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Partial Observations

8.1 Introduction

In this chapter we discuss the quantized detector network (QDN) approach to

partial observations , or the extraction, during an extended-in-time quantum pro-

cess, of only some of the quantum information embedded in a detector amplitude.

In order to deal with partial questions, we need first to discuss how QDN deals

withmaximal questions , which means looking at all the detectors at a given stage.

8.2 Observables

Our preoccupation with detectors rather than systems under observation (SUOs)

is nothing new in quantum mechanics (QM). Indeed, the primary significance of

what could be observed was a guiding principle when Heisenberg formulated his

matrix mechanics approach to QM (Heisenberg, 1925). The conventional position

in QM is that the only important operators in the theory are the observables .

These correspond closely to the variables used in classical mechanics (CM) to

describe measurable quantities, such as energy, momentum, electric charge, and

so on.

In standard QM, observables are generally assumed to be self-adjoint operators

(Hermitian operators in the case of finite-dimensional Hilbert spaces) so that they

have real eigenvalues, and these are the QM analogues of CM variables. Apart

from that proviso, operators representing observables have few restrictions.

This generality raises significant questions. A particularly critical question

is whether a given “observable” makes empirical sense. There is no theorem

that proves that every self-adjoint operator corresponds to something that

can be actually observed in the laboratory. For example, in one-dimensional

wave mechanics, the operator p̂p̂p̂x̂p̂p̂p̂ is self-adjoint and its classical analogue,

pppxppp, is a perfectly regular function over phase space. But we know of no

experiment that can measure such a quantity directly, whereas experiments to

measure p or x directly could be devised.
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The problem as we see it in this book is that the observable concept in standard

QM puts the cart before the horse: it is first implicitly assumed in QM that states

of SUOs can be created, and only then is the question of what can be done to and

on those states raised. QDN does things the other way around: the apparatus that

creates the states and detects the signals has to come first. Indeed, that is all that

is needed. “State preparation” defines the states contextually and the outcome

detectors define what information can be obtained. In QDN, “observables” are

nothing but the signals in final stage detectors plus the context that informs the

observer as to the meaning of those signals.

Transformations and Symmetries

In the twentieth century, great advances in quantum physics were made, driven by

relativistic transformation theory, leading to the Lorentz covariant formulation

of quantum fields known as relativistic quantum field theory (RQFT). That

theory is generally regarded as the best theory to describe the phenomenology of

elementary particles. However, there are some deep conceptual issues concerning

the interface between the classical world of the observer’s knowledge base and

the nonclassical behavior of labstates.

An important factor here is the relationship between different observers. In

the standard QM approach to observables, the transformation properties of

those observables are regarded as crucial. Indeed, Dirac’s approach to QM was

developed in part as an analogue of CM “transformation theory” (Dirac, 1958;

Goldstein, 1964; Leech, 1965).

In QDN the issue of transformation theory is avoided by the assertion that

a given laboratory needs no transformation. And if it is required to discuss the

relationship between two different laboratories (which we have to remind the

reader consist of atoms and molecules that cannot just pass through each other

without significant interaction, none of which is taken into account in standard

QM), then we simply regard the two laboratories as a single larger laboratory

defined by the context of the situation. For example, a Doppler shift experiment

is conventionally described in terms of a source of light moving relative to a

detector. In QDN terms, all of that can be described as one experiment in a

single laboratory, albeit one that changes from stage to stage. Laboratories in

QDN are not restricted to single inertial frames.

There is an interesting question that can posed here, and its resolution has

everything to do with the dominant principle of contextuality underpinning this

book: Given a distant source of light, such as a remote galaxy on the other side

of the Universe, how can astronomers observing light from that source consider

themselves to be part of a single laboratory that includes that galaxy (which might

have long ago been destroyed)?

The answer is context. A single detected photon, no matter how much “red

shifted” it was,1 could not carry any contextual information. But the actual

1 Once again, we have to resort to realist language to convey our meaning, though it is an
oversimplification to do so.
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described scenario gives the game away: how could we even say that there was a

galaxy acting as a source of light without having observed sufficient light from it

to establish that fact? That degree of observation thereby provides the context

that allows us to think of that remote galaxy and our detectors as part of the

same experiment.

In fact, such context is generally built up over relatively long periods of time

and depends on technology. Thousands of years ago, astronomers could only see

via their naked eyes a strange blob of diffuse light where M31, the Andromeda

Galaxy, is in the night sky. Then as telescopes were developed, followed by long-

exposure photography, sufficient observations were made to establish the context

that we know today. Only that relatively recent context allows us to say whether

a signal from Andromeda is red-shifted or blue-shifted light.2

8.3 Maximal Questions

In this section, dependence on the temporal index n is suppressed, as all questions

are asked at some given stage Σn.

