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We consider a dissipative reaction—diffusion equation on a thin L-shaped domain (with
the thinness measured by a parameter £.); we determine the limit equation for £ = 0 and
prove the upper semicontinuity of the global attractors at £ = 0. We also state a lower
semicontinuity result. When the limit equation is one-dimensional, we prove convergence
of any orbit to a singleton.

1. Introduction

In many applications, we encounter partial differential equations (PDE) defined on
domains for which the size in some directions is much larger than the size in others.
It is natural in such situations to attempt to determine a PDE on a lower-dimensional
domain which will reflect all of the dynamics of the original problem. For very
general domains which are thin in the normal direction over a lower dimensional
bounded domain Q, Hale and Raugel [12,13,15,16] have discussed this problem
in detail for a dissipative parabolic equation and for a linearly damped hyperbolic
equation. In particular, if the order of thinness is measured by e, they constructed a
limit problem on the lower-dimensional domain and proved upper semicontinuity
of the attractors at e = 0. For gradient systems, it is also known that the attractors
are lower semicontinuous at e = 0 provided that the equilibrium points are hyperbolic
[16, 29]. Raugel and Sell [30,31] have considered similar problems (including global
existence) for the Navier-Stokes equations on a three-dimensional bounded domain
Q x (0, e). Thin domain problems have also been considered by several other authors
from different points of view; see, for instance [4, 22, 25, 26] and the references
therein. For time-dependent problems, see also [28].

In this paper, we prove the upper semicontinuity of the attractors as well as
other properties of a dissipative parabolic equation on thin L-shaped domains.
A very special case of such a domain in IR2 is the set {(x1)x2):0<x1 < 1, 0<
x2<e}u{(x1, x2):0<X! <e,0 <x2 < 1}. The junction region of this domain is
denned to be (0, s) x (0, e).

Ciarlet [4] and Le Dret [23-25] have considered such problems for linear and
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nonlinear PDE, including problems in mechanics concerning shells, plates and rods.
The first problem that is encountered is to scale the domain in such a way as to
obtain problems on domains which are independent of e. For the above simple
example, the idea of Ciarlet and Le Dret is to scale the different parts of the domain
independently of each other, but counting the junction twice. The idea of scaling the
different parts of a multi-structure independently of each other, but counting the
junction twice, first appeared in the work of Ciarlet, Le Dret and Nzengwa [5, 6] .
They obtained two domains Q1 = (0,1) x (0, 1), Q2 = (0, 1) x (0,1) with the junction
being J\ = (0, e) x (0, 1) in Q1 and J2 = (0,1) x (0, e) in Q2. For the resulting PDE
on the product domain, a solution u = (u1,u2) is required to satisfy a junction
condition in order to yield correct information about the original problem. A natural
limit problem as e-»0 in this case consists of two one-dimensional PDE with a
matching condition at the origin. The above authors discussed convergence of
solutions on finite time intervals as a-»0. Other approaches to such problems are
considered in [3. 7] , for example. One could also apply the techniques of asymptotic
developments (see [4]).

Here, we use a type of scaling procedure similar to that of Ciarlet and Le Dret,
but for a more general L-shaped domain, we determine the appropriate limit equa-
tions and then extend the method used by Hale and Raugel [13] to prove the
upper semicontinuity of the attractors at £ = 0. To assist in the analysis, Hale and
Raugel [12,13] used a projection operator from the higher-dimensional space to
the lower-dimensional space given by the mean value with respect to x2. Also, for
thin domains, the identity map is a natural embedding of functions on the lower-
dimensional space into functions on the canonical domain in the higher-dimensional
space. In the above coordinates, this embedding takes a function of <p{x^) into a
function ij/(xi,x2) = <p(xi) for all x2. Due to the junction conditions on L-shaped
domains, these artifacts will not work and this makes the analysis more difficult.
The detailed reason for this is described in the text.

An outline of the paper is as follows. In Section 2, we describe the variational
problems (P)£ and (P)o corresponding, respectively, to the reaction-diffusion equa-
tions on the thin L-shaped domain and to the limit problem. There we also introduce
the main notation and state the upper semicontinuity result of the attractors s/e of
the problems (P)£ at s = 0. In Section 3, we introduce our important auxiliary
mappings Me and Ic. Sections 4-7 are devoted to the proof of the upper semicontin-
uity result. In Section 8, we compare the equilibrium points of the problems (P)E

and (P)o, when the equilibrium points of (P)o are hyperbolic. Section 9 is devoted
to the comparison of the eigenvalues of the linearised problems corresponding to
(P)E and (P)o. We first give abstract results of comparison of eigenvalues, which can
be used in other situations. For special thin domains, Bourquin and Ciarlet [2] have
also made comparison of eigenvalues. We then describe two main applications of
our comparison results. The first application is the convergence, to a single equilib-
rium point, for each orbit of the reaction-diffusion equation on our thin L-shaped
domain. The second application is the lower semicontinuity of the attractors siz at
e = 0. Finally, in Section 10, we describe some generalisations to more complicated
two-dimensional thin L-shaped domains and to three-dimensional thin L-shaped
domains.
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2. Notation and upper semicontinuity results

For g,,e C2([0, l];(0, oo)), i = l , 2 , and ee(0,1], we define a general L-shaped
domain Qc by the relations

Ql = P i , *2) e R2:0 < x2 < e g ^ ) , 0 < ^ < 1},

Ql = {(xu x2) e R2:0 < Xi < eg2(x2), 0 < x2 < 1}.

We denote the closure of a set S by S. The set Jt = Q\r\ Ql is called the junction set
of <2E and is the closure of the open set

Je = P i , x2):0 < x2 < eg^Xi), 0 < xx < sg2(x2), xt e (0, 1), x2 6 (0,1)}.

We set

Suppose that G e WliC°(Q), where Q >̂ u0<£:S1Q£. The conditions on G can be weak-
ened (see the detailed proofs in the next sections). Let fe C2(R; R) be given and
suppose that there are constants c>0, 0^y<oo, such that

s n forsei?, (2.1)

- ^ < 0 . (2.2)
S

In view of the results of the first part of Section 9, the condition (2.2) can obviously
be replaced by the following one:

-/(s)
lim sup <1<A1O, (2.2')

\s\ -* + OO S

where A10 is the first (positive) eigenvalue of the operator Ao denned by (2.5)O. Then,
of course, one has to choose s small enough to ensure that the first eigenvalue Xu

of —A on Q£ (with the boundary conditions u = 0 in FE, du/dnc = 0 in 3Qe\r£) satisfies
the inequality X < Xu. For the sake of simplicity, we make the hypothesis (2.2).

We consider the parabolic boundary value problem

u, - Au =-f(u) - G in Qe,

( p ) « = 0 inF£,

where ne is the unit outward normal to QE. The initial data are chosen from the
space

Let us now write the problem (P) in variational form. For this, as has been done
by Le Dret [25], it is convenient to write the inner product in the space L2(Qe) in
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the form

(u, V)L2,Q ) = I uv dxt dx2 + - uv dxt dx2

1 1 I f > J~uvdx1dx2 + - uvdxlax2.
j , 2 JJ,

With this notation, we can see that a function u is a solution to (P) if and only if,
for all w e H\-(Qe), we have

(P) («,, w)L2(Qt) + (VM, Vw)L2(Qe) = - ( / («) + G, wj^gj .

To discuss the problem (P) or, equivalently (P), it is convenient to transform
coordinates to a canonical product domain Q = Q1 x Q2, Q1 = Q2 = (0,1) x (0,1).
To accomplish this, we need some notation. Let

p2:(x1 ;x2)e Q2i

and define the map (pc:Q
1 uQ2->Qe as (pc\Q.' = (p{, 7 = 1,2. Clearly the map

97': Qe -* Q1 ^ 62 exists. We have

We now want to determine <p^lJt-
From the Implicit Function Theorem, there exists a constant £ 0 >0 and a

neighbourhood W of (0,0) in K2 such that, for 0 < e ^ a o , the equation
xi ~£g2(£gi(xi)x2) = ® n a s a unique solution x^a, x2) in W for 0 ^ x 2 ^ l with
XjfO, x2) = 0 and the equation x2 - £gi(£g2(x2)^i) = 0 has a unique solution X2(E, x j
in PF for 0 ^ Xi ̂  1 with x2(0, xx) = 0. Moreover, the functions X^E, X2) and X2(E, XX)
are of class C2 from [0, £0] x [0,1] into W. Also, it is not difficult to show that there
is a positive constant C such that, for 0 < £ ^ £0, we have

y{£, x2 )

0 < X 2 ( E , X J ^

dx2

dx2{s, x
(2.3)

Since minx.6[01]gi(xi) > 0, for i = 1,2, we can also show that there exists a positive
constant Co such that, for 0 < £ ^ £0,

(2.3'

This allows us to determine
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c)~

xJc = J2
e = {(x1 ,x2)e(22:O<x2<x2(£, xx), 0 < x x < 1}.

287

We now introduce some spaces which arise naturally from the transformation
v71'-Qt^>QlvQ2. We let H = L2(Q) = L2(Ql) x L2(Q2) and we introduce the space
He = HE(Q, J£) ~ H with the norm || • ||He induced by the inner product

I
Z £ d d

where £ = {ZU£2), C = (Ci,C2)- We let H\Q) = H\Qy)x H\Q2) and we denote by
Hl(Q) the space Hl{Q) equipped with the norm || | |Hj(e) defined by

I"IIH.1(Q) =
1 du2

L2(Q2)

for « = (« 1 ,« 2 ) . Let Hh(Q})={ueH1(Qi):u\TJ = Q}, j=l,2. We let
V= H'MQ1) x Hl2(Q2) and

e if,: <̂ 1
1 \J. a.e.},

We can equip ~Ve with the norm of IHIHi(G), but later we equip 1r
t with a more

adequate norm.
If we now make the change of variables <ps and let Gu{xly x2) = G(xx, egi(x1)x2),

G2£(xx, X2) = G{eg2{x2)xi, x2), then the variational problem (P) is equivalent to find-
ing a function u£ e ~f£ such that, for every w e f8, we have

(P)£ {u\, w)Hc + ae(u
e, w) = —(f{uc) + G£, w)He,

where /(u), G£ belong to jVe with

f(u) = (/(Mi)»/(«2))> G£ = (Gl£, G2£),

and the bilinear form a£(<̂ , Q is defined as follows. If

LC J L(Ci,C2)J LC J L(Ci,42)J

are two vectors in H£ x H£, we set

= i r r ^^+-r
For i, — (%!, t;2) e Ve, we introduce the 'gradient vector'

fc625 1
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and, for £, e Vt, £ e ~VC, we set

We equip i^t with the norm || • ||^e defined by || "11^ = (flE(w, «))*• Actually, we can
define ae(u1,u2) if u^ u2 are only elements of V. For this reason, we denote by V8 =
VE(Q) the space V equipped with the norm ||u\\Vc — (a£(«, «))*, u e V. We remark that
there exist positive numbers e0, c0, Co such that, for 0 < e _ £0>

Coll«llHj(Q)SII«||n^Co||M||Hi(Q), ueVt. (2.4)£

The inequalities (2.4)E are a direct consequence of the hypotheses imposed on gh

i = 1, 2, and on the Poincare inequalities on Q', i = 1, 2.
To define the limit problem for e = 0, we let Ho = L2((0,1)) x L2((0, 1)) with the

inner product

and let

f o = K = (^,y£fl1((0,l)) '<ff1((0,l)):

For v = (vu v2) e"T0,Z = (£u £2) e f^, we set

giViXl£iXldx1
o

and we equip 7^ with the norm \\-\\-r0 defined by ||w||^0 = (ao(v, v))*. Actually, we
can choose the constants c0 and Co in (2.4)£ so that

C0 I! V llH f̂O.DtxH'W.l)) = II V II l̂ o — °H "IIH^O.IBXH^O.I)) (2.4)O

for all v = (vu v2) e ^ ( ( 0 , 1 ) ) x /^((0,1)) with v1(l) = v2(l) = 0.
If we also let G10(x!) = G(xu 0), G20(x2) = G(0, x2), Go = (G10, G20), then the limit

variational problem is to find a function n e f 0 such that, for £, e Vo, we have

(P)o (vt, Z)H0 + ao(v, 0 = -(f(v) + Go, QHo.

