote the set of equilibrium points of (P), (respectively (P),).

COROLLARY 8.3. Assume that the conditions (2.1) and (2.2) hold and that all of the
equilibrium points of (P), are hyperbolic. Then the set E, is finite and contains say,
Ny elements, v;, 1 <j < No. Moreover, there exist positive constants e§ and r§ such
that, for 0 <e <&}, the set E, contains exactly N, elements u, 1 <j< N,, and,
furthermore, the following inequalities are satisfied:

145 — v;ll 3o < Ce* =75 (8.28)
In addition, each element u’, is hyperbolic.

Proof. The fact that E, is finite is obvious. Applying Theorem 8.2 at each hyperbolic
equilibrium point v; yields that there exist positive constants ¢* and r§ such that,
for 0 <& < e&*, E,n By g)(vo; r§) contains a unique equilibrium point u} and (8.28)
holds. It remains to show that there exists a positive constant &f such that, for
0<e=<¢ef, E, contains exactly the N, equilibria uj, 1 £j < N,. Assume that there
exist two sequences &, and u, such that
lim ¢,=0, u,_€E, \|J BHg"(Q,(v,-, ré). (8.29)
n= o j
Since u, belongs to the attractor &7, , we at once show, by using the uppersemicontin-
uity of the attractors .o/, and the compactness of %, that there exists a subsequence
u, converging in H el,,k(Q) to an element v, € o, Using this fact and Lemma 8.1, we
conclude that v, belongs to E,, which contradicts the hypothesis (8.29). O

9. Comparison of eigenvalues

Before comparing the eigenvalues of A,+ Df(v,) with those of A, + Df(u) for
lvo — 5 | a2y Small enough, we present a more general version of comparison of
eigenvalues which is an extension of the results of Hale and Raugel [14]. For related
results, see also [20, 27].
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A semi-abstract version
We keep the above spaces ¥;, 3, ¥, HY(Q), H,,..., and we introduce linear
operators B, and B,, 0 < ¢ < ¢y, which satisfy

By e L(¥5; %) n L(LA((0, 1) x L2((0, 1)); (H*((0, 1)) x H*((0, 1))~ ¥5)
B.e Z(V; YV INL(H,; 77)

(in particular, BO: ¥o— ¥, is compact) as well as the following inequalities for positive
constants C,, a, independent of &:

(9.1)

” B, Hy(me;ﬁ) + H B, ” LL2((0,1)) X L2(0, );(H2(0,1)) X H2(0, )" ¥ o) = C1 » (9~2)
and, for any h, € #, hy e L*((0, 1)) x L2((0, 1)),
| B.h, — Bohol a2 < CaLIlhe — hollm, + 6*( Ay s, + [l o 1 ,)1- (93)

In all of the results below, we constantly use the equivalence of the norms
I g and |-y, as stated in (2.4),, without recalling it. For any operator B, we
denote by o(B) the spectrum of B. In the following, a closed curve in C denotes a
homeomorphic image of a circle. Also, for any # > 0 and 4 € C, let B(4, ) be the disk
of radius n and centre A. Since B, is compact, for any n >0, there is an integer
p = p(n) and distinct complex numbers /,, ..., 4, such that

0,(Bo) = a(Bo)N(C\B(0, ) = {4, ..., 4} (5.4)

Moreover, there exist a compact set K with 0 e K and a positive constant C, such
that o(By)N(C \K)= & and

SuP ”(H By)~ lllz’(yo,yo)+ SUP ”(H By)~ III_Y(VOVO)—CZ (9-3)
‘"

We need the followmg lemma (see [14, Lemmas 3.1 and 3.1bis]).

LEMMA 9.1. There exist positive constants C and & 0 < § < ¢y, such that, for 0 <¢ <,

we have

| B, —I.BoM, || g5 9y = Cle* + &%), (9.6)
| By — I.BoM, || oty g9y + | Bo— M1 Byl sy vy < Cet, 9.7)

and, on U =C\K,
sup | (A = LBoM) " ey < G, (98)
sup || (41 - B.)~ YNewaro<C, 9.9)
sup || (41 —L,BoM,) M gprgra = C, (9.10)
sup || (A1 — B) ' — (A — I,BoM,) gy vy < Cle* + £2), (9.11)
sup [(AI — Bo) ' — (Al — I,ByM,) ™" || gy g5v) < Ce, (9.12)
sup || (41 — Bo) ™t = (A — M1, Bo) | vy gy < Ce?, (9.13)

Arguing as in the proof of Lemma 9.1, one can show the following local result:
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LEMMA 9.1. For any compact set K in the resolvent set of By with 0 ¢ K, there are
positive constants Cg, ex such that, for 0 < ¢ < e, the estimates (9.8)-(9.13) (respect-
ively the estimate (9.16) below) hold with sup, . g replaced by sup, . x and C (respectively
C;) replaced by Cy.

The proof of Lemma 9.1 uses techniques and ideas contained in Section 8. In the
sequel, we often use the facts that I, e & (¥; Yo ¥,) and M, e & (v; Hp).

