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Quantum Register Dynamics

7.1 Introduction

In this chapter we move beyond the classical register scenario discussed in the

previous chapter, extending the discussion to experiments described by time-

dependent quantum registers of varying rank. We apply our previous discussion

of the signal basis representation (SBR), the computational basis representation

(CBR), signal operators, signal classes, and the CBR of signal operators to the

quantum case. Our discussion of dynamics covers persistence, that is, the stability

of apparatus, observers, and laboratory time, and the Born probability rule. We

state the principles of quantized detector network (QDN) dynamics and show

how they apply to the description of quantum experiments. We discuss the signal

theorem and path summations.

7.2 Persistence

Our first step is to clarify what QDN assumes about the evolution of appara-

tus in time, because this affects the modeling. QDN is designed to reflect the

behavior of apparatus in the real world and so it is not assumed in general that

a given observer’s apparatus is constant in time, even during a given run of an

experiment.

Although many experiments appear to be carried out with apparatus that

persists over any given run of the experiment, and indeed, perhaps over all the

runs of that experiment, that is just an incidental factor that reflects no more

than an economy in construction. In practice it is invariably easier and more

economical to use the same equipment over and over again rather than use it

once, throw it away after each run, and build a new version ready for the next

run. Lest this be thought of as a trivial point, it is nevertheless an integral

and costly feature of many experiments, involving maintenance and upgrading.

Indeed, in laboratories such as the Large Hadron Collider, actual run time is a
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small fraction of total project time. A related, significant issue has to do with

the concept of ensemble, discussed in the Appendix.

Persistence has everything to do with time scale, specifically, the relative

laboratory time over which any piece of equipment can be meaningfully discussed

as such. The degree of persistence of apparatus is as contextual as anything else

in physics. If a run is relatively brief, say, over in very small fractions of a second,

as in high-energy particle scattering experiments, then in such an experiment,

the apparatus will behave as if it persists forever. On the other hand, in some

experiments, individual runs can involve enormous intervals of time between

state preparation and observation, as always happens in the case of astrophysical

observations of stars and galaxies. In such cases, light from a distant star may

be received by astronomers long after that star had ceased to exist as a star.

A necessary criterion for an experiment to be describable by QDN is that any

detector exists at least during a given stage. Indeed, we can take the definition

of a stage to be that interval of laboratory time over which a given detector can

be assumed to persist, that is, have an identity that has physical relevance in the

context of the experiment concerned.

In this respect, a stage is to be identified not with a moment or point in time

but with the interval of time over which information could be extracted by the

observer. Such an interval is of contextual temporal length in the laboratory,

being as short or as long as the observer requires to acquire a bit or “quantum”

of information. The temporal divide between two stages will be called a quantum

tick , or q-tick . It is necessarily a heuristic concept, because any attempt to

empirically measure a q-tick and assign a numerical value to a chronon, or

assumed fundamental unit of time, will be self-referential in some way or other.

We note that the concept of Planck time, commonly regarded as the shortest

meaningful interval of time in physics, is a theoretical construct that could

never be observed directly and has been criticized on such grounds (Meschini,

2007).

7.3 Quantized Detector Networks

In the projection-valued measure (PVM) formulation of standard quantum

mechanics (QM) (von Neumann, 1955; Peres, 1995), it is generally asserted that

state vectors of systems under observation (SUOs) evolve in Hilbert spaces of

fixed dimension. Any time dependence of the apparatus itself, such as externally

imposed time-dependent electromagnetic fields, is encoded into an explicit time

dependence of the Hamiltonian or whatever observables are involved. This

approach encodes the idea that experiments are done in fixed laboratories and

that information is extracted from states of SUOs that evolve unitarily in time.

This temporal architecture is known as the Schrödinger picture and is widely

used in QM. A variant but nominally equivalent temporal architecture is that of

the Heisenberg picture, in which the quantum states appear frozen in time but
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now it is the observables of the theory that have unitary temporal evolution over

and above any intrinsic, explicit evolution.

In standard QM, these two related architectures were eventually recognized as

too limited. One reason is that in the PVM approach, the number of mutually

orthogonal possible outcome states associated with a given observable is the

number of its eigenstates, which is fixed and cannot exceed the dimension of

the Hilbert space concerned. The positive operator-valued measure (POVM)

formalism on the other hand was developed to deal with the possibility that

the number of observational outcome channels set up in a laboratory may be

different from the dimension of the Hilbert space used (Ludwig, 1983a,b; Kraus,

1983; Peres, 1995) and, indeed, may exceed that number, in the case of finite

dimensions.

In contrast, the QDN formalism assumes from the outset that the Hilbert space

representing outcome possibilities is always different from one stage to the next,

even if the dimensionality remains constant, and even if the detectors involved

in the experiment appear to persist over several or all stages of an experiment.

To be specific, let us denote the observer’s apparatus at any given stage Σn by

An. Some parts of An will correspond to actual, real detectors, while other parts

will be virtual, or potential, detectors. Whatever the case, An will be always be

modeled by a countable number rn of vertices at any stage of the relevant stage

diagram for that experiment. In this book, we denote the ith vertex at stage Σn

by in, where the superscript i runs from 1 to rn and labels all of the distinct

vertices in that stage. Note that in (a vertex) should not be confused with in
(bold font), our notation for a CBR element of the preferred basis at stage Σn.

Note also that detector vertices should not be confused with modules, which are

nondetecting parts of apparatus that sit in the information void between stages.

In the description of real experiments, rn will always be finite, in contrast to

the situation in QM, where the Hilbert space may be infinite dimensional. The

harmonic oscillator in one spatial dimension is an example where QM assumes

either that the position observable has a continuous spectrum or, equivalently,

that the Hamiltonian has a countable infinity of energy eigenstates. The harmonic

oscillator is discussed in Chapter 24. In the world of empirical reality, there are

no such harmonic oscillators, just SUOs for which such a description may be a

reasonable approximation.

The question as to whether rn is finite or not is central to many if not all of

the technical difficulties encountered in the refinement of standard QM known as

quantum field theory. The harmonic oscillator appears to be intimately involved

in many of these problems in