This problem is equivalent to finding a v = (v1,v2)ei/
0 such that

Vu-—{giVixl)xl= ~f(vi)-Gl0 in (0,1),
61

(P) o
 U2t - — {giv2x2)x2 = -f{v2) - G20 in (0, 1),

o2

gi(0)olxi(0, 0 + ̂ (0)0^(0 ,0 = 0.

REMARK 2.1. In the special case where gi(0) = g2(0) and giXl{0) = g2x2(0), it is easy
to show that (P)o is equivalent to an equation on a line. In fact, if v = (vl,v2) is a
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solution of (P)o, and we set

K(s, o, o<s<i,
W-s,0, -1=^ = 0, (-s), - l ^ s ^ O ,

(G10(s), 0 < s < 1,
G*(S)= I 10W' - -

then v* satisfies the equation

1

(Q)* g* ? Vs s ~

v*(-l, t) = v*{l, 0 = 0.

Also, if gt = 1, then g* = 1.
Now let Q£= { ( x 1 , x 2 ) : 0 < x 2 < £ g * ( x 1 ) , - 1 < X ! < 1 } , T° = 8QEn{x1= -I},

T£ = 3Q£n {xt = 1}. In [13], it was proved that the limit problem at e = 0 of the
reaction-diffusion equation

u, — Au = —f{u) — G in Qe,

u = 0 in I

du
— = 0 in c
on£

is the problem (Q)*. This means that, if the L-shaped domain has the property
£i(0) = £2(0), giXl(0) = g2x2(0), then the limit problem for £ = 0 is the same as that
for a thin domain over a line segment defined by the function g* above.

For any h = (hi, h2) e 3%, we consider the problem: find u = (ut, u2) e ~f~t such that

ae{u, w) = (h, w), for all w e Vt. (2.5)E

Going back to the domain Q£ and applying the Lax-Milgram Theorem, one shows
that, for any h e J^e, there is a unique solution u of the problem (2.5)£. Moreover,
using (2.4)£, one proves that, for 0 < £ ^ £0,

\\u\\HUQ)Sc\\h\\He. (2.6).

Likewise, for any h0 = (hi0, h20) e Ho, we consider the problem: find v = (vu v2) e ~V0

such that

Thanks to the Lax-Milgram Theorem, for any hoe Ho, there is a unique solution v
of the problem (2.5)O. Moreover, due to (2.4)O, we have

II v \\-r0 = c || /loll H0- (2.6)O

Writing the differential equations satisfied by vx,v2, and using the fact that the
functions 1 ,̂ v2 are functions of one real variable only, one shows in addition that

if0- (2-7)

The triple {~f~0, Ho, ao{-, •)} (respectively {f^, J%, a£(-, •)}) defines a unique unbounded
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operator Ao on f^ (respectively A£ on ~Vt} with domain D(A0) (respectively D(Ae)) in
the following way: an element i)gf0 (respectively ueiQ belongs to D{A0) (respect-
ively D(AC)) if the form

t;\-^ao(v, £) (respectively wi—>a£(u, w))

is continuous on "To (respectively "VE) for the topology induced by Ho (respectively
3%). Then ao(v, £,) = (Aov, ^)H0, /lo^ e -^O' which defines ^40 (respectively aE(u, w) =
(A£u, w)He, Aeti e J%, which defines Ae). The operator ^40 (respectively AE) is self-
adjoint on Ho (respectively 3€E), is positive and is sectorial in the sense of [19].
Moreover, D{A\) = ir

0 (respectively D(A\k) = 1/~e). Arguing as in [19, Section 5.3],
and using the hypotheses (2.1), (2.2), one shows that (P)£ generates a C°-semigroup
TE(t) on fs. Arguing as in [10, Section 4.3] (see also [13, Section 2]), one shows
that (P)e is a gradient system and has a connected global attractor <$4E. Moreover,
s/e is the unstable manifold of the set EE of the equilibrium points of (P)E. We recall
that s/E is the global attractor of the semigroup TE(t) if sfE is a compact subset of
%, s#£ is invariant (that is, Te(t)s/E = stfE for 12:0), s/e attracts every bounded set B
of yc; that is, for each bounded set B, for each r\ > 0, there exists a time x = x(B, n)
such that, for r 3; x, TE{B) is contained in the ^-neighbourhood JT^-t{sit, r\) of s/e in
"VE. One shows also that the problem (P)o generates a C°-semigroup T0(t) on T^
which is compact for r > 0 and has a global attractor s/0 in i^. Local existence of
solutions of (P)o follows standard procedures. We remark only about the manner in
which the boundary and compatibility conditions in (P)o lead to the global existence
of solutions and the existence of the global attractor. For v = (v1,v2)ei/

0, if
V(vt, v2) = V^Vi) + V2(v2) is the energy for (P)o, where

i2 + F(vj) + GJOVJ'],

and F{s) = J*/, then the derivative V(vi, v2) along the solutions of (P)o is easily seen
to satisfy V{vu v2) = — \\(giv\t + g2v\t). The function V(v1, v2) is a Lyapunov func-
tion and serves as an equivalent norm in Y~o. This gives global existence of solutions
and defines the semigroup T0(t). Obviously, T0(t) is compact for f>0 . Also, the
co-limit set of any solution must belong to the set of equilibrium points. Since the
set of equilibrium points is bounded, it follows that the global attractor exists (see,
for example, [10]).

We can consider the attractor J / 0 as a subset of H\(Q). Our main result is now
stated in the following theorem. If Z is a Banach space and B1, B2 are two subsets
of Z, we set

dz{Bl,B2)= sup inf \\bl — b2\\z.
6, eB1 b2GB2

THEOREM 2.2. The attractors srfE, 0 ^ e ^ e0, are upper semicontinuous at e = 0; that is,

• 0 ass->0. (2.8)

We also give an estimate on the distance between the solutions of the problems
(P), and (P)o on any finite time interval.

In spirit, the proof of Theorem 2.2 follows along the lines in [13] for a parabolic
equation on a thin domain. However, there are several important differences.
For PDE on a thin domain Qe over a line segment defined by Qe =
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{(*i> x2)-0<x2< £g(xi), 0 < xx < 1}, the first step of the analysis is to map QC onto
the canonical domain Q = (0,1) x (0,1). In this case, there is a natural embedding
of the solution space for the limit equation on the line into the solution space for
the perturbed equation on Q. Also, there is a natural projection in the opposite
direction using a restricted mean value operator which takes a function u on the
square Q to the function (Mu)(xl) = Wu(xy,x2)dx2 on the line segment [0, 1]. In
the case of L-shaped domains, neither of these properties is true because of the
junction region. Therefore, we must introduce an operator IE which will map f^ into
fl and an operator ME which maps % into f̂ . The operator Ie will be approximately
the identity, while the operator M£ will be approximately a restricted mean value
operator (see Section 3 and the proof of Theorem 2.2). The necessity for the introduc-
tion of these operators IE and ME makes the estimates needed in the proof of
Theorem 2.2 much more complicated. We remark that the precise estimates of the
convergence of the attractors s4E to the attractor stf0 will depend upon the manner
in which the operators IE and ME converge respectively to the identity and the
restricted mean value operator.

We present the outline of the proof to bring out the essential difficulties. We first
remark that, throughout the paper, C (respectively k(r)) will denote a generic positive
constant (respectively a generic function of r) independent of e. Using the properties
(2.1), (2.2), as well as regularity properties of TE(t) and T0(t), and the fact that Tc(t)
is a gradient system, it is possible to proceed as in [13] to obtain the following result:

LEMMA 2.3. There is a positive constant Co such that, for 0 < e ^ e0,

l l ^ l k ^ C c for all <p* e rfE. (2.9)

Moreover, for any r0 > 0, there is a positive constant k(r0) such that, for 0 < e ̂  s0,
and any u0 e %, || u0 ||̂ -e ^ r0, u£ = Tc(t)u0 satisfies

ll«£(t)lk^

d 2

(2.10)

(2.11)

Finally, if v(t) = T0(t)v0 with \\ v01|^0 ^ r0, then

= = (2.12)

d

Js{

I "l HL2((0,1))XL2((0,1)) " S = W i

ds+ ||trt|||i((o,i)

ds + || tv \\H2((O,I))XH2((O,I)) =

t

II ^IIH2((O,I))XH2((O,I)) ds ^ k(ro)(l + t),

+t2),

^ %o)(l + t2),

(2.13)
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for t ^ 0.

Proof of Theorem 2.2. Since s#0 is the global attractor for (P)o, for any r\ > 0 and
any rt > 0, there exists a positive number T, such that, for t ^ T,, for
II vo\\Hl((O,i))xHl((O,l)) = rlt

5ro(T0(t)vo,st0)^. (2.14)

We construct a linear mapping lt:'f^-*ir
t with the property that it is the identity

on a subset of g£ of (0,1)2 x (0,1)2 with the measure of (0,1)2 x (0, l ) 2 \g £ approach-
ing zero as e -> 0 and such that there exists a positive constant C such that, for all

|, IA I k S C\\ £ \\r0, IIZ ~ hZ I k ^ Ce U llfli«o.i)> xHi,,o.i))- (2-15)

We also construct a linear mapping M£: i^-* "f~0 with the property that, on a subset
of approximately full measure, it is the restricted mean value with respect to x2 on
Q1 and with respect to xx on Q2 and such that there exists a positive constant C
such that, for all uef^,

I I M . U I U ^ C I I K I I ^ , | | « -M,« | | 1 2 ( Q ) ^Ce | | i i | | ^ . (2.16)

We then prove that, for any r0 > 0, there is a positive constant k(r0) such that for
|| u01|^ ^ r0, for t ^ 0, we have

|| tT0(t)M£u0 - tTt(t)uo | | | j ( f l ) ^ efc(ro)£*'o». (2.17)

By (2.9) and (2.16), || Mc<pt ||^o ^ CC0; we set rt = CC0. From (2.17), we deduce that,
for 0 < 15S T,, for >̂e e s/s,

We now choose e0 so that

-eoMCo)^0^'^?. (2.18)
T, 2

From (2.14) and (2.18), we conclude that SHi(Q)(Tc(x^)(pe, stf0) ^ ^. By the invariance
of $tc, this implies that SHi(Q)(j!/E, jtf0) ^ r\ and the theorem is proved. •

The next few sections are devoted to introducing the operators Ie and Mt and
proving the inequality (2.17).