Proof of Lemma 9.1. The estimate (9.6) is a direct consequence of (9.3) and the
estimates (3.3¢c) and (3.6). Indeed, for any w € 77,

(B, — I, BoM )Wl gy < |(B. — BoM, )W || p2 gy + |1 — 1) BoM, Wl 51 (o)
sCile(wlly, + IMewlg,) + llw—Mwllg,]
+ Cet || BoM,W [l 20,1y x 20,19
SCE+et)|w | 1)

Likewise, one shows the estimates (9.7) by using (3.3c), (3.6) and the Remarks
3.1 and 3.2

To prove the estimate (9.8), we at first need to show that (AI — M,I,B,) is an
isomorphism of ¥;. As in Section 8, we write

A — M, I,By= (Al — Bo)(I + (A — By)™Y(By — M,I,By)). (9.14)
Thanks to Remark 3.2, to (9.5) and (9.7), we have
sup [|( = Bo) ™" (Bo — M1, Bo) lecr vy

£ Gl Bo— M, I, By ||.<2(~ro;~r0) =G, Cet. (9.15)

Note that the inequality (9.15) still holds with ¥3 replaced by H,. From (9.14) and
(9.15), we deduce at once that there exist positive constants C; and ¢;, 0 <g, < &,
such that, for 0 <e<¢,,

SUP |[(A1 = M.1,Bo) ™l eutgrig + $u N (AL = M,I.Bo) et 7 S Cs.
(9.16)

To prove that AI —I,ByM, is an isomorphism of ¥;, we argue as in the proof of
(8.22). Let U, be any element of ¥;. By (9.16), there exists a unique element v, € ¥,

such that
M, U, = Av, — M,I,Byv, (9.17)
and
vy "VO =Gl M, Us”vfo S G C| Us”Hg(Q)- (9.18)
If we set
w, =AU, + A7 1,Byv, (9.19)

and notice that M,w,=Ai ‘M, U, + A" 'M,I,Byv, = v,, then U, = Aw, — I,BoM,w,.
Moreover, by (9.18), (9.19) and the properties of I, and B,,

I Wa“Hg(Q) = |;1_1| | U, ”Hg(Q) + CM_II vy ”H%(Q)
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217N+ G0 U, laig = Call U, llaigy-

Likewise, since M, e £ (¥y; H,), using (9.16), we can still write the decomposition
(9.17) when U, is replaced by U, € ¥4. This implies that, for U, € ¥4,

(AI —ILLBoM,) Uy = (A" 1 + A" L Bo(Al — M,I,By) ' M,)¥;.  (9.19)

The proof of (9.10) is very similar to the proof of (9.16).
To prove (9.9), we first observe that

Al — B, = (A — I,B,M,)(I — (A — I,BoM,)"*(B, — I,BoM,)) =1 — A,, (9.20)

where 8B, € L(7,; ¥.). By (9.6) and (9.8), we see that there exists a positive number
&2, 0 <&, S &, such that, for 0 <e Ze,, |8, |l ¢(s v, = 3, which implies, by (9.8) and
(9.20), that (9.9) holds.

To prove (9.11), we note that

(AI = B,)™' = (Al = I,BoM,)™" = (Al — B)"'(B,— I, BoM,)(AI — I,B,M,)™"

and use the estimates (9.6), (9.8) and (9.9).
Likewise, one shows the estimates (9.12) and (9.13). O

We remark that the operator I, B, M, is compact and that the equation
(Al —I,BoM.,)i=0, e, (respectively € ¥5) (9.21a)
is equivalent to the following:
either A=0,

, (9.21b)
or A#0, d@=A"'1B,b, with (A —M.I.B,)i=0, sev,.

From (9.21), (9.4) and Lemmas 9.1 and 9.1, we deduce at once that, for any >0,
for any v > 0, there exists a positive number &,(v, #) such that, for 0 <& < gy(v, ), we
have

oI, BoM,) (C\B(O, ) < | B(ij,g)
j=1

(9.22)
o(B)N(C\B(O. )< |J B(x,-,g),

J
where 4;, 1 £j < p(n) are given in (9.4). We notice that, due to (9.21), the spectrum
of I,BoM, e & (¥;; ¥,) coincides with the spectrum of I,ByM, € & (¥;; 75) except
maybe for the value A=0.

If 6, = 0,(By). with 0 ¢ ¢,(B,), is any spectral set of B, then it induces continuous
projections Py = Py(0,), Qo= Qo(0,)=1—P, on ¥, for which the subspaces P,¥,
and Q,¥, are invariant under B, and o(B,| P,¥5) = 0,(B,). If y is a closed curve in
C which encloses ¢,(B,) and no other points of ¢(B,) (in particular, y does not
enclose 0), then, for any v € ¥, the projection P, is given by

1
Pyv = Py(o,)v = = f (Al — By) tvda. (9.23)
2mi ),
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By Lemma 9.1’, we can choose ¢,>0, C, >0 so that, for 0<e e, for Aey,
sup ([ (AI = M1, Bo) ™" | wuatgsnion (AL — M1, Bo) ™ || oy givgp»
(AT = I, BoM,) ™Ml gy 90 1A — 1, BoM,) ™| oy 5935
11 = B,) e ava) = Cy- (9.24)

Thus, we can define the projection operators 2§ on ¥, or on ¥, and P® on ¥, by
1
8597’8(61,?)=%J (A1 ~1,BoM,)™ " di (9.25)
?
and

1
PEEPE(GI,V)=%J (AI —B,)"' di. (9.26)

Y

We remark that 257, and 2;¥, are invariant under I,B,M, and that P,¥] is
invariant under B,.