Given a rank-r quantum register, an arbitrary pure labstate Ψ is of the general

form

Ψ = Ψ00+
r∑

i=1

ΨiÂi0+
∑

1�i<j�r

ΨijÂiÂj0+ · · ·+Ψ12...rÂ1Â2 . . . Âr0,

(8.1)

where we do not rule out superpositions of elements with different signality.

Labstates are generally normalized to unity, so the coefficients in (8.1) satisfy

the condition

ΨΨ =
∣∣Ψ0
∣∣ 2 + r∑

i=1

|Ψi|2 +
∑

1�i<j�r

|Ψij |2 + · · ·+ |Ψ12...r|2 = 1. (8.2)

Example 8.1 An arbitrary normalized labstate in a rank-two quantum

register is of the form

Ψ = {Ψ0I[2] +Ψ1Â1 +Ψ2Â2 +Ψ3Â1Â2}0, (8.3)

with |Ψ0|2 + |Ψ1|2 + |Ψ2|2 + |Ψ3|2 = 1.

The interpretation of these coefficients is based on the Born rule in standard

QM (Born, 1926): if the apparatus is in labstate (8.3) prior to the observer looking

at both detectors “simultaneously” (which is possible in QDN by definition),

then the probability of each detector being found in its ground state is |Ψ0|2,
the probability of detector 1 being in its signal state and detector 2 being in its

2 In fact, Andromeda is moving toward our galaxy, so light from ordinary sources in
Andromeda should show a small blue shift.
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ground state is |Ψ1|2, the probability of detector 1 being in its ground state and

detector 2 being in its signal state is |Ψ2|2, and the probability of both detectors

being in their signal states is |Ψ3|2. Note that |Ψ1|2 is not the probability that

there is a signal in detector 1. That probability is given by |Ψ1|2 + |Ψ3|2.

Example 8.2 An observer prepares a pure labstate Φ in a rank-four quan-

tum register. Show that the probability Pr(11020314|Φ) that the observer

would find detectors 1 and 4 in their signal states and detectors 2 and 3 in

their ground states is given by

Pr(11020314|Φ) = ΦP̂1P2P3P̂4Φ. (8.4)

Solution In this case, we need to ask the maximal question 11020314 of the

labstate Φ, giving the amplitude A(11020114|Φ) ≡ 11020314Φ. Then the

Born rule gives

Pr(11020314|Φ) ≡ |A(11020314|Φ)|2

= (11020314Φ)∗(11020314Φ)

= (Φ11020314)(11020314Φ)

= Φ(1102031411020314)Φ

= Φ(1111)︸ ︷︷ ︸
P̂ 1

(0202)︸ ︷︷ ︸
P 2

(0303)︸ ︷︷ ︸
P 3

(1414)︸ ︷︷ ︸
P̂ 4

Φ

= ΦP̂ 1P 2P 3P̂ 4Φ. (8.5)

But it is straightforward to show that for a rank-four register,

P̂ 1P 2P 3P̂ 4 = P̂1P2P3P̂4, (8.6)

where each of the operators on the right-hand side is a register operator. This

then gives the required result (8.4).

For a rank-r register, we shall call a register product of r distinct register

projection operators a maximal question. The above example illustrates how

any maximal question for a rank-r quantum register can be related to the tensor

product of r distinct bit projection operators, one for each detector in the register.

There are three points to note here. First, Eq. (8.6) holds only because the

left-hand side is a register operator, being the tensor product of r individual bit

operators, one for each detector in the register. Second, a maximal question can

be identified with a specific element of the preferred basis. Since there are 2r

elements in the latter, we deduce that there is a total of 2r distinct maximal

questions. The third point is a technical one: the product concepts on each side

of (8.6) are different. The left-hand side is the tensor product of bit operators,

the right-hand side is the product of register operators.

https://doi.org/10.1017/9781009401432.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.009


8.4 Partial Questions 109

8.4 Partial Questions

The above example shows how to ask a specific question of each and every detec-

tor in a quantum register at a given stage. For a rank-r quantum register, any

maximal question involves a product of r distinct register projection operators.

For each detector i, 1 � i � r, there are two related register operators, Pi and

P̂i, which form a conjugate pair . Therefore there are exactly 2r distinct maximal

questions, as stated above.

In the real world, however, observers could choose to ask partial questions,

which involve looking at only some (or even none) of the detectors. The simplest

example of a partial question involves the normalization condition

ΨΨ = 1, (8.7)

because we can always write ΨΨ = ΨI[r]Ψ, where I[r] is the register identity

operator. We may identify this operator with the question

What is the probability that every detector

is either in its ground state or signal state?

and call this a rank-zero partial question, because it involves looking at no (i.e.

zero) detectors.