3. The mappings Ie and Mc

If ;q(e, x2) and x2(e, x j are as defined in Section 2 (see (2.3)), we let

xUM= max X!(e, x2), xUm= min x1(e,x2))
os*2si os*2si

x2£jvf= max x2(£, x j , x2£m= min x2(e,x1).
O l O

From the Mean Value Theorem and (2.3), we deduce that

(3-1)
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For n = 1, 2, we define QmM = Ql£M x Q2
eM, where

QLM = (0, nxUM) x (0,1), $ £ M = (0, 1) x (0, nx2£M),

and let HncM ^ L2(QneM) be the Banach space of functions on QneM with the norm
|| • ||HnsM induced by the inner product

We also let H)^M = Hl(QmM).
For any v = (vu v2) e ~f0, we define Iev = (/Jux, /2u2) by the relation

v c Hv 1 n

~ ^IEM)) ^ I e l^itMi 2 X 1 E M J, (3.2a)

I t is c l e a r t h a t / ^ ^
0 < e ^ £0 a n d al l vei^,

i E l^i(X^, X2) — \V

U(0) Xi6[0,xlEM];

{^2V*2) ^2 ^ (-^-^2eM> 1 J>

u2(2(x2 - X2 E M)) X2 e (X2EM, 2 X 2 E M ] , (3.2b)
f2(0) x 2 e [ 0 , x 2 t M ] .

o- Also, there is a positive constant C such that, for

i = l Jo
sup {|| v - I.v Ua., || o - /,o ||L2(C)} g Ce

and, for all v e ^n(H 2 ( (0 ,1) ) x H2((0,1))),

sup {|| v- Iev\\Hc, || v-Iev\\L2iQ)} ^ Ce1+i|| v||H2

and

Also,

= rE^C\\v \\H
l((o,D)

(3-3a)

(3-3b)

). (3.3c)

(3-4)

To prove (3.3), we observe

0

vlXl(sx1)x1 ds

Xie(2xUM, 1],

^1 6 [0, XlEM],

with a similar expression for v2 — I2v2. The estimate (3.3a) is now immediate. The
estimate (3.3b) is a direct consequence of (3.3a) and the continuous embedding
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of H2((0,1)) into WUco((0,1)). To prove the estimate (3.3c), we remark that, for

(viXi - {I>Xt "Uxd dXi + f (viXt(Xi) - 2viXi(2(Xi - xi£M)))2 dXi

max

which, together with (3.3a), implies (3.3c). The first estimate in (3.4) is obvious and
the second one follows by differentiating I£v.

To define the operator ME:i^—>%, we need some additional notation. For any
function t, e L2((0,1) x (0, 1)), we define partial averages by the relations

m1£{x1)= ^(Xi,x2)dx2,
Jo

and, for Uj e L2(Qj), j = 1, 2, the "average" of u, over J{ by the relations

fh\ul =
gi{xl)dxldx2

 J'

m2u2 = •g2(x2)u2{x1,x2)dxldx2.

Ci rfx2 *

We now define the operator Mcu = (Mlut, M2u2) for u e f~c by the relations

leM, 1],

Xl ~ XUM •m1u1(x1) + — — lmlul Xj e (xl£M, 2xl £ M], (3.5a)
XtcM X\rM

M2u7 =

m2u2(x2)

X2 ~ X2cM

X2EM

m\u2

m2u2(X2) + •
2x,

x2eM

2M, 1 ] ,

' m2u2 x2e(x2 £ M,2x2 £ M], (3.5b)

x2 e [0, x2 £ M];

It is clear that Mc: i^-^i^o, since

dx1dx2\ u(Xl,x2)dXldXz.
J, / J^
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We also remark that M£: ir
e-*ir

e. We want to prove that there is a positive constant
C such that, for 0 < e ̂  e0 and all u e fs, we have

(ii) || Meu | |L2( C W ) ^ C || ii ll^,eneM), | (3.7)

(iii) || Meu ||Hi(Q) g C || M | | v J

The estimates (3.7)(i) and (3.7)(ii) are obvious.
To prove (3.6), we observe that, for xt e [xUM, 2xl £ M], the quantities

a n d l-d=
X1EM XUM

are in [0 ,1] . Therefore,

II «i - Afl«i 1̂ 2,21) g 21|«! - mjMi ll^gi) + 21|«! - mj

By the Poincare inequality (see [13], Lemma 3.1]), we have

I "i - wJi"i
1

(3.8)

(3.9)

It remains to estimate the second term of the right-hand side of (3.8). If ut belongs
to Ccc(g2£M), we can write

or, also,

ulx2(x°1,s2)ds2+ \ ulxi(s1,x2)ds1,

+ •

Jo Jo

1 i rxi«M r x i

U u1Xl(su
0 Jx?

(3.10)

Using the equality (3.10), the estimates (2.3), as well as the Cauchy-Schwarz
inequality, we prove that

u1(x1,x2)-
l

u1(s1,s2)ds1ds2
XUM Jo Jo

*i*M&M)+ ;«ix2 1- (3-ii)

Likewise, using the equality (3.10), the estimates (2.3) and (2.3'), as well as the
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Cauchy-Schwarz inequality, we show that

( 1 P fXl'M
\\Ui- ul(si,s2)dsx

\ XUM Jo Jo
ds

\\U1XJ

The inequalities (3.11) and (3.12) at once imply that

J-

(3-12)

(3.13)

By density of the space Cx(Q\eM) in H1(Q2sM), we deduce the above inequality for
any ut e H ^ Q ^ M ) - Using similar arguments, we show that the estimates (3.8), (3.9),
(3.13) still hold if i = 1 is replaced by j = 2. Thus, the estimate (3.6) is proved.

It remains to prove the estimate (3.7)(iii). By the definition (3.5), we can write

^ II »ll «lx, II L^

XUM

which, by the estimates (3.9), (3.13) and (2.3'), implies that
C||w||Ke. Since a similar estimate holds for M2u2, we have proved the estimate

REMARK 3.1. Actually, we can also define the operator Me on the space H\(Q). Of
course, if u belongs to H\{Q)\ft, then Mcu is not in "VQ. However, arguing as above,
we can show that the estimates (3.6), (3.7) are also true for u in H\(Q). In particular,
we can prove the following estimates, for j = 1, 2:

1
-u Jxj+1

) - •

uj-M{uj\\HI(QJ)^Ce\ ||ujx.W^
1

e }'
L2(QJ)

where x3 denotes xx.
In Sections 4-7, we often use the following estimates (see [13]):

1
- u,
s J'

REMARK 3.2. In Sections 8 and 9, we use the following property of the mapping
MJE:ir

o->-i/'o. For 0 < e ^ s 0 , for all ve -T0n(H2((0,1)) x H2((0,1))), we have

J \\H ((0,1)) x H ((0,1)) • ^J.IU^JI V-
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To prove this, we observe that, if v = (ul5 v2) e ~f0, then

297

(0
xl~xleM

- X l t M ) ) -

and

— {M\I\v1 - vx) = < D

XUM

*ie(2x l £ M , 1],

xi e(xuM> 2x l e M] ,

Xi e [0, xlEM]
(3.17)

*ie(2x l £ M , 1],
xi e (XIEM> 2X 1 E J W J ,

where

j p2(»! -x l e M )

I ) = x~
xl£M Jo

(s) ds ^ I X 1 ( 2 ( X 1 - X 1 E M ) ) - I ; 1 X I .

Using the Cauchy-Schwarz inequality, we obtain

vlxi{s)ds
>-l£Af J o

(3.19)

Likewise, using the Sobolev embedding of H2((0,1)) into L°°((0,1)) and the Cauchy-
Schwarz inequality, we show that

Ci - XUM)

X1EM

From the equalities (3.18) and the estimates (3.19), (3.20), we deduce that

d 1 1

(3.20)

(3.21)
((0,1))

A similar bound holds for || M\Il
E vx — v^ ||L2«O,I))- Since analogous estimates hold for

IIM2J2
tv2-v2||Hi((0,i)), (3.16) is proved.

4. An equation satisfied by the solution v = (vl,v2) of the problem (P)o

We keep the notation of the previous sections; in particular, M£u = (M\u^, M*u2) is
denned by (3.5). If v = (vt, v2) is any solution of (P)o, then we have

(vt, MEu)Ho + ao{v, M£u) = -(}{v) + Go, MEu)Ho. (4.1)
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By integration in xt, x2, we obtain

r
gj[VjtMiuj + vJx(MlUj) ] dxldx2

(gjU(vj) + Gj0Wiuj)dx1dx2. (4.2)

If we use the definition (3.5) of Meu and perform some elementary calculations, we
deduce that (4.2) is equivalent to the following equality:

(vt, u)He + ae(v, u) = -(f(v) + Go, u)He

+ R*(v, u) + Sf(f(v) + Go, u) + Lf(vt, u), (4.3)
where

2

R*{v,u)=- Y,

1 2 f
- ; I gjVjxjUj* dx, dx2

1
 J=I Jji

J = I

- 9 t ^ - ^ ( ^ ) X7+i«jxJ+1 ^ i <&2, (4.4a)

where we have let x3 denote x1 ;

S?(f(v) + Go, u) = (/(t>) + Go, M -

vj) + Gj0)ujdXldx2, (4.4b)

1 2 f
- X gjvjtujdxt dx2. (4.4c)
Z J = I JJ^

We also remark that, if v = (vl} v2) is any solution of the problem (P)o, we can
write, for any £, = {l;u t>2) e %,

(v,, Z)HS + a,(v, Z) = -{f(v) + Go, OH,

1 2 f
- ; E ^- [«i« ̂  + Vjxj tjxj] dxt dx2

1 i=\ Jji

A t \ gjU(vj) + GjolZjdx1dx2. (4.5)
2J=I hi

5. An equation satisfied by the solution it of problem (P)E

If u" = (Ml, M|) is a solution of (P)£, we have, for any £ = (c1; £2)G ô>

(Mf, /E^)H s + aE(u\ I A) = - ( / ( " ' ) + G,, / . «« . . (5.1)
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The definition of Ie and a few elementary computations yield

(«?, £)*. + ae(u\ £) = - ( / («•) + G£, £)Hj

+ RE(u\ £) + S£(JV) + G£, 0 + L£K, *), (5.2)

where

Sj

G£) 0 = (/(«£) + G£, £ - / ^ ) H 2 e M

(5.3b)f
LM, 0 = W, « " «)«2 e M - ^ E [ ft«5.(^ - ^(0)) dXl dx2. (5.3c)

We remark that the expression ae(u
e, £) has a rather simple form due to the fact

that I e •fo. In fact,

[ ^(^^^^,)^ (5.4)
7=1 J \ ? /

6. Estimate of || T0(t)MEu0 - Te(t)u0 \\LHe) for «0 e f ,

For given u0 e f̂ , we let u8 = TE(t)w0, u = T0(t)MEu0. Using the variational equalities
(P)£ and (P)o satisfied by uE and v, as well as the equalities (4.3), (4.4), (4.5), (5.2)
and (5.3), we obtain

(u\ - vt, u
£ - v)Hm + aM -v,u*-v)= - ( / ( M £ ) - f(v), M£ - v)Ht - (Ge - Go, u£ - v)Bm

+ B°E{u\ v) + Bl(u\ v) + Bl(u\ v), (6.1)

where

B°M, v)=- K , v - Itv)BuM - (vt, «
E - Msu°)H2eM

1 2 f
+ o Z SjVjM) - Vj) dxx dx2

J=I hi

^ ; (6.2a)
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\{u\ v) = -(/(««) + Ge,v- hv)H2tM - (f(v) + Go,

i f f
2 ; = i hi

(6.2b)

{
gjvjXjdXldx2

Z gjVjXj(M{uej-u£j)x.dxldx2

Z gj-M^C/^j,- uy)Xĵ rfxj dx2; (6.2c)

xJ+1u'jx

I (6.2d)

In the estimation of the quantities in (6.2), we repeatedly use the following relation.
For any £,- e ^((O,1)), j = 1, 2, we can write

(llni(«u»- (6-3)II £j IIL2(ei«M) = Ce II {j IIL°°«O,I)) =

Next we choose 0 < £ 0 < 1 and assume that ||Moll^e ^' 'o- We now estimate the
expressions in (6.2), beginning with B®(u\ v). Thanks to (3.3) and Lemma 2.3, we
may write, for 0 ^ e ̂  s0,

1
t dx2

^ C s || u^ ||H2BM II v ||Hi((o,i)) x HH(O.

From (2.10) and (3.6), we deduce the inequality

|(i;r, u
£ - M^)HuM\ ^ Ce || vt U2EM \\ «E | | n ^ Ce[fc(r0) + || vt | | | 2 e J .