LeMMA 9.2. With the above notation and hypotheses, we have, for 0 <e=<e,,
1
3=% A7, By(Al — M,I,B,) 'M, d2 (9.27)
Y
and
Py, = PyYs. (9.28)

Proof. Since y does not enclose 0, the equality (9.27) is a direct consequence of (9.19)
and (9.19’), which is well defined since (Al — M,I,B,) is an isomorphism of ¥; and
of H, for 0 <& =< ¢,. From (9.27) and the fact that 2 is a projection. we deduce that

PV, =PV V.« Po¥o=(Pe) Vo= P57
We also need the following auxiliary result:

LEMMA 9.3. Fix >0 and suppose that Ay € o(By)N(C\B(0, 1)) has multiplicity d,.
Choose v> 0 so that B(0, n) " B(lg, 2v) = &, 6(Bo) N B(4g, 2v) = {4y }. Then there exist
positive constants ¢, = g,(v, ) and ¢, = ¢,(v, n) such that, for 0 <& <¢,, the projection

¢ given by (9.25) is well defined, where y is any closed curve in B(/q, v)\B(lo, 3v/4)
enclosing 1o. Moreover, dim 24¥5=d, = dim 237, and

| 26 — Poll eppgy90) = €1 et (9.29)

Proof. By Lemma 9.1, there exist positive constants &, = ¢,(v, ) and ¢, =c;,(v, )
such that, for 0 <& < ¢,, for any A € B(4g, v)\B(4,, 3v/4), we have

sup ([ (A — M,I,B;)™! | 207 0)s (Al — I,BoM,)™! Hs’(vo;v/o)a
(A1 —1,BoM,)™" I 2w s 1AL — B,)™! |2 v0) S (v, 1), (9.30)
JL—B) " — (T = LBM) iy S 200G +23), (931
and

sup (| (A — Bo)™* = (AI — I,BoM,) ™ Ly g
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(AT — By)~ - (Al — Msl.!BO)_l ||.2’(~V0;V0)) =c(v, ’7)34}- (9.32)

Now let y be a closed curve in B(lg, vV)\B(1o, 3v/4) enclosing A,. The projection P,
given in (9.23) is well defined. Moreover, by (9.30), the projection 2 given in (9.25)
also is well defined. The estimate (9.29) directly follows from (9.32). It now remains
to show that dim 257, =d,. We set Qo =1 — P,,, Q4 = I — %§,. Following Kato [21],
we define #5=(P,— 25)* and observe that there exists a positive constant &,
0 < g3 < ¢,, such that, for 0 < ¢ < &5, the operator (I — #5) ™ * is a well-defined operator
which commutes with P, and . If we define the operators

U5t = Po% + Qoh,
Vi< AP+ 00
= U —5) ™ = (1 — #5) U3,
b= Vi — ) = — RV,

then ViUs=UiVe=1I, Vi=(Us) ™', Ui=(Vy) ! and UiP;=P,U; and
PyVe=VyP,. Therefore, the operators £ and P, are conjugate:
Py=Ug?5(U%) . As a consequence, the subspaces %%, and P, ¥, are isomorphic
and have the same dimension d,,.

(9.33)

ReMARK 9.4. In the sequel, we need to compare Ug and V§ with the identity. In the
proof of Lemma 9.3, we can choose &3>0 such that [[(I — %)™ " | g yvy < 2 for
0 <& =<¢g; and, by (9.29),

10— 25"~ Tl gy = I = B) " B | sy < C. (9.34)
Note that (I — %#5)~* =1 — S5, where S5 is a solution of the equation
So=3((I — (I — #6)™") +(S6)°). (9.35)

Using the contraction mapping theorem, one shows that one can choose ;3 > 0 small
enough to ensure that, for 0 <¢ = e;, (9.35) has a unique solution Sj in the closed
ball {Se L(¥5; 10): | S| 2o < 11. Moreover, thanks to (9.34) and the definition
of 84, we have [[S§ || ¢y-gv-) < Ce, which implies that

I — R8) ™ — Il oy g3 < Ce. (9.36)
Now we can write
1US = groro ENUE = ool — Rl omgry
F 1T =25 = e gpops

which implies, by (9.29) and (9.36), that

1US = Il ergro < Ceb. (9.37)(1)
Likewise, one shows that

1VE — Il tr gy < Ce2. (9.37)(ii)

Arguing exactly as in the proof of Lemma 9.3, we obtain the following result:

THEOREM 9.5. Assume the hypotheses of Lemma 9.3 are satisfied. Then one can choose
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the constants €, = ¢&,(v,n) and ¢, = ¢,(v, n) in Lemma 9.3 such that, for 0 <¢ < ¢, the
projection P, given by (9.26) is well defined, where y is any closed curve in
B(Z, V)\B(4o, 3v/4) enclosing A,. Moreover, dim P,¥,=dim &3, ¥, =d, and

[ P, — P | ooy < C1(* + e*). (9.38)

REMARK 9.6. Exactly as in the proof of Lemma 9.3, we introduce Q,=1— P, and
R, = (P5 — P,)>. We observe that we can choose the positive number &, in the proof
of Lemma 9.3 so that (I —%,) * is a well-defined operator which commutes with
2% and P,. Moreover, we have

I~ 2) N ewara <2,
sup (1 = 2,) ™' =1l g yrgs 10— R)™* =1l gy i9) < Cle + %)
If we define the operators