Now suppose we wanted to ask a question involving just one detector, such as

the ath, where 1 � a � r. Given (8.7), we insert the register identity operator

I[r] as before and use the property

Pa + P̂a = I[r], a = 1, 2, . . . , r. (8.8)

Using this property and linearity, we find

ΨPaΨ+Ψ P̂aΨ = 1. (8.9)

Each of the terms on the left-hand side is nonnegative. By inspection, ΨPaΨ is

the probability that detector a would be found in its ground state, while Ψ P̂aΨ

is the probability that a would be found in its signal state, regardless of what

was going on in any of the other r − 1 detectors. We will refer to each of these

partial questions as a rank-one partial question.

This process can be extended naturally to higher rank partial questions, until

we reach rank r, which are the maximal questions we discussed in the previous

section.

Example 8.3 Given a labstate Ψ prepared in a rank-637 register, what is

the probability that if the observer looked only at detectors 99, 323, and 438,

they would find 99 and 323 each in its ground state and 438 in its signal state?

Solution

The required probability Pr is given by the expectation value

Pr = ΨP99P323P̂438Ψ. (8.10)
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It will be clear from the above that the set of all partial questions involves

expectation values of all possible products of the register projection operators.

This leads to the following theorem.

Theorem 8.4 For a rank-r classical or quantum register Q[r], the number

of possible partial questions is 3r.

Proof To prove the theorem, we determine the number of partial questions

of each rank and then add up all those numbers.

There is only one rank zero partial question.

The observer could go to each of the r detectors one by one and ask one of

two possible questions of it: the two questions that can be asked at detector i

are given by the register projectors Pi, P̂i. These are rank-one partial questions,

so we conclude that there is a total of 2r rank-one partial questions.

Assuming r > 1, the observer could now ask rank-two partial questions,

involving only two distinct detectors in the register. Given a rank-r register,

there is a total of r(r− 1) =
(
r
2

)
distinct pairs, and for each pair of choices, 22

alternative questions can be asked. For example, for the choice i < j, we can

ask the four questions PiPj , P̂iPj ,PiP̂j , and P̂iP̂j . Therefore, there is a total

of 22
(
r
2

)
such partial questions.

We can continue this argument until we reach the maximal questions, which

are rank-r partial questions. There is only one way of choosing r objects from

r objects, and 2r possible maximal questions to be asked of that choice. Hence

we find the grand total TQ of distinct partial question operators to be given by

TQ = 1 + 2
(
r
1

)
+ 22

(
r
2

)
+ · · ·+ 2r

(
r
r

)
= (1 + 2)r = 3r, (8.11)

as asserted.

8.5 Partial Question Eigenvalues

Every partial question has the property that each preferred basis element is an

eigenstate of it, with an eigenvalue of either zero or one. Using the signal basis

representation (SBR), the eigenvalue in each case can be readily read off. For

example, in a rank-five register, the state 0112130415 is an eigenstate of the

partial question operators P1 and P1P̂4, with eigenvalues 1 and 0, respectively.

On the other hand, using the computational basis representation (CBR) is not

so convenient here. The given state 0112130415 has the CBR 22, so we see

P122 = 22, P1P̂422 = 0, (8.12)

but the respective eigenvalues cannot now be directly read off. Since the CBR is

generally useful, we need to quantify the action of the partial questions on the

CBR. We do this as follows. The set {I[r],P1, . . . , P̂1P̂2 . . . P̂r} of partial questions
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Table 8.1 Question eigenvalues for a rank-two register

0102 = 0 1102 = 1 0112 = 2 1112 = 3

Q1 ≡ I[2] Y 1,0 = 1 Y 1,1 = 1 Y 1,2 = 1 Y 1,3 = 1

Q2 ≡ P1 Y 2,0 = 1 Y 2,1 = 0 Y 2,2 = 1 Y 2,3 = 0

Q3 ≡ P̂1 Y 3,0 = 0 Y 3,1 = 1 Y 3,2 = 0 Y 3,3 = 1

Q4 ≡ P2 Y 4,0 = 1 Y 4,1 = 1 Y 4,2 = 0 Y 4,3 = 0

Q5 ≡ P̂2 Y 5,0 = 0 Y 5,1 = 0 Y 5,2 = 1 Y 5,3 = 1

Q6 ≡ P1P2 Y 6,0 = 1 Y 6,1 = 0 Y 6,2 = 0 Y 6,3 = 0

Q7 ≡ P̂1P2 Y 7,0 = 0 Y 7,1 = 1 Y 7,2 = 0 Y 7,3 = 0

Q8 ≡ P1P̂2 Y 8,0 = 0 Y 8,1 = 0 Y 8,2 = 1 Y 8,3 = 0

Q9 ≡ P̂1P̂2 Y 9,0 = 0 Y 9,1 = 0 Y 9,2 = 0 Y 9,3 = 1

contains 3r elements. We define Q1 ≡ I[r],Q2 ≡ P1, . . . ,Q3r ≡ P̂1P̂2 . . . P̂r. This