Using (2.10), (3.9) and (6.3), we can write, for any positive number S,

(6.4)

(6.5)

z
H

= Z gjVjt{mju)-vj)dxldx2

H
gjvjt(mju)-u^dxldx2
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From Lemma 2.3 and (6.2a), (6.4)-(6.6), we deduce that

\B°(u\ v)\ ^S\\u°-v\\2
Vt + Ce\_k(r0) + | |u\ \ \^ M + || vtH^

(6.6)

(6.7)

We now estimate \B\(uc, v)\. We first observe that the Mean Value Theorem implies
that

and that the hypothesis (2.1) and the estimates (2.10) and (2.12) imply that

| | / (MJ) - f(Vj) \\2
L2{QJ) ^ Ckt(r0) || uj - vj f^Qjy, (6.9)

where /cx(r0) is a positive constant depending only on r0.
Taking into account the estimates of Lemma 2.3 as well as the estimates (3.3),

(3.6), we obtain

) + G,, o - Icv)H2cM\ + |(/(») + Go, u
£ - Mcu°)H2tM\

2 J=I

G£ ||H2 (i;) + Go | | ^ J . (6.10)

Likewise, using, in addition, the estimates (3.9) and (6.3), we can write, for any
positive number S,

1

2
2 f

L gj(f(vj) + GJO)(UJ - Vj) dxt dx2
j=i JJ{

gj(f(vj) + GjO){mjU) - «;•) dxt dx2

gj(f(vj) + GjO)(nijU) — Vj) dx^ dx2

)• (6-11)

From (6.2b), (6.10) and (6.11) as well as the hypotheses made on / and G, we deduce
at once that

\Bl(ue, v)\ ^ d\\ue — vIIHIJQ) + eC(l + S~1)k(r0). (6.12)

We n o w t u r n to the e s t ima te of B2(u\ v). At first, we r e m a r k tha t , in t h e express ion
of B*(uc, v), we c a n rep lace t h e express ion u)x b y £ x E~1(UJ — VJ)X. T a k i n g i n to
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account this remark as well as the estimates (2.12) and (3.4), we can write

\BUu\v)\^CE\\v\\Hi(Q)\\u° -v\\Hl(Q)^C£2S-1k(r0) + d\\u° -v\\2
Vt. (6.13)

It remains to estimate the last two terms of B2(uc, v). Using Lemma 2.3 and the
estimates (3.7) (see also Remark 3.1) and (6.3), we have, for any positive number d,

2

Z
7 = 1

2 r
= Z gjVjXj(M

J
e(u

£
j-Vj)-(u'j-Vj))x.dx1dx2

<Ce'\\v\\ 2 n X 2 ( | lu £ — u|| + C | | iH| 1 x i )

^ S || uE - v \\le + Ce(l + <T x ) || v \\2
H2{m))XH2(i0yl)). (6.14)

We write the last term in (6.2c) in the following way:

y f '
2 r

= Z . gMxj-VjXj)(Iivj-Vj)Xjdx1dx2

+ Z I 2g;i^(^Xj(2(x;-X£M))-i^(x;))<frc1dx2

2

+ z
^ r ,

+ Z ^ - ( ( ^ ( ^ + X7«M)) - (^X,(^))2)dxtdx2, (6.15)
7=1 Je^M

which, thanks to Lemma 2.3, and the estimates (3.3) and (6.3), implies that, for any
positive number 5,

2 r
Z gjUe

jXj(IiVj-Vj)x.dx1dx2
f=i JQLM

CS ||f

..i»IWI*((o.i))- (6-16)
7 = 1

From (6.2c), (6.2d), (6.13)—(6.16) as well as from Lemma 2.3, we obtain

(6.17)
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Finally, from the equalities (6.1), (6.2) and the estimates (6.7)-(6.9), (6.12), (6.17),
we deduce that, for any positive constant 3,

\ \ e \ \ 2 { c £ )

+ Ce{ 1 + 6 ~ x) || v || H2((0,I)

+ Ce(||u,||£.+ ||i>j£.). (6.18)

If we choose 6 sufficiently small and integrate the inequality (6.18) from 0 to t, we
obtain that, for t ^ 0,

H . + I \\u° -v\\2
vJsSC\\u0- Mtu0\\

2
He

Jo

t + C(l+k1(r0)) \ \\ue-v\\2
HJs

Jo

+ Ce\ ( | |«;ili.+ l|o,llfl.+ l|o|lH»((o,i»xH'((o,i)))ds. (6.19)
Jo

Finally, applying the Gronwall lemma to (6.19) and using Lemma 2.3 and the
estimate (3.6), we conclude that, for t ^ 0, for u0 e f~E, \\ u0 \\^c ^ r0,

\Te(t)uo-To(t)Mcuo\\
2

L2(Q)+ | \\TE(s)uo-To(s)MEuo\\
2

vJs^Cek(ro)e
k^'. (6.20)

Jo

7. Estimate of || tT0(t)MEu0 - tTE(t)u0 \\mm for Uo e r .

As in the previous section, for given u0 e Ve, we let ue = TE(t)u0, v = T0(t)MEu0 and
we assume that ||uo||^e ^ r0. We also use the notation z£ = tue, z° = tv. Since zE and
z° belong to ~f~E and f̂ , respectively, we can use the variational equalities (P)£ and
(P)o satisfied by uE and v, as well as the equalities (4.3)-(4.5), (5.2) and (5.3), to
obtain

- f(v), z\ - z°)He - t(Ge - Go, z\ - z°)He

-v,z\-z°t)Hc + B°E(u\ v) + Bl(u\ v) + B2M, v), (7.1)
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v) = -(tul z? - I£z%2tM - (tvt, z\ - M£z*)

1 2 f
+ ; I tgjVjAz), - z°jt) dxy dx2

tgju)t(z'jt-zl(0))dx1dx2;

v)=-

2;=i hi

G£, z? - /8z?)H2eM - t(f(v) + Go, z?

tgJ(f(vj)+GJO)(z%-z^dx1dx2

1 ;=1 Jj

2

+ 1

tgjvjx.{M{z)t-z)t)x.dxldx2

tgju)Xj{l{z%-z%)Xjdxidx2

j=i

g.

(7.2a)

(7.2b)

(7.2c)

(7.2d)

Our next objective is to estimate the terms B°(uc, v), B\(ue,v), Bj(ue,v) and
B£(M

£, I;). Thanks to Lemma 2.3 and to the estimates (3.3) and (3.6), we may write,
for 0 ^ e ̂  e0,

=

(7.3)

and

\{tvt, z\ - Mtz\)H2eM\ g Ce || »f ||H2,M || z\ | | ^ ^ Cefc(ro)(l + f2). (7.4)

Likewise, using Lemma 2.3 and estimate (6.3), we obtain, for any positive
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number S,

1
Z tgjVjAz),-4) dxidx2

t2). (7.5)

From the estimates (7.3)—(7.5), we deduce that

|5? ( i i ' , « ) |g5 | | Z ; -z? | | | . + Ce(H-5-1)fc(ro)(l + t2). (7.6)

We now turn to the estimate of B*(uE, i>). As in Section 6, taking into account
Lemma 2.3 and the estimates (3.3) and (3.6), we write

| t ( J V ) + G£, z° - /£z?)H2eM| ») + Go, zj - MEz\)H2t

1
+ 2

-f2)(l+/c(r0)). (7.7)

Since we do not want to use a strong hypothesis on G, the estimate of the next term
in B\(uz, v) is a little more delicate. We can write

vJ) + Gj0)(z)t-z%)dx1dx2

where

(7.8a)

(7.8b)

But, using the hypothesis (2.2), the estimates (3.9), (6.3) and Lemma 2.3, we obtain

1
gj(f(vj) + Gj0 + f'(Vj)vjt)(z) - z?) dx, dx2

^ C Z 11| f(vj) + Gj0 + f'(vj)vjt \\L2(Ji)( || mjU) - u)||L2(/i)

u£ - y | | | B l ( Q ) ) . (7.9)

From the equalities (7.2b) and (7.8) and the estimates (7.7), (7.9), we at once derive
that

(7.10)

\Bj(u\ v)\ ^ \ Z j t ( j t tgj(f(vj) + Gj0)(z) - z;°) dx, dx)j

+ W-v \\2
Hl{Q) + Cs(\ + t2)( 1 + k(r0)).
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It remains to estimate Bl(uc, v) and B2 (ue, v). Arguing as for the estimate of
\Bf(ue, v)\ in Section 6 and using the estimates (3.4) and Lemma 2.3, we may write

\B3
e(u\ v)\ ^ Cet(||usH-^||z°||Hi((o,i))xHi((o,i)) + IIA\WEIIvW&UOWH^O.D))

^Ce(l+t2)k(r0). (7.11)

Arguing as in the proof of the estimate (6.14) by using Lemma 2.3 and the estimates
(3.7) and (6.3), we obtain

tgjVjx.iMiz), - z),)Xj dxx dx2

gj(tvjtx. + vjx.)(Mizcj- ZCJ)XJ dXl dx2

d_ , 5

7tBc

d . ,

01|uc - v \\Hi(Q) + t

where

z, HH2((0,1))XH2((0,1)) + f I (7.12)

B5At)= I I tgjvjx.(Miz)-z%.dx1dx2. (7.13)

Using Lemma 2.3 and the estimates (3.4) and (6.3), we are able to estimate the next
term in B2(u£, v) — B^(ue, v) as follows:

tgju'jx.(liz%-z%)x.dx1dx2

I [ ^.(«5Xj. - »^)(/^z° - z%)Xj dx, dx2

tgjVjX.{l{z% - z%)x. dxx dx2

J = l

^ t21| u£ - v \\2
Hi(Q) + Cet21| vH i ( Q )

Cs\\zt |IH2((O,I))XH2«O, I))

t2). (7.14)
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Finally, we have:

1 2

l > W 4 * , " 4»,) + ^jx/fixj] dxi dx2

Integrating the equality (7.1) from 0 to t and using the equalities (7.2) as well as the
estimates (6.8), (6.9), (7.6), (7.10)-(7.12), (7.14), (7.15) and Lemma 2.3, we obtain,
for t ^ 0,

f
||zc

t(s)-z?(s)III ds + ac{ze(t)-z°(t),zc(t)-z°(t))
Jo

' \u°(s)-v(s)\\2
HJs

'0

t2)(l+k(r0)) I \\u°(S)-v(s)\\2
HUQ)ds

Jo

BUt) + B6
E(t). (7.16)

Arguing as in the proof of the estimate (6.11), one can show that, for any positive
number 8, for t > 0,

^(t)^«5||zE(t)-z°(0ll2'e + C e ( l+^ - 1 ) ( t + f2)fe(ro). (7.17)

Arguing now as in the proof of the estimate (6.14), we obtain, for any positive
number S, for t > 0,

n «5-1)(l+f2)/c(r0). (7.18)

Finally, using Lemma 2.3 and the estimate (6.3), we have, for any positive number
6, for t > 0,

fif (t) ^ 5 || Z«(t) - Z°(t) IIJ-. + CC( 1+ 5 " ̂ t2 || » ||^,(0.1» x H (̂O.l»

Choosing 8 sufficiently small, we at once derive from the inequalities (6.20),
(7.16)-(7.19), the following estimate for t^O:

P
s21| u*(s) - vt(s) II2,, ds + t21| ue(t) - v(t) \\2

HliQ) ^ C£k(r0)e
k('o». (7.20)

Jo

8. Comparison of equilibrium points of the problems (P), and (P)o

Since we are interested at the beginning of this section only in local results, it is not
necessary to assume that the condition (2.2) holds. We recall that A'1 e,
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(respectively AQ1 e £?(£%,, T^,)) is the operator defined for k e 3ffz by

A:lhE = u° if and only if aE (u\ w) = (hs, w)He V w e ̂  (8.1),,

(respectively, for h0 e L2((0, 1)) x L2((0,1)),

Ao% = v if and only if ao(v, £) = (fc0, £)H0 V £ e *S). (8.1 )0

Moreover, for 0 < £ g e0, we have (see Section 2),

\\A;xk\We^c\\K\\He (8.2),

and

max (|| J4Q ^oIIH2((O,I))XH2((O,I))' II^o"1^llir0) ^ C||h0IIL
2((O.D)XL2((O,I))- (8-2)O

We need the following auxiliary result.