Ul = 24P, + 050,
Vi=P.25+ 0,05,
Ur. = U:(I_gs)v-} =(I _'%s)_%Usly
V,=ViI—R,) t=(I—-R,)*V, (9.40)

then V,U,=U.V,=1, V.=U]!, U,=V;! and U,P,=2,U, P.V,=V, %,
P, =U,P,U; ' Moreover, we have the following estimates:

1U, = I g9 < Cle* + &%), (941)(1)
1V = Il g gry < Cle* + &%) (9.41)(ii)

COROLLARY 9.7. If the hypotheses of Lemma 9.3 are satisfied, then, for 0 <& =<e¢,,
B, e Z (7;;7;) has d, eigenvalues 1%, 1 £ j<d,, counted with their multiplicities, in
B(ho, v). If Zo=RY; and if B, & (%; %) is given by B, = U U, B,(U,)'(U5)™",
where Ug and U, are given in (9.33) and (9.40), then the eigenvalues of B, in B(4,, v)
coincide with the eigenvalues of the operator #B,. Moreover, we have

| #. — Bo |l 2@o20) C(e* +¢&%). (9.42)
In particular, the eigenvalues 2 converge to Ay as e—0.

Proof. We set X5=(U§) " (Py¥5)=(Uj) " *%. Since P, and 2% are conjugate and
Po%y =2, we have P5q% =(US) 1P, USLE =(U§) 12 =2, which implies that
Xy = Py, Since dim X = d, = dim £ ¥, we conclude that 2§ =P, ¥, =P,Y,
and &5 c ¥, ¥;. Likewise, we set &, =(U,) 1&%. Since P, and % are conjugate
and 25,25 = &5, we also have P.Z, = %,, which implies that Z,= P, 7.

Note that B, (respectively (I, B, M,)) can be considered as an element of £ (Z,; Z,)
(respectively L(Z5; Z5)). Note also that U, (respectively Ug) is an isomorphism from
Z, onto &y (respectively % onto %;). Thus, we can define the mapping
B,=U3U,B,(U,)""(U3)~! which belongs to #(%,; %) Since B, and 4, are conju-
gate, they have the same eigenvalues. Likewise, we can define the mapping
Us(I,BoM,)(U3) ™! € L(%; %,). Moreover, we can write

(9.39)

“ @e - Bo “.9’(3”0;%)
S USUIBoM)(US) ™ — Boll eiagars)
+ “ U?)(UEBE(UE)_l - (IeBOMe))(Uf))_l "2’(2’0;3”0)- (943)
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Since, by (9.37), | Ubll¢wyw-p = C and IUS) N gpgro =C, for 0<e <, we also

have | (U§) 7| 2oy SC UG 20wy S €. From these inequalities and (9.43),
we derive that

" ﬁc - BO ”.Sf’(.'?l‘o;ﬂ’o) é C ” UeBe(Ua)_l - IEBOME H..‘é’("//e;*lfg)
+ | Us(I.BoM Y US) ™ — By I eproivo)- (9.44)

Since UeBs(Ua)_l - IeBOMs = (Ue - I)BE(UE)_I + Be((Ue)_l - I) + Ba - IEBOME’ we
obtain, by using the estimates (9.41) and (9.6), that, for 0 <e L ¢y,

VU, B,(U,) ™! = I,BoM, | gy 5y < Cle* + %) (9.45)
Likewise, by using (9.37) and (9.7), we show that
| US(IBoM,)(US) ™" — Boll gsgroy < C*. (9.46)

Then (9.42) is a direct consequence of (9.44), (9.45) and (9.46). Since B, and %, are
two linear mappings from %, into %, satisfying (9.42), the d, eigenvalues A% of 4,
converge to Ao as e—0. O

REMARK 9.8. If @y = (@oy, - - - » Poa,) is a basis of 25, then @, =(g,y, ..., Puq,)s where
9.;=(U,)""(U§) "9, is a basis of Z,. Arguing as in the proof of Corollary 9.7, we
obtain ||¢,; — @o;ll g2 = C(e* + &¥).

COROLLARY 9.9. Assume that the conditions of Lemma 9.3 are satisfied, but now that
dy=1; that is, Ay is a simple eigenvalue of B,. Then, for 0 <e=<¢,, B, has one and
only one eigenvalue 1, in B(Ay, v). This eigenvalue is simple and satisfies the inequality

|2 = Aol £ Cle™ + €2). (9.47)

We also can choose an eigenvector @, € ¥, (respectively gy € ¥5) corresponding to A,
(respectively Ao) such that | ¢ |ly. = polly; =1 and

o, — @0 ll g £ Cle* + €*). (9.48)
From Lemmas 9.1, 9.1" and Corollary 9.9, we at once deduce the following result:

CoROLLARY 9.10. If the operator B, has only simple eigenvalues, then, for any integer
N >0, there is a positive number &, such that, for 0 < ¢ £&,, the operator B, has the
first N eigenvalues simple with the ordering being according to nonincreasing modulus.