choice of labeling is arbitrary, there being no obvious way to order a complete

set of partial questions. Then for any partial question QP , P = 1, 2, . . . , 3r, and

any CBR element i, i = 0, 1, 2, . . . , 2r − 1, we write

QP i = Y P,ii, (8.13)

where the question eigenvalue Y P,i is either zero or unity.

Example 8.5 For a rank-two register, there are 32 = 9 distinct partial

questions and 22 = 4 distinct CBR elements. Table 8.1 shows the question

eigenvalues.

8.6 Identity Classes

A full partial question set can be divided into groups of operators that sum up,

in that group, to the register identity. Each such group will be called an identity

class . A rank-r register has 2r identity classes.

Example 8.6 A rank-one register has two identity classes, given by C1,1 ≡{
I[1]
}
and C2,1 ≡

{
P1, P̂1

}
.

Example 8.7 A rank-two register has four identity classes, given by

C1,2 ≡
{
I[2]
}
,

C2,2 ≡
{
P1, P̂1

}
,

C3,2 ≡
{
P2, P̂2

}
,

C4,2 ≡
{
P1P2, P̂1P2,P1P̂2, P̂1P̂2

}
. (8.14)
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In Table 8.1, the four identity classes are separated by horizontal lines. A given

identity class consists of partial questions of the same rank, so we shall refer to

each class by its rank. In the above example, C1,1 and C1,2 are rank-zero identity

classes; C2,1, C2,2, and C3,2 are rank-one identity classes; and C4,2 is a rank-two

identity class.

Identity classes are related to probability conservation. We shall find that if

we want to conserve probability in any calculation, we need to restrict partial

questions to the same identity class. It may then be necessary to relabel the

partial questions and their question eigenvalues with an extra label identifying

individual identity classes.

8.7 Needles in Haystacks

The classification of question rank and identity class sheds some light on how the

unimaginable complexity of the real world can be comprehended by intelligent

observers. Suppose an observer wanted to model the Universe by an enormously

large number N of qubits, giving a quantum register Q[N ] of rank 2N . Suppose

now that that observer was investigating their environment by asking a limited

number of partial questions. This is a typical scenario in empirical science:

resources are not infinite and experimentalists can only do so much. By inspection

of Table 8.1, we see an interesting pattern, one that would be repeated in the

general case. If we ask no questions, then that is represented by the rank-zero

identity class. We see from the question eigenvalues for such a question, denoted

Q1 in Table 8.1, that the answer for each possible labstate is one, meaning that

we can extract no new information about the system under observation (SUO)

from such a question. But that question has cost us nothing.

Moving on, we may now decide to ask rank-one questions, represented by Q2

and Q3 in Table 8.1. Now we start to get some real information about the state

of the SUO, but it is also starting to become expensive.

This process could continue, with greater rank questions being posed, with

more information coming out but at ever increasing cost.

There is an interesting trade-off. Looking at Table 8.1, we note that for a given

labstate, the maximal rank identity class partial questions all have answer zero

except one of them. This enormously simplifies the problem of finding a signal,

in that should we find an answer of one halfway through this process, we can

immediately stop, because we can be sure all the remaining answers are zero.

We can now appreciate what it means to do experiments and why they are

done. Experiments are careful arrangements of partial questions of the same

identity class, designed to eliminate as many zero-value answers and home in on

unity answers (those for which Y θ,i = 1), guided by theory. Such searches can

require planning to choose the right questions and the expenditure of enormous

resources as in the case of the search for the Higgs particle at the Large Hadron

Collider. That task was far more of a technical problem than searching for a
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needle in a haystack.3 At the end of the day, we note that the result of the search

was a single number, that is, one, which means yes, the Higgs particle exists

(according to our contextual interpretation of the data).

This line of thinking also encourages experimentalists not to give up but

to continue searches that appear to be unsuccessful. For instance, there is at

this time (2017) no direct empirical evidence for supersymmetric partners of

various particles such as electrons and photons. Because the number of zero-

value question eigenvalues is potentially vast, a lack of confirmation so far does

not mean that a yes answer does not exist.

3 Which can be done quickly with the right apparatus, such as a metal detector.
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