LEMMA 8.1. For 0 ̂  e ̂  e0, we Ziare t/ie following estimate, for any he e J%,
hoeL2((0, l))xL2((0,l)),

^ C[ || k - h0 \\Hc + e*( || k WE. + II ^0 Ik)]- (8.3)

Proof. Let i / = A^k and y = A^ho- As in Section 6, we can write:

a€(u
s -v,u*-v) = (k - ho, «£ - »)*. + 5i(«£, ») + B£

2(u£, p), (8.4)

where 52(M£, V) is given by (6.2c) and

Bl(u\ v) = (k, v - Icv)H2eM + (h0, u
c - MEu%2tM

1 2 f

\ vj) dXl dx2. (8.5)

Arguing as in Section 6 and using the estimates (2.4)£, we obtain, for <5>0 small
enough,

+ Ce(l + d-'K || h0 \\
2

Hc + || £, \\HzeM || /J£ ||Hi + s* || /Jo | | f lJ | ,̂ \\Hu J ,

which implies that

+ Ce[ || /Jo \\%e + II ^o ll«2eM IIK WE. + ̂  II k \\B, \\ k I I H 2 £ J . (8.6)

From the inequalities (8.6) and (2.4)£, we deduce in particular Lemma 8.1. •

We assume now that v0 e %, is a hyperbolic equilibrium point of the problem (P)o

or (P)o. Since the differential equation defines a gradient system, this is equivalent
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to: v0 e t~0n(H2((0,1)) x H2((0, 1))) is a solution of the equation

Fo(») = i> + ^o-1(/(i;) + 6o) = 0 (8.7)O

and the operator I + A^Dfiv^e J£(i/~0;i
/~0) is an isomorphism of T^. We set

r0 = ll^ollH^fO.Dtxff'HO,!))-
We want to show that there exist positive constants rt and cx such that, for

0 < e ̂  6t, the equation
1 G£) = 0 (8.7).

has a unique solution u in ^/
6nBHi(e)(t;o; ^I) , where BHi^(v0; rt) denotes the closed

ball of centre v0 and radius rx in Hl(Q). To this end, as in [13] or in [29], we apply
a particular form of the contraction mapping theorem (see [8]). For this reason, we
are going to estimate Fe(IEv0) and to show that DFe(IEv0) e SC (%; ~Vt) is an isomor-
phism on Yt.

We set SE = \\Fc(Icv0)\\Hi{Q). Applying Lemma 8.1 and using the estimate (3.3c) as
well as the hypothesis (2.1), we obtain, for 0 < e ̂  e0,

) + C\\f(Iev0)- f(vo)\\He

or

S.£C{ro)e*, (8.8)

where C(r0) is a positive constant depending only on r0.
We now show that DF£(Iev0) is invertible on Vt and obtain an estimate of the

quantity \\(DFt(ItvQ))~i
 \\^^C^B). We can write

DFe(Iev0)w = w + hAo'DfivoWeW

+ {A;lDf(Itv0)w - / £ ^o 1 D/K)M £ w). (8.9)

Applying Lemma 8.1 again and using the estimate (3.3c) as well as the hypothesis
(2.1), we have, for 0 < e f£ e0,

^ C[_EH\\Df(Icvo)w\\He+\\Df(vo)Mew\\HJ+\\Df{Iev0)(W-McW)\\Ht

+ || (Df(Isv0) - Df(vo))Mew \\Ht + Cei || Df(vo)Mew | |HJ ,

which implies that

|| A;'Df(Iev0)w - leAvlDf(vo)Mcw ||flJ(e) ^ C(ro)£* || w ||Hi(fl). (8.10)

It remains to show that / + IeAo1Df(vo)Ml. is an isomorphism from f^ onto %. At
first, we remark that, for any vmi^,

(I + McIcAo
lDf{v0))v = (I + AoHDf(vo)))v + ((M,/,-I)A^{Df{vo)))v. (8.11)

Since, thanks to Remark 3.2,

(8.12)
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we deduce from the equality (8.11) that I + MEI£AolDf(vo) is an isomorphism of
i^,, and there exists a positive constant Ko, independent of e, such that, for 0 < e ̂  e0,

||(/ + MJeA^DfivoT1 \\^o;ro) ^ Ko. (8.13)

Now let UE be an element of f^. We want to show that there exists a unique element
wE in "Vz such that

[/£ = w£ + /^o-1/)/(t;o)M£wE. (8.14)

We note that (8.14) is equivalent to the system

(i) MeUt = MEw£ + McIEAv
(8.15)

(ii) (/ - M.)Ut = (I- Me)w£ + (I- MJI^o'Df^M

Since / + MeIEA^Df(v0) is an isomorphism of Yo, there exists a unique vx in i^
such that

)»i (8-16)

and, by (8.13),

We set

w = U — I A~1Df(v )v (8.18)

From (8.16) and (8.18), we derive that

MEw£ = MeUe- M,J,ylo-1D/(»o)»i = »i, (8-19)

which implies, by (8.18),

UE = wE + IEAQ i Df(vo)Mewt. (8.20)

From (8.17) and (8.18), we at once infer that

II w II i < d\ + K C(r )) II U II i (8 21^

In a similar way. one shows that, if UE = 0, then wE = 0. We thus have shown that
DFE(IEv0) is an isomorphism of % and that, for 0 < e ̂  e0,

i i (0F,( j ,» o ) r l i i*(n;o^*i> <8-22)
where Kj is a positive constant independent of e.

Using the hypothesis (2.1), one directly shows that, for 0 < e ^ £0, for 0 < 6 £j 90,

sup \\(DFE(IEV0)-DFC(U))W\\HUQ)^<

or

le(9)= sup
u e B-re{I,,v0; 6)

+ 60), (8.23)

where K2 is a positive constant independent of e.
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The contraction mapping is as given in [8, Theorem 3.1] asserts the following: if
2K1/E(2K1<5£) < 1, then, for any 6 ̂  2KY5C such that KJ^O) < 1, the equation (8.7)£

has a unique solution u% in BHi(Q){Iev0; 0)nf^. Moreover,

\\(DFM)rl\\^c;^)^2Kl (8.24)

and

I I « O - / « » O I I H J ( Q , ^ K 1 5 , . (8.25)

From this assertion as well as from the estimates (8.8), (8.22) and (8.23), we deduce
the following result:

THEOREM 8.2. Assume that u0 e ^ is a hyperbolic equilibrium point o/(P)0. Then there
exist positive constants e^ and rx such that, for 0 < £ ^ e 1 , the equation (8.7)8 has a
unique solution ue

0 in BHi(Q)(v0; rjn'f]. Moreover, we have

and

K-"olk(Q,^C£* (8.27)

From Theorem 8.2, we easily deduce the following global result. Let Eo (respectively
Ee) denote the set of equilibrium points of (P)o (respectively (P)c).

COROLLARY 8.3. Assume that the conditions (2.1) and (2.2) hold and that all of the
equilibrium points of (P)o are hyperbolic. Then the set Eo is finite and contains say,
No elements, Vj, 1 ̂ j^N0. Moreover, there exist positive constants e* and r* such
that, for 0<s^£$, the set Ee contains exactly N0 elements u), \^j^No, and,
furthermore, the following inequalities are satisfied:

II «5-i>, 11*1(0, ^ C e * g r S . (8.28)

In addition, each element u) is hyperbolic.

Proof. The fact that Eo is finite is obvious. Applying Theorem 8.2 at each hyperbolic
equilibrium point Vj yields that there exist positive constants s* and rj such that,
for 0 < e ^ £ * , E£r\BHi(Q)(v0; r$) contains a unique equilibrium point u) and (8.28)
holds. It remains to show that there exists a positive constant e* such that, for
0 < £ ^ e J , Ee contains exactly the iVo equilibria u), l^j^No. Assume that there
exist two sequences en and uEn such that

lim£n = 0, ueneEEn\{JBHlm(v},rt). (8.29)

Since uCn belongs to the attractor sdtn, we at once show, by using the uppersemicontin-
uity of the attractors $4tn and the compactness of J/0, that there exists a subsequence
u£n converging in H\n (Q) to an element v0 e stf0. Using this fact and Lemma 8.1, we
conclude that v0 belongs to Eo, which contradicts the hypothesis (8.29). •

9. Comparison of eigenvalues

Before comparing the eigenvalues of Ao + Df(v0) with those of AE + Df(ue
0) for

WVO — UO\\HUQ)
 s m aU enough, we present a more general version of comparison of

eigenvalues which is an extension of the results of Hale and Raugel [14], For related
results, see also [20, 27].
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A semi-abstract version
We keep the above spaces i^, J%, ~f~0, H\(Q), He,..., and we introduce linear
operators Bo and Be, 0<e^so, which satisfy

Bo e J?(r0; ro)nJ?(L2((0, 1)) x L2((0,1)); (H2((0, 1)) x H2((0, l ) ) )nfo)

(in particular, Bo: Vo -* f^ is compact) as well as the following inequalities for positive
constants Cu a, independent of E:

and, for any he e3%,h0e L2((0,1)) x L2((0,1)),

IIBX - Boh0 \\Biim ^ d [ || K - h0 \\Hc + e'( || K I k + II ho II*.)]. (9-3)

In all of the results below, we constantly use the equivalence of the norms
IHki© and ||-||Ke as stated in (2.4)£, without recalling it. For any operator B, we
denote by a(B) the spectrum of B. In the following, a closed curve in C denotes a
homeomorphic image of a circle. Also, for any rj > 0 and X e C, let B(X, rj) be the disk
of radius r\ and centre X. Since Bo is compact, for any r\ > 0, there is an integer
P = P(>?) a n d distinct complex numbers Xt,... ,XP such that

ff,(Bo) = <r(B0)n(C\B(0,»/)) = {A^ . . . , * , } . (9.4)

Moreover, there exist a compact set K with 0 e K and a positive constant C2 such
that <x(B0)n(£^K) = 0 and

sup. UXI-B0)~
1\\#(Ho.Ho)+ sup | | ( l / -Bo)^ lk(^ 0 ^ o ) ^C 2 . (9.5)

C C
We need the following lemma (see [14, Lemmas 3.1 and 3.Ibis]).

LEMMA 9.1. There exist positive constants C and e, 0 < e ^ £0, such that, for 0 < e ^ e,
we have

|| Be-IcB0Me H*

II Bo — IEB0Me \\&ero;-ro) + |l

and, onU = €\K,

sup |(A/ —7eB0/
X e V

sup || (A/ - B . i
Ael7

sug II (A/ - J .B 0 J t

sup ||(A/-B£)-1-(A/-/£j
/lei)

sup ||(XI-Bo)"1 - ( A / -
X e V

sup ||(A/ — Bo)"1 —(XI —
Xeu

Arguing as in the proof of Lemma 9.1

•(•r-t-rj ̂  C(s" + £*), (9.6)

| Bo - MJeB0 \\#(ro;ro) ^ Ce\ (9.7)

^)" 1 | |^ (^ ; n) = C, (9-8)

rl\\<e(-re;rs)^C, (9.9)

^)"1H^(^-0;-r0)^C', (9.10)

BoMJ""1 ||^(^e;^) ^ Q ^ + £*), (9.11)

/ B M ) - 1 II < TP* (9 121

MeIeB0)~
1 \<e(*-a;v0) = Cfi*, (9.13)

, one can show the following local result:
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LEMMA 9.1'. For any compact set K in the resolvent set of Bo with 0 <£ K, there are
positive constants CK, EK such that, for 0<e^sK, the estimates (9.8)—(9.13) (respect-
ively the estimate (9.16) below) hold with supA6 c replaced by supXeKand C (respectively
C3) replaced by CK.