Proof of Corollary 99. The fact that B, has only one eigenvalue 4, in B(4,, v) and
that A, is simple and satisfies (9.47) is a direct consequence of Corollary 9.7. Let
9o € ¥ be an eigenfunction associated with 2, such that [[¢q [ly, = 1. If we set

£ & ~ e qpe
?o 290(005 ¢5=Pe=@o¢’o, Pe= 1 ’ (949)
@ 1+
then, by Theorem 9.5 and Corollary 9.7, we have
95 — @ollye + I8 — 95 |14, < cle? + &%). (9.50)

On the other hand, arguing as in Sections 5 and 6 and using also (9.2), we can show
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that

N ce?
| H(P0“~V0 — | (00||V5| <ce* (pOHHz((O,l))xHZ((O,l)) =< A_ (9.51)
0
Now (9.48) is a straightforward consequence of (9.49), (9.50) and (9.51). O

REMARK 9.11. If we suppose that a parameter u belongs to a compact set of a metric
space and the operators B, = B,(u) depend continuously upon u for each ¢ >0 and
the inequalities (9.2), (9.3) hold uniformly in g, then all of the estimates and results
obtained above are valid uniformly in pu.

REMARK 9.12. Let Y be a Banach space and let u, € Y. We introduce the operator
Bo = By(up). If 7o is a positive number, we denote the ball in Y of centre u, and
radius r, by By(ue, o). For each ¢>0, 0 <e¢ =g, we introduce a subset M, of
By(uo, 7o) such that u,e M, and, for u, e M,, we define an operator B,(y,). We
assume that the operators By(po) and B,(u,) satisfy the hypotheses (9.1), (9.2) and
that there exist positive constants c,, a, &, such that, for 0 <¢ < g,

”Bg(ﬂe) ”mxz;vfz) + ” BO(HO)||_‘/(L2((0,1))><L2((0,1));V0r\(H2((0,1))XHz((O,l)))) § Cys (9-2/)
| Bo( k) = Boholluiioy < e1 [ e = holl i, + (1l e — ko I + )l Bl s, + 11 o 1)
(9.3)
for any h, € #,, hy € L*((0, 1)) x L2((0, 1)).

Then, obviously, all of the estimates and results above are still valid if we replace
the operators By, B, by By(uo), B.(n), if we replace the term (¢*+ &%) by
(e*+ & + || 1, — 1o ll}) in the estimates, if we replace the projection P, by P, , and if
we replace the sentence “there exists a positive number ¢, ...” by the following one:

“there exist two positive numbers J, and ¢, such that, for O0<e=<¢, for
He € M. By(po, 64), . .7

Applications 3 N
We now apply the above results to our problems (P), and (P),.

PROPOSITION 9.13. For any v, € ¥;, the spectrum o(Ay + Df (vo)) of 4¢ + Df” (vo) consists
only of simple real eigenvalues.

Proof. Since A, + Df(v,) is a selfadjoint operator with compact resolvent, the spec-
trum o(A4, + Df (v,)) consists only of real eigenvalues. Let us show that they are all
simple. We set vy = (vg, Ug,2). Let Ay be an eigenvalue of A, + D f(v,). For i =1, 2, the
space of the solutions of the equation

1
- g_ (8iVix)x, + Df (0o;)v; = Aovi,  v(1) =0,

is of dimension 1, given say, by Rg;, where ¢; € H*((0, 1)) and ¢} + 7, # 0. We note
that 4, is an eigenvalue of A, + Df(v,) if and only if the system

1191(0) — 1202(0) =0, 1121(0)91x,(0) + 1282(0)@24,(0) = 0, (9.52)

has a solution (g, ) # (0, 0). Since g;(0) # 0 and ¢7 + @7, # 0, the space of solutions
of (9.52) is at most of dimension 1. Since A, is an eigenvalue, the dimensionis 1. O
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We are going to use the following lemma, the proof of which is very similar to
that of [14, Lemma 4.5].

LemMMA 9.14. For any positive constant R, there exists a positive constant ko = ko(R,)
such that, for 0 < ¢ < g, we have
(i) For any ug € By g)(0; Ro), ueV,,

I D (wo)u 1, < ko(Ro) ]y, (9.53)
(ii) for any vo € By1(o,1x n10.1)(0; Ro), v € H'((0, 1)) x H'((0, 1)),
I DJ;(UO)U ”HO Zko(Ro) v “H‘((o,n)xl{‘((o,n); (9.54)
(iil) for any uy € Byg)(0; Ro), v € Baio,1)) x m2(0,1)(0; Ro), u € HY(Q),
Il (Df(uo) - Df(vo))u I H, S ko(Ro) llug — 1o ”H’(Q) flu ||H‘(Q)- (9.55)

From the estimates (2.4),, (2.4),, (9.53) and (9.54), we deduce that there exist
positive constants &, fy, f such that, for 0 <& < min (&, &), Uy € ¥,N By10)(0; Ry),
Vo € Y60 By, x#t0.1)(0; Ro), u € V,, v e ¥, we have

a,(u, u) + (Df (uo)u, W, + o, W, Z Bllu ko)

ao(v, v) + (Df(l’o)v, v)g, + Bo(v, V), = Bllv ’I%I‘((O,l))xH‘((O,l))-
For ug € ;N By ()(0; Ry), vo € Y60 By 0,1 x m1¢0,1)(0; Ro), we let

Colvo) = Ao+ Df (vo) + oI,  C,luo) = A, + Df (ug) + Bol.

ProrosITION 9.15. There is a positive constant c¢; =c(R,) such that, for
Q <es n}in (8- €0) and any ug e ¥;0 Byig)(0; Ro), vo € ¥4 Byo,1)x m1¢0.1)(0; Ro),
h, € #, hy e L*((0, 1)) x IZ((0, 1)), we have:

(9.56)

| Colttg) ™ | 29y + |l Colvo) ™'l LHGY ) = C1> (9.57)
I Colvo) ™" Il 2arostro. 10 x B20.000 = €15 (9.58)

I C.lutg) ™t = Colvo) " ol
< e [lh, — ollw, + (1o — voll g + €)1l Aellm, + 1 o 122,)]. (9.59)

Proof. From the estimates (9.56), we infer, by using the Lax—Milgram Theorem, that
the operators C,(ug) * and Cy(v,) ! are well defined and satisfy (9.57). The property
(9.58) is a direct consequence of (9.57), (9.54) and (2.7).

Setting u® = C,(up) "' h,, v = Co(vo) ! ho and arguing as in the proof of Lemma 8.1,
we can write

a,(u’ —v,u’ —v) + Bo(t’ — v, u* — )y + (Df (o) (u* — v), u* — Vg,
= —((Df (uo) — Df (vo))v, u* — v}, + BL*(u", v) + B, v), (9.60)
where BZ(u%, v) is given by (6.2c) and
B{*(w', v) = (h, — fou’ — Df (uo)u’, v — L),
+ (o = Bov — Df (vo)o, U — MUY,
+ % i ' 8j(ho; — Bov; ~ Df (vg;)v;)(v; — ut) dxy dx,

=1 Ju
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12
+ B z , gj(he; — Bou; — Df (uo;)u5)(v;(0) — v;) dx; dx,.  (9.61)
ji=1JJ

Arguing as in Section 6 and in the proof of Lemma 8.1, and using Lemma 9.14 as
well as the estimates (9.57) and (9.58) and the ellipticity condition (9.56), we derive
from (9.60) the estimate (9.59). O

Now let v, € ¥5. By Proposition 9.13, the spectrum a(4, + Df () of Ao + Df (vo)
consists of a denumerable sequence of simple eigenvalues satisfying

—B,(vy) < A, (v) < A,(v0) < . .. <Ay (v0)— + 0,

where B,(v,) is a positive constant depending only on v,.

Let u, € ¥;. The linear operator A, + Df(u,) is selfadjoint with compact resolvent.
Therefore its spectrum o(A, + Df(u,)) is composed only of real eigenvalues ﬂ:js(uo)
which satisfy:

Z1oto) < Ageltte) £ . . . £ Lnltho) = + 0.

By Proposition 9.15, the operators By(1o) = Co(vo) ! and B,(u,) = C,(u,) ™! satisfy
the conditions (9.2'), (9.3') and we can apply the results of the first part of this
section and of Remark 9.12. We thus obtain the following theorem:

THEOREM 9.16. For any v, € ¥, for any positive number ny and any positive constant
d, there are positive numbers (v, no, 9), (o, no, 6) such that, for 0 <& < &(vp, ho, 6),
for ug € By g)(vo, (o, No, 0)) NV, the first ngy eigenvalues 2; (uo) of A, + Df(uo) are
simple, contained in [ — B,(vy), 00 ) and satisfy

max |4;(v0) — 4;.x(tto)| < c(vo)(e* + n(vo, no, 6)) £ 6, (9.62)

1=jsno
where c(v,) is a positive constant depending only on v,.

Using the upper semicontinuity of the attractors 7, one deduces from
Theorem 9.16, as in [14], the following result:

THEOREM 9.17. There exists a positive number * such that, for 0 <& <¢*, if uo is an
equilibrium point of (P),, then the null space of A, + Df(u,) has dimension no more
than one.

Arguing as in [ 14, Section 4], by using Theorem 9.17 and [ 14, Theorem 2.4], we
prove the following property:

THEOREM 9.18. The w-limit set of any orbit of (P), is a single equilibrium point.
Furthermore, thefe exists a positive number ¢* such that, for 0 < ¢ < &*, the w-limit set
of any orbit of (P), is a single equilibrium point.

REMARK 9.19. The same property holds for the damped wave equation on an
L-shaped domain (see [17]).

Another application of the first subsection, above, and Theorem 9.16 is the lower
semicontinuity of the attractors «/,. Assume now that all of the equilibrium points
of (P), are hyperbolic. Then, by Corollary 8.3, E, and E,, for 0 <¢ < &*, are finite
sets of N, elements v;, ] £I<N,, and uf, 1 £1 < N,, respectively and (8.28) holds.
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For & small enough, we can then apply Theorem 9.16 to v, =v; and u, = uj. Below,
we set v, =u).

We now introduce the local unstable sets Wi, o(uf) and Wi, ,(uf) of Ty(¢) and
T,(t) around the points u? and u¢, respectively. For 0 < ¢ < ¢, if U¢ is a neighbourhood
of uf in ¥, then

Wioe,e(ui: Uf) = Wiee, (uf)
={ucU;: T(—tueUj,t =0; T,(—t)u—uj in ¥, as t > o0}.

Using Theorem 9.16, one proves the following result (see [ 18] for the details). We
do not give the proof here because it is a little long and technical.