The proof of Lemma 9.1 uses techniques and ideas contained in Section 8. In the
sequel, we often use the facts that It e i f (TT0; T ^ m ^ ) and ME e if (T^; Ho).

Proof of Lemma 9.1. The estimate (9.6) is a direct consequence of (9.3) and the
estimates (3.3c) and (3.6). Indeed, for any w e i ^ ,

||(BE - IeB0Mc)w \\Hl{Q) £ || (B, - B 0 M > ||Hl(fl) + || (/ - / .JBQM,w ||Hj(e)

Likewise, one shows the estimates (9.7) by using (3.3c), (3.6) and the Remarks
3.1 and 3.2.

To prove the estimate (9.8), we at first need to show that (XI — MJeB0) is an
isomorphism of f̂ . As in Section 8, we write

11 - MJeB0 = (U - B0)(I + (XI - BoJ-^Bo - M,/,B0)). (9.14)

Thanks to Remark 3.2, to (9.5) and (9.7), we have

sup ||(XI - Bo)"'(Bo - MJEB0

^ C21|Bo - MJeB0IU^o) ^ C2CeK (9.15)

Note that the inequality (9.15) still holds with f^ replaced by Ho. From (9.14) and
(9.15), we deduce at once that there exist positive constants C3 and st, 0 < st ^ £0,
such that, for 0 < e ̂  e1,

sup ||(2/ - MJ&B0)-
1\\^Ho;Ho) + sup

(9.16)

To prove that XI — IEB0Me is an isomorphism of T^, we argue as in the proof of
(8.22). Let Ue be any element of %.. By (9.16), there exists a unique element ^ e f o
such that

(9.17)

and

IK ||^o ^ C31|M, 17,1^ ^ C3C|| l7,||Hi(Q). (9.18)

If we set

wE = X-1Ue + X-iIeBov1 (9.19)

and notice that Mewc = X~iMcUe + X~1MEI!:Bovl = vx, then [7£ = Aws —/sB0M£we.
Moreover, by (9.18), (9.19) and the properties of Ic and Bo,
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S lA^Kl + C3C)\\ UJHHQ) ^ C4\\ U£\\HUQ).

Likewise, since Me e i f (f0; Ho), using (9.16), we can still write the decomposition
(9.17) when Ue is replaced by UQ e f0. This implies that, for Uo e f0,

{XI - /£B0ME)-1[/0 = (A-1 + X~1IEB0{XI - McIeB0r
lMc)r-0. (9.19')

The proof of (9.10) is very similar to the proof of (9.16).
To prove (9.9), we first observe that

U-Bt = {XI-IEB0ME){I-{XI-ItB0Mt)~\Bt-I.B0M.)) = l-»t, (9.20)

where 081 e 3?WC; iQ. By (9.6) and (9.8), we see that there exists a positive number
e2, 0 < £ 2 ^ £ i , such that, for 0 < e ^ e 2 , ||@)z\<e(-r^i) = 2' which implies, by (9.8) and
(9.20), that (9.9) holds.

To prove (9.11), we note that

{XI - Be)~
l ~ {XI - I t B 0 M e ) - 1 = {XI- B.r'iB,-IeB0Mt){XI - l . B ^ M . T 1

and use the estimates (9.6), (9.8) and (9.9).
Likewise, one shows the estimates (9.12) and (9.13). •

We remark that the operator IeB0Me is compact and that the equation

{XI - IEB0ME)u = 0, ue-TE (respectively e i^) (9.21a)

is equivalent to the following:

either X = 0,
(9.21b)

or A # 0 , u = X~1IEBov, wiih{XI-MEIEBo)v = 0, ve-f0.

From (9.21), (9.4) and Lemmas 9.1 and 9.1', we deduce at once that, for any r\ > 0,
for any v > 0, there exists a positive number £0(v, rj) such that, for 0 < e ^ £0(v, rf), we
have

))c (J

o(B,)n(C\B(0,ti))<= \J B(XJ,

where Xj, 1 ^j^p{rj) are given in (9.4). We notice that, due to (9.21), the spectrum
of IeB0Me e <£ (-fl; iQ coincides with the spectrum of IEB0ME e <£ ("*£; i^) except
maybe for the value X = 0.

If a1 = ai{B0). with 0 £ (T^BQ), is any spectral set of Bo, then it induces continuous
projections Po = P^a^, Qo = 20(ffi) = I — Po on Vo for which the subspaces Pot~o

and Qo'f'o are invariant under Bo and o{B0\ P0^o) = <^i(B0). If y is a closed curve in
C which encloses G^BQ) and no other points of <J{B0) (in particular, y does not
enclose 0), then, for any v e i^,, the projection Po is given by

PovsPo(<rl)v=— {XI-Boy'vdX. (9.23)
liti I,,
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By Lemma 9.1', we can choose ey > 0, Cy > 0 so that, for 0 < £ ^ ey, for A e y,

sup (|| (XI - M./.B,,)"1 | | ^ o ; H o ) , II (AJ - MJ.Bo)-1 | | ^ W o ) ,

B , ) - 1 ! ^ ^ . ^ . ) ) ^ ^ . (9.24)

Thus, we can define the projection operators 3P% on T^ or on f0 and P£ on ~tl by

i, y) = ^ J (XI - hBoMX1 dX (9.25)

and

P* = J > i , y) = ^ I (^ - -Be)"1 dX. (9.26)

We remark that ^I'V, and SP%i^ are invariant under IEB0ME and that P^ is
invariant under Be.

LEMMA 9.2. With the above notation and hypotheses, we have, for 0 < £ ^ ey,

' X-1I£Bo(XI-MJeBoy
1MedX (9.27)

<n*"« = ^o*S- (9-28)

Proof. Since y does not enclose 0, the equality (9.27) is a direct consequence of (9.19)
and (9.19'), which is well denned since (XI — MJeB0) is an isomorphism of f^ and
of Ho for 0 < £ g £ r From (9.27) and the fact that 3?% is a projection, we deduce that

We also need the following auxiliary result:

LEMMA 9.3. Fix n>0 and suppose that Xoe<T(Bo)r\(£\B(0,r])) has multiplicity do.
Choose v > 0 so that B(0, n)nB(X0, 2v) = 0, o(B0)nB(X0, 2v) = {/0}- Then there exist
positive constants EX = Et(v, n) and ct = ct(v, n) such that, for 0 < £ ̂  i:x, the projection
&% given by (9.25) is well defined, where y is any closed curve in B(/.o, v)\B(A0, 3v/4)
enclosing Xo. Moreover, dim 0>e

oi
/i) = do = dim ^S"

Proof. By Lemma 9.1', there exist positive constants £2 = £2(v>'?) a n d c2 = c2(v,
such that, for 0 < £ ̂  £2, for any A e B(X0, v)\B(X0, 3v/4), we have

sup (||(A/ - Af./.B,,)"

||(A/ - hBoMX1 \\^^e), \\(XI - B.)-1 ||*(f.:y.)) ^ c2(v, f,), (9.30)

|| (XI - BE)1 ~ (A/ - / .B 0 M,)- J | | ^ ( ^ o ^ c2(v, »,)(e" + e*), (9.31)

and

sup (||(A/ - Bo)- ' - (XI - ItB0MEy
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|| (U - Bo)"1 - (A/ - MJ^o)-1 l l ^ w ) ^ c2(v, # * . (9.32)

Now let y be a closed curve in B(X0, v)\B(k0, 3v/4) enclosing l0 . The projection Po

given in (9.23) is well denned. Moreover, by (9.30), the projection 0% given in (9.25)
also is well defined. The estimate (9.29) directly follows from (9.32). It now remains
to show that dim 0>E

oi
/~o = d0. We set Qo = I - Po, g 0 = / - 0%- Following Kato [21],

we define 0t\> = {Pfl — 0%)2 and observe that there exists a positive constant £3,
0 < e3 ^ £2, such that, for 0 < £ ^ e3, the operator (/ — 01%)~i is a well-defined operator
which commutes with Po and 0*%. If we define the operators

*o = U$ (I- m>) ( o) o,
(9.33)n1

then FSC/S=C^F^ = /, n = (^S)"1, Uo = (Y%)-1 and l/S^S = Po^o and
0>oVc

o=V£
oPo. Therefore, the operators 0*% and PO are conjugate:

Po = U*o0
>£

o(U
e
o)~

X. As a consequence, the subspaces 0>£
ofo and Po^o a r e isomorphic

and have the same dimension d0.

REMARK 9.4. In the sequel, we need to compare U% and V8
0 with the identity. In the

proof of Lemma 9.3, we can choose £ 3 >0 such that \\(I— ̂ o)~1\\^-roi-r0)^2 for
0 < £ S £3 and, by (9.29),

£Ce. (9.34)

Note that (/ — 0t%)~^ = / — 50, where SQ is a solution of the equation

S S = i ( ( / - ( / - « S ) ~ 1 ) + (S'o)2)- (9-35)

Using the contraction mapping theorem, one shows that one can choose £3 > 0 small
enough to ensure that, for 0 < £ ^ £ 3 , (9.35) has a unique solution So in the closed
ball {Se^C^;To) : | |S | | . s , ( r o . ^ o ) ^} . Moreover, thanks to (9.34) and the definition
of SQ, we have || So \\^-ro^-o) S Cs, which implies that

|| (/ - <%,)-* -1 Wwerj ^ Ce. (9.36)

Now we can write

\\u'0-
 1

which implies, by (9.29) and (9.36), that

Likewise, one shows that

Arguing exactly as in the proof of Lemma 9.3, we obtain the following result:

THEOREM 9.5. Assume the hypotheses of Lemma 9.3 are satisfied. Then one can choose

https://doi.org/10.1017/S0308210500028043 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500028043


A reaction-diffusion equation 317

the constants s^^ = e^v, n) and cl = c^v, rj) in Lemma 9.3 such that, for 0 < e ̂  el5 the
projection PE given by (9.26) is well defined, where y is any closed curve in
B(X0, v)\B(X0, 3v/4) enclosing Xo. Moreover, dim P £ ^ = dim ^o ̂  = <*o an<*

II Pt ~ &o \\*(^0) S ctf + e*). (9.38)
REMARK 9.6. Exactly as in the proof of Lemma 9.3, we introduce Qe = I — Pe and
sMe = {2P% — Pe)

2. We observe that we can choose the positive number e3 in the proof
of Lemma 9.3 so that (/ —^?c)~* is a well-defined operator which commutes with
0% and P£. Moreover, we have

SUP ( || / - 0tty' - I I U n ; n ) , || (/ - «.)-* - / \\^e,r-J S C(6 + £2a).

If we define the operators

then K£[/e=[/£K£ = /, K^L/, : 1 , l / £ =F £ - 1 and t/eP£ = ̂ [ / £ , PEV£ = V£0>£
o,

0>% = UtPtU~l. Moreover, we have the following estimates:

j S C ^ + e"), (9.41 )(i)

^ ^ ) ^ C(e* + £a)- (9.41 )(ii)

COROLLARY 9.7. If the hypotheses of Lemma 9.3 are satisfied, then, for 0 < e ^ e ! ,
B£ e if ('Kl'K) has d0 eigenvalues X), l^j^d0, counted with their multiplicities, in
B(Xo, v). / / % = %r0 and if @e e i f ( ^ ; ^ ) is giren ^ ^ £ = U'o U.B.iU.rW'o)-1,
where UQ and Ue are given in (9.33) and (9.40), then the eigenvalues of B£ in B(X0, v)
coincide with the eigenvalues of the operator <Mt. Moreover, we have

In particular, the eigenvalues X) converge to Xo as e -> 0.