PROPOSITION 9.20. There exist positive constants ¢, and p, such that, for 0 < ¢ < g,
1 SIS N, there exists a neighbourhood U; of uj in ¥, such that Wi, (uf) is a
CO-submanifold of ¥, the ball B, (4, p,) is contained in Uj and

max (‘sHel(Q)(Wi‘oc.O(u(l))’ Wiloc,a(u? ))> 5H§(Q)(Wi‘oc,a(u;:)’ W;‘oc,O(u(l)))) é CE%-

One can adapt the proofs of the lower semicontinuity property of [ 11, Theorems
2.5 and 2.8] and [28, Section 3] to obtain the following result (see also [18]).

THEOREM 9.21. If all of the equilibrium points of (P), are hyperbolic, then the attractors
&, are lower semicontinuous at ¢ =0; that is dgiq)(h, ;)0 as e—0. Moreover,
there exist positive constants &, and p, with 0 <p <1, such that, for 0 <e < ¢,

Onro) (o, H;) + 01 (H,, Hp) < ceP.

10. Some generalisations

More general L-shaped domains

With essentially no extra effort, it is possible to replace the functions ¢g;(-) in the
definition of the L-shaped domain in Section 2 by more general functions g,(-, ). In
fact, suppose g; € C3([0,1] x [0, 17; [0, c0)), i =1, 2, and

0g;
8i(%;,0)=0, guX)= g(xi’ 0)>0,

gi(%;,e)>0 for X;€[0,1],¢€(0,1].
We define the general L-shaped domain by
0.=0:v0:,
Ol={(%, %) e R*0< %, <g,(%,6), 0<%, <1},
Q2= {(%,, %) e R*:0< %, < g,(%,,8),0< %, < 1}.

All of the results of Sections 2-9 remain valid provided that, in the definition of the
spaces ¥,, #., H,, . . ., we replace g;(x;) by g:(x;, ¢)/e and that, in the definition of the
spaces ¥;, Hy, as well as in the definition of the limit problems (P), and (P),, we
replace g;(x;) by gio(x;)-
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Different boundary conditions

As in [25, Lemma 2.5"], we keep the homogeneous Dirichlet boundary condition on
I'' and take the homogeneous Neumann boundary condition on I'2. The
variational problem (P) is the same but we need to replace the space HL(Q.)
by Hi:(Q,)={ue H(Q,):u=0 on T}!}. We now define the space ¥ by
V= HL(Q") x H(Q?) and also set

Yo= {5 =&, &) € HY((0, 1) x H((0, 1)):£,(1) =0, £,(0) = £,(0)}.

Using the conditions &,(1) =0, and &,(0) = £,(0), one shows that (2.4), is valid for
any v € ¥;. Arguing as in [25, Lemma 2.5bis], one proves that (2.4), still holds for
any u € ¥,U%¥,. The problem (P), does not change with ¥; given as above. In the
problem (P),, we replace the boundary condition v,(1, t) =0 by the boundary con-
dition v,,,(1, t) = 0. With these modifications, all of the results of Sections 2-9 hold.

We also may replace the Dirichlet boundary conditions on I, by the homogeneous
Neumann boundary conditions. In this case, we replace —A by —A + ayl, where
%, >0 and we replace the dissipative condition (2.2) by

) <a<a, (227)

lim sup
|s{— o0 S

The variational problem (P) is now considered on the space H'(Q,). The correspond-
ing space V is V= H'(Q!) x H*(Q?) and

Yo=1{&=(1, &) € HY((0, 1)) x H'((0, 1)):£,(0) = £2(0)}.

The inequalities (2.4), and (2.4), obviously hold. In the problem (P),, we replace
the boundary conditions v,(1,t)=v,(1,t)=0 by the boundary conditions
vy, (1,8) = 05,,(1,¢)=0. Once these changes are made, all of the results of
Sections 2-9 hold.

T-shaped domains

By means of an example, we indicate how to generalise the results of Sections 2-9
to thin T-shaped domains. The details as well as other generalisations are in [18].
For given functions g; € C*([0, 1];(0, ©)), i=1, 2, 3, we define a T-shaped domain

as
0.=0:vQIVQ;,
0l ={(®,,%)eR2:0< %, <eg,(%),0< X, <1},
Q2 ={(%,%,)eR::0< %, <eg,(%,),0< %, <1},
Q2 ={(%,, %) eR?: —1 <%, <eg,(%,), 0<%, <egs(%,)}.
We set I, =T1UT?0TI?3, where I = 003N {%, = — 1} and we consider the problem

(P) with, for instance, homogeneous Dirichlet boundary conditions on [, and homo-
geneous Neumann boundary conditions on dQ,\T,.

We transform coordinates to the canonical domain Q@ = Q! x Q% x Q°, where @' =
(0, 1) x (0, 1). The unknown u = (u,, u,, u3) consists of three functions satisfying two
junction conditions similar to the one which defined ¥;. The inner product (:,")y, is
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defined as follows
3 1
(&, (:)Hs = Z I: J 8i&ilidxy dx, + 3 f 8¢l dx, dx{l.
j=1 L Jo\Ji 5
The space ¥, is now given by
Yo={¢=(%1, &, &) e HY((O, 1)) x H'((0, 1)) x H'((0,1):
£1(1)=&,(1) = &53(1) =0, £,(0) = £,(0) = &5(0)}-
The problem (P), is stated as: Find v = (v,, v,, v3) € ¥; such that

1
— —(&iVix,)x, = —f(;)—Gypin(0,1), i=1,2,3
8i

v(1,0)=0, i=1,2,3, (P)o

£1(0)v15,(0, ) + £2(0)v,,,(0, £) + g3(0)vs,, (0, £) = 0.
With these modifications, all of the results of Sections 2-9 hold.
From 2-D to 3-D
For given positive constants a, b, ¢, let Q,, =(0, a) x (0, b), Q.3 =(0, b) x (0, ¢). For

£€(0, 17 and given functions g,, € C3(Q,; (0, 0)), 23 € C*(243; (0, 0)), we define a
three-dimensional “L-shaped” domain Q, by

Q.= 02007,
01 = {(%, %3, %3) € R*:0 < %5 < 621,5(%y, %2), (%1, X5) € Q)
0B = {(%,, %, %3) e R3:0 < %, < £823(%,, %3), (X5, %3) € Qp3}.
The set J, = Q N Q2 is the junction set and is the closure of the open set
Jo={(Xy, X2, X3): 0 < X; < £823(%5, £3), 0 < %, < b, 0 < X5 < £gy,(%y, X,)}-
We set
IL=T20uI?3 TIP?=002n{% =a}, TP=00Bn{%=c}

We suppose that f still satisfies the conditions (2.1), (2.2), but now we suppose that
0=sy=1L

We consider the parabolic problem (P) on Q,. To discuss the problems (P) or (P),
we transform coordinates to the canonical domain

Q=0"x0%=((0,a) x (0,b) x (0, 1)) x ((0, 1) x (0, b) x (0, c))
and we define the map ¢,: 02U 0%~ Q, as ¢,| QY = ¢, j= 1,2, where
¢§2 : (xl? X2, x3) € Q_le(x17 X2, 8ng('x1> x2)x3) € Q_éza
97 (X1, X2, X3) € QP (8223(%2, X3)%1, X2, X3) € 07,

We set J12 = (p!2)" 1), JB = (¢23)"1,. As in Section 2, (see (2.3)), we can determine
functions x,(e. x,, x3) and x5(¢, x;, x,) such that

T2 = {(x1, X2, X3) € Q12:0 < x; <X (e, X3, X3), 0 < x, <b,0<x3< 1},
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I = (%, X3, X3) € 03:0 < x5 < x3(¢, X4, X3),0< x; < 1,0 < x, < b}.
We let

max
0<x,<b,0=x3=51

max
0<x,;<1,05x,5b

XieM = X1(& X2, X3), Xz = x3(&, X1, X3),

and define Q,.) = 024, x 0%, where

m:M (0 nxleM) X (0 b) X (0 1)’ QM:M (Oa 1) X (O, b) X (05 nx3£M),
andn=1,2.

As in Section 2, we can define the bilinear forms a,(-,
%’ /‘VS‘! V’ .

For example,

‘), ap(-,"), the spaces
, with the obvious changes, by taking into account the above remarks.

Yo=1{E=(,12, &) € H(Q),) % H2(923)5 $1a(L, x3)
= &3z, 1) =0, £15(0, x,) = &13(x2, 0)}

and the problem (P), is given by: Find v = (vy,, v53) € ¥5 such that
Uy2r — Z (8120125, )x, —f(012) = G130 in Qyy,
12i=
Uoze — —— z (g2 U23x|-)x,~ = —f(v23) — Gp30 in Qy3,
23i=2 (P)o

V12(1, X2, 1) = 023(x2, 1, £) = 0,  01,(0, x5, t) = v,3(x,, 0, 1),

ov
£12(0, x;) 52 (0, x5, ) + g23(x2, 0) (x27 0,¢)=0,
ni2

a Ra3
where n,, (respectively n,;) is the outer normal to 9Q,, (respectively 0Q,;). The
mapping M, (in Section 3) is generalised in an obvious way to this case. We can
generalise the mapping I, in the following manner: for any v = (vy,, v53) € %5, We

define I,v = (,,, 0»3) by the relation
Bya(X1, X2)

v12(X1, X2)

X1

— X1eM 2X e —%; 1

12Xy, Xp) +
X1:M

1 J"uu
X1eM Jo

3(%2, X3)

p3(X2, X3)

X3 — X3eMm
= 053(x2, X3) +

X1eM X1eM

v12(s, x,) ds

2x3m— X3 1

X3:M X3eM X1eM

1 ‘[\xlsM
X1:M Jo
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0
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v15(s, x,) ds

X1eM
v12(5, X;) ds

rsity Press

X1 € (2%1,4, 11,

X1 € (Xpapr5 2X1.0m ],

x1 € [0, x1,m 1

X3 € (2x35M’ 1]’

X3 € (XSeMs 2x3eM]a

X3 € [Oa XSEM]'


https://doi.org/10.1017/S0308210500028043

326 J. K. Hale and G. Raugel

Theorem 2.2 remains valid and the proof follows along the lines described in
Sections 3—7. However, the estimate (6.3) is replaced by: for any p, 2 <p < + o0,

ks “LZ(QQ;M) = Cpg(p—Z)/Zp | & ”H‘(nijp forany ¢ e Hl(Qij)> (6.3)

where C, is a positive constant depending only on p. All of the estimates proved in
Sections 4-8 are still true if we replace Ce* by C,&?~2/?2, The results of the first
part of Section 9 as well as Lemma 9.14, Propositions 9.15, 9.20 and Theorem 9.21
still hold once we replace Ce* by C,&?~ 222, 2 < p < c0. Note that the analogues of
Proposition 9.13, Theorems 9.16, 9.17, 9.18 are no longer true.
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