Proof We set ^o = (U£
o)~

1(Poi
/
o) = (Uc

o)~
1SCo. Since Po and 0>% are conjugate and

Po% = %, we have ^e
o^

t
o = (UE

or
1PoU

t
o^

t
o = (Uc

o)-
1% = ̂ e

o, which implies that
%\ c ^E

o-^,. Since dim 3C% = d0 = dim 0>*o i^, we conclude that 2C% = 0>\ YQ = 0*^
and ^ o c / ^ o n ^ - Likewise, we set Xt = (Ut)~

1^l
0. Since FE and &% are conjugate

and ^of
£

o = %%, we also have P£^£ = 3CZ, which implies that SCZ = P^.
Note that BE (respectively (/£B0M£)) can be considered as an element of ^{3CE; 3CE)

(respectively Z£(9C\\ 3CVi)- Note also that UE (respectively UQ) is an isomorphism from
3Ct onto SC% (respectively %% onto %). Thus, we can define the mapping
^ £ = UlUcBt{Uty\Uiyl which belongs to &(%;%). Since B£ and ̂ £ are conju-
gate, they have the same eigenvalues. Likewise, we can define the mapping
U'oil.BoMJiU'o)'1 e <£{%; %). Moreover, we can write

II fid D II
^ f P — . O n <Pl<T •<¥ 1

IF £ \J 11 m& \vC Q)«7 fyf

| U'0(U,Bt(Ut)-
1 -
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Since, by (9.37), || tfj|l*<^o> ̂  C a n d IK^o)"1 U ^ o ) ^C> for ° <£ ^ £i> w e a lso

have UUiy^W^r^r^C, || ^ K H ^ ^ . ^ ^ C . From these inequalities and (9.43),
we derive that

+ || U^BoM.Wo)'1 - B o l l w w (9-44)

Since UAiU.y1 -IeB0M, = ([/,-I)B£(Uey
l + W J " 1 ~I) + B.-IeB0Me, we

obtain, by using the estimates (9.41) and (9.6), that, for 0 < £ g £l5

1 U.BMV1- I.B0M, Urjr.) ^ Of + «*)• (9-45)

Likewise, by using (9.37) and (9.7), we show that

|| U'0{I.B0Mt)(U'o)~l- -Boll^o;^) S CEK (9.46)

Then (9.42) is a direct consequence of (9.44), (9.45) and (9.46). Since Bo and J £ are
two linear mappings from % into % satisfying (9.42), the d0 eigenvalues X) of J £

converge to 20 as 6 -> 0. D

REMARK 9.8. If O0 = (f01,..., <p0do) is a basis of f0, then <I>8 = (q>el,..., q>Edo), where
<pEj = (UXl(U£or1(Poj, is a basis of f£. Arguing as in the proof of Corollary 9.7, we
obtain \\<pcj - <pOj | | H j ( Q ) ^ C{E" + c±).

COROLLARY 9.9. Assume that the conditions of Lemma 9.3 are satisfied, but now that
do=l; that is, Xo is a simple eigenvalue of Bo. Then, for 0 < a ^ £ 1 ; Be has one and
only one eigenvalue Ac in B(X0, v). This eigenvalue is simple and satisfies the inequality

|A£-A0|^C(£* + £*). (9.47)

We also can choose an eigenvector (ptefl {respectively <p0e f^) corresponding to Xe

(respectively Xo) such that ||<pc ||y- = || <p0\\yo = 1 and

j (9.48)

From Lemmas 9.1, 9.1' and Corollary 9.9, we at once deduce the following result:

COROLLARY 9.10. If the operator Bo has only simple eigenvalues, then, for any integer
N > 0, there is a positive number el such that, for 0 < £ g S1, the operator Bc has the
first N eigenvalues simple with the ordering being according to nonincreasing modulus.

Proof of Corollary 9.9. The fact that Bc has only one eigenvalue Xe in B(A0,v) and
that Xe is simple and satisfies (9.47) is a direct consequence of Corollary 9.7. Let
<p0 e f~0 be an eigenfunction associated with Xo such that ||<p0\\-ro = i- If we set

-ro

<Pe = V^T> (9-49)
II VA-r,

then, by Theorem 9.5 and Corollary 9.7, we have

II fo ~ % I k + II ft - fo Ik ̂  c(£* + e*). (9.50)

On the other hand, arguing as in Sections 5 and 6 and using also (9.2), we can show
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that

Now (9.48) is a straightforward consequence of (9.49), (9.50) and (9.51). •

REMARK 9.11. If we suppose that a parameter fi belongs to a compact set of a metric
space and the operators BE = BE(fi) depend continuously upon \i for each e > 0 and
the inequalities (9.2), (9.3) hold uniformly in fi, then all of the estimates and results
obtained above are valid uniformly in fi.

REMARK 9.12. Let Y be a Banach space and let fioe Y. We introduce the operator
Bo = B0(n0). If r0 is a positive number, we denote the ball in Y of centre fi0 and
radius r0 by BY{fi0, r0). For each e > 0 , 0 < e ^ e o , we introduce a subset MC of
£y(/*o> ro) s u c n that fi0 e ME and, for \ic e ME, we define an operator Be(nE). We
assume that the operators B0(fi0) and Be{fie) satisfy the hypotheses (9.1), (9.2) and
that there exist positive constants cu a, al5 such that, for 0 < e ̂  £0,

ll-"e(/O II Jif(•*%;•]>'",) + II °o(^o)II.Sf(L2((O,l))xL2((O,l));i<^r,(H2((O,l))xff2((O,l)))) = Cl5 (9.2 )

|| Be(nA - Boho ||HJ(Q) ScMK- h0 \\HB + ( II nt - [to II? + £a)( II ^ II*. + IIK b . ) ]

(9.3')

for any /i£ e Jfe, /J0 e L2((0,1)) x L2((0,1)).
Then, obviously, all of the estimates and results above are still valid if we replace

the operators Bo, Be by BQ^Q), Bc(fie), if we replace the term (B* + e*) by
(e" + e* + || nc — Ho || y1) in the estimates, if we replace the projection Pe by Petlc and if
we replace the sentence "there exists a positive number et,..." by the following one:
"there exist two positive numbers Si and ex such that, for 0 < e ^ £ ! , for

Applications
We now apply the above results to our problems (P)o and (P)e.

PROPOSITION 9.13. For any v0 e f^, the spectrum a(A0 + Df(v0)) ofA0 + Df(v0) consists
only of simple real eigenvalues.

Proof. Since Ao + Df(v0) is a selfadjoint operator with compact resolvent, the spec-
trum cr(A0 + Df(v0)) consists only of real eigenvalues. Let us show that they are all
simple. We set v0 = (v0l, v02). Let l 0 be an eigenvalue of Ao + Df(v0). For i = 1, 2, the
space of the solutions of the equation

- - (giVucX, + DfMvt = V,-, v,{ 1) = 0,
o i

is of dimension 1, given say, by Ripj, where (pt e H2((0,1)) and <pj + pfx. # 0. We note
that Xo is an eigenvalue of Ao + Df(v0) if and only if the system

^ 2(0) = 0, (9.52)

has a solution (/il5 /i2) ¥= (0,0). Since g,(0) ^ 0 and <pf + <pfx. # 0, the space of solutions
of (9.52) is at most of dimension 1. Since Ao is an eigenvalue, the dimension is 1. •
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We are going to use the following lemma, the proof of which is very similar to
that of [14, Lemma 4.5].

LEMMA 9.14. For any positive constant Ro, there exists a positive constant k0 = ko(Ro)
such that, for 0 < e ̂  e0, we have

(i) For any u0 e BHl{Q)(0; Ro), u e Ve,

| |D/(«o)tt||fl.^MKo)ll«lk; (9.53)

(ii) for any v0 e flHi((O.i»x*i«o.i»(0; Ro), v e #'((0,1)) x H\(0, 1)),

II Df(vo)v \\Ho ^ ko(Ro) || v ||fli«0,i)> x H'((O,I)); (9-54)

(iii) for any u0 e BHi(Q)(0; R0), v0 e BHi((0A))XHi((0A))(0; R0), u e H\Q),

|| (Df(u0) - Df(vo))u \\Hs ^ ko(Ro) || u0 - v0 \\HHQ) II u ||Hi(fi). (9.55)

From the estimates (2.4)£, (2.4)O, (9.53) and (9.54), we deduce that there exist
positive constants £0, (i0, fi such that, for 0 < e ^ min (e0, £0), u0 e i^nBffi(ffl(0; Ro),
v0 e ^onBHi((O]1))xHi((Oa))(0; Ro), ueV^vei^, we have

ae{u, u) + (Df(uo)u, u)Ht + po(u, u)Ht ^ /S|| u \\2
Hi(Q),

ao(v, v) + (Df(vo)v, v)Ho + po{v, v)Ho ^P\\vWi'ao.inxH'ao.i))-

For u0 e ^ n B H i ( e ) ( 0 ; RO), v0eir
0nBHiWA))xHi({0^)(0; RO), we let

C0(v0) = A0 + Df(v0) + fiol, CE(u0) = Ae + Df(u0) + pol.

PROPOSITION 9.15. There is a positive constant Ci^c^RQ) such that, for

o,eo) and any (Q

,hoe L2((0,1)) x Z?((0,1)), we have:

r.) + II CQ^O)" 1 ll^jrojy-o) ^ clt (9.57)

\\2o,i»xH2((o,im = ci-> (9-58)

I k + l l * o II*.)]- (9-59)
Proof. From the estimates (9.56), we infer, by using the Lax-Milgram Theorem, that
the operators C^Uo)^1 and C^VQ)'1 are well denned and satisfy (9.57). The property
(9.58) is a direct consequence of (9.57), (9.54) and (2.7).

Setting u£ = CE{u0)~
lhE, v = CQ^Q)" 1 h0 and arguing as in the proof of Lemma 8.1,

we can write

aE(u£ -v,u*-v) + po(u
£ -v,u£- v)Hc + (Df(uo)(u

e - v), us - v)He

= -((Df(u0) - Df(vo))v, u* - v)Ht + Bl*(u\ v) + B2M, v), (9.60)

where Bj(uc, v) is given by (6.2c) and

Bl*(u\ v) = {hE - pou
e - Df(uo)u

e, v - IEv)H2cM

+ (ho-PoV- Df(vo)v, ue - MEue)H2eM

- Df(vOj)Vj)(vj - ucj) dxx dx2
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+ \ t [ Sj(h£j - /J0«J" Df(uOj)u°)(vj(0) - vj) dxx dx2. (9.61)
2 J = I hi

Arguing as in Section 6 and in the proof of Lemma 8.1, and using Lemma 9.14 as
well as the estimates (9.57) and (9.58) and the ellipticity condition (9.56), we derive
from (9.60) the estimate (9.59). •

Now let i;0 e f^. By Proposition 9.13, the spectrum o{A0 + Df(v0)) of Ao + Df(v0)
consists of a denumerable sequence of simple eigenvalues satisfying

X2(v0) <...< Xn(v0)-> + oo,

where B^VQ) is a positive constant depending only on v0.
Let u0 e f^. The linear operator At + Df(u0) is selfadjoint with compact resolvent.

Therefore its spectrum cr(A£ + Df(uQ)) is composed only of real eigenvalues Xje(u0)
which satisfy:

By Proposition 9.15, the operators B0(fi0) = CQ^Q)" 1 and Be(fie) = CE(u0)~
l satisfy

the conditions (9.2'), (9.3') and we can apply the results of the first part of this
section and of Remark 9.12. We thus obtain the following theorem:

THEOREM 9.16. For any voef^, for any positive number n0 and any positive constant
d, there are positive numbers n(v0, n0, d), e(v0, n0, d) such that, for 0 < £ ^ e(v0, n0, S),
for u0 e BHi(Q)(v0, n(v0, n0, 6))n-Vt, the first n0 eigenvalues ljtZ{uo) of Ae + Df(u0) are
simple, contained in [ — B1(f0), oo) and satisfy

max \lj(v0)-lu(u0)\^c(v0)(i* +riiv^tio^))-£5, (9.62)

where c(v0) is a positive constant depending only on v0.

Using the upper semicontinuity of the attractors s/e, one deduces from
Theorem 9.16, as in [14], the following result:

THEOREM 9.17. There exists a positive number e* such that, for 0 < e ^ e*, ifu0 is an
equilibrium point of (P)£, then the null space of Ae + Df(u0) has dimension no more
than one.

Arguing as in [14, Section 4] , by using Theorem 9.17 and [14, Theorem 2.4], we
prove the following property:

THEOREM 9.18. The a-limit set of any orbit of (P)o is a single equilibrium point.
Furthermore, there exists a positive number e* such that, for 0 < e ̂  e*, the co-limit set
of any orbit of (P)e is a single equilibrium point.

REMARK 9.19. The same property holds for the damped wave equation on an
L-shaped domain (see [17]).

Another application of the first subsection, above, and Theorem 9.16 is the lower
semicontinuity of the attractors s/c. Assume now that all of the equilibrium points
of (P)o are hyperbolic. Then, by Corollary 8.3, Eo and E£, for 0 < e ̂  e*, are finite
sets of JV0 elements v,, 1 ^ / ̂  No, and u\, 1 ^ / ̂  No, respectively and (8.28) holds.
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For e small enough, we can then apply Theorem 9.16 to vo = vt and uo = u\. Below,
we set f, = uf.

We now introduce the local unstable sets W"oc0(uf) and W"OCE{uc,) of T0(t) and
Tc(t) around the points u° and u\, respectively. For 0 ^ £ ^ e0, if U\ is a neighbourhood
of u\ in T ,̂ then

= {ueU£
l:TE(-t)ueU£

l,t^O;T£(-t)u^uc in "T£ as t->oo}.

Using Theorem 9.16, one proves the following result (see [18] for the details). We
do not give the proof here because it is a little long and technical.

PROPOSITION 9.20. There exist positive constants e0 and p0 such that, for 0 ^ e ^ £0>
1 ^ / 52 No, there exists a neighbourhood U] of u] in V, such that W"OCI£(M;) is a
C°-submanifold off^, the ball ^^t{u\, p0) is contained in U] and

One can adapt the proofs of the lower semicontinuity property of [11, Theorems
2.5 and 2.8] and [28, Section 3] to obtain the following result (see also [18]).

THEOREM 9.21. If all of the equilibrium points o/(P)0 are hyperbolic, then the attractors
s/e are lower semicontinuous at e = 0; that is SHI(Q)(S#0, s/e)-*0 as e->0. Moreover,
there exist positive constants s0 and p, with 0 < p ^ \, such that, for 0 < e ̂  e0,

10. Some generalisations

More genera] L-shaped domains
With essentially no extra effort, it is possible to replace the functions eg,() in the
definition of the L-shaped domain in Section 2 by more general functions gt(-, e). In
fact, suppose g, e C3([0,1] x [0 ,1] ; [0, oo)), i = 1, 2, and

gi(xi,0) = 0, giO(xi) = ^(xi,0)>0,

gi(xi,e)>0 for x, e [0 ,1] , e e ( 0 , 1 ] .

We define the general L-shaped domain by

Ql = {(*!, x2) e IR2:0 < x2<gl(xu e), 0<xt< 1},

All of the results of Sections 2-9 remain valid provided that, in the definition of the
spaces "fl, 3%, He,...,v/e replace gj(x;) by gi{Xi, e)/s and that, in the definition of the
spaces i^,H0, as well as in the definition of the limit problems (P)o and (P)o, we
replace g,(x;) by g,o(xr).
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Different boundary conditions
As in [25, Lemma 2.5'], we keep the homogeneous Dirichlet boundary condition on
F* and take the homogeneous Neumann boundary condition on F2. The
variational problem (P) is the same but we need to replace the space Hre(6£)
by Hi

ri(Q£)={ueH1(Qe):u = O on F,1}. We now define the space V by
F = iffi(g1) x H\Q2) and also set

Using the conditions ^(1) = 0, and £i(0) = £2(0), one shows that (2.4)0 is valid for
any vef^. Arguing as in [25, Lemma 2.5bis], one proves that (2.4)E still holds for
any M £ ^ u f 0 . The problem (P)o does not change with i^ given as above. In the
problem (P)o, we replace the boundary condition v2(l, t) = 0 by the boundary con-
dition v2x2(l, t) = 0. With these modifications, all of the results of Sections 2-9 hold.

We also may replace the Dirichlet boundary conditions on FE by the homogeneous
Neumann boundary conditions. In this case, we replace —A by — A + a0J, where
a0 > 0 and we replace the dissipative condition (2.2) by

lira sup - ^ - ^ ^ a ^ a0- (2.2")
|si-»ao S

The variational problem (P) is now considered on the space Hl{Qe). The correspond-
ing space V is V=H1(Q1) x H\Q2) and

The inequalities (2.4)c and (2.4)0 obviously hold. In the problem (P)o, we replace
the boundary conditions 1^(1, t) = v2(\, t) = 0 by the boundary conditions
ViXl{l,t) = v2X2(l,t) = O. Once these changes are made, all of the results of
Sections 2-9 hold.

T-shaped domains
By means of an example, we indicate how to generalise the results of Sections 2-9
to thin T-shaped domains. The details as well as other generalisations are in [18].
For given functions g; € C2([0,1]; (0, oo)), i = 1, 2, 3, we define a T-shaped domain
as

Ql = {(*i, x2) e IR2:0 < x2 < Bg^xJ, 0<xl< 1},

Q2 = {(jq, x2) e R2:0 < jq < eg2(x2), 0 < x2 < 1},

Ql = P i , x 2 ) € R 2 : - l < x , < eg2(x2), 0<x2

We set F£ = FE u T2 u Fj, where F^ = dQ\ r\{xl= — 1} and we consider the problem
(P) with, for instance, homogeneous Dirichlet boundary conditions on F£ and homo-
geneous Neumann boundary conditions on dQE\TE.

We transform coordinates to the canonical domain Q = Q1 x Q2 x Q3, where Q1 =
(0,1) x (0,1). The unknown u = (ut, u2, u3) consists of three functions satisfying two
junction conditions similar to the one which defined Vz. The inner product (-,-)« is
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defined as follows

J=ILJQ'\4

The space ya is now given by

ro= {Z = (ZuZ2, Z3)eHH(0,1)) x tf'(((),1)) xH'dO, 1)):

^ (1 ) = &(1) = £3(1) = 0, ^ (0 ) = £2(0) = £

The problem (P)o is stated as: Find v = (vl, v2, v3) e f^ such that

««." - (giViXl)Xi = - / («,) - Gi0 in (0,1), i = 1, 2, 3,
If;

«,(1,0 = 0, i = l , 2 , 3 , ( P ) o

gl(0)v1Xl(Q, t) + g2(0)v2x2(0, 0 + g3(0)»3xi(0, 0 = 0.

With these modifications, all of the results of Sections 2-9 hold.

From 2-D to 3-D
For given positive constants a, b, c, let Q12 = (0, a) x (0, b), O23 = (0, b) x (0, c). For
e e (0,1] and given functions gl2 e C2(Q12; (0, oo)), g23 e C2(Q23; (0, oo)), we define a
three-dimensional "L-shaped" domain Qe by

Ql2 = P i , %2, x3) e K3:0 < x 3 <egl2(Xlt x2), (x1; x2) e Q12},

6 f = {(*i, X2, x3)eR3:0<x1< eg23(x2, x3), (x2, x3) e Q23}.

The set Je = Ql2 n Q23 is the junction set and is the closure of the open set

Je = {{xx, x2, x3):0 < xt < £g23(x2, x3), 0 < x2 < b, 0 < x3 < eg12(xux2)}.

We set

r£ = r!2 u rf, r£
12 = dQl2 ntf^a}, r23 = BQ23 n{x3 = c}.

We suppose that / still satisfies the conditions (2.1), (2.2), but now we suppose that
O ^ y ^ l .

We consider the parabolic problem (P) on Qe. To discuss the problems (P) or (P),
we transform coordinates to the canonical domain

Q EE g1 2 x g23 = ((0, a) x (0, b) x (0,1)) x ((0, 1) x (0, b) x (0, c))

and we define the map q>e: Q
12 u Q23 -> Q8 as <pe | Q

lJ = (p[j, j = 1,2, where

q>l2:(xu x2, x3) e Ql2^{x1, x2, eg12(xu x2)x3) e Q12,

<p23:(xu x2, x3) e Q23>->(£g23{x2, x3)xu x2, x3) e Qf.

We set J\2 = (rpl2)'1^, J? = {<p23)~lJe. As in Section 2, (see (2.3)), we can determine
functions x^e. x2, x3) and X3(E, X1 ; X2) such that

Jl2= { (x 1 , x 2 , x 3 ) eg 1 2 : 0<x 1 <x1(e, x2, x3),0 < x 2 < 6 , 0 < x 3 < 1},
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J23 = {(x1,X2,x3)£g2 3:0<X3<x3(e, x 1 ; x 2 ) ,0<Xi < l , 0 < x 2 <b}.

We let
XUM = m ax Xi(e, x2,x3), x3eM = max x3(e,xux2),

and define QmM = Ql2
tM x g23

M, w h e r e

Q\2
M = (0, nxl£M) x (0, b) x (0,1), g23

M = (0, 1) x (0, ft) x (0, nx3eM),

and n = 1,2.
As in Section 2, we can define the bilinear forms a £ (v) , ao(- , ) , the spaces

=̂ > T ,̂ "^o, • • •» with the obvious changes, by taking into account the above remarks.
For example,

r0 = {t; = (f 12, <̂ 23) e Hl(Cl12) x ff2(Q23): «^12(1, x2)

= ^2 3(x2,l) = 0,^2(0,x2) = ^23(x2,0)}

and the problem (P)o is given by: Find v = (vn, ^23)6^0 such that

1 2

f 12. - — Z (guVnxJx, = -f(vu) - Gl20 in Q12,
6 1 2 i = l

1 3

V23t ~ Z (£23f23x()x, = -/(«23) ~ G230 ^ ^23.

y12( 1, x2,t) = v23(x2,1, t) = 0, u12(0, x2, t) = u23(x2, 0, f),

6-12(0, x2) — ^ (0, x2, t) + g23(x2, 0) - ^ (x2, 0, t) = 0,
8ni2 dn23

where n12 (respectively n23) is the outer normal to dil12 (respectively dQ23). The
mapping M£ (in Section 3) is generalised in an obvious way to this case. We can
generalise the mapping IE in the following manner: for any v = (vl2,v23)ei^, we
define IEv = (vl2, v23) by the relation

_ ,
vl2(xux2) + — — I v12(s, x2)ds xt e (xUM, 2x l £ M],

0

\XUM Jo
v12(s,x2)ds

= <

i>23(x2,x3) x3e(2x3 e M, 1],

X3 — X3eM . . , £X3zM X3 1 IT

1^23(^2.^3)+ u12(s, x2)rfs x3 e (x3sM, 2x3eM],
-*3eM -"-3EM -^lcM J o

vl2(s,x2)ds x 3 e [ 0 , X 3 E M ] ,
VAleM Jo
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Theorem 2.2 remains valid and the proof follows along the lines described in
Sections 3-7. However, the estimate (6.3) is replaced by: for any p, 2 <p < + oo,

IIZ h>mM) ^ C/'-w || £ \\H>(Clij), for any £ e H1^), (6.3')

where Cp is a positive constant depending only on p. All of the estimates proved in
Sections 4-8 are still true if we replace Ce* by Cps

ip~2y2p. The results of the first
part of Section 9 as well as Lemma 9.14, Propositions 9.15, 9.20 and Theorem 9.21
still hold once we replace Ce* by Cpe

(p~2)l2p, 2 < p < oo. Note that the analogues of
Proposition 9.13, Theorems 9.16, 9.17, 9.18 are no longer true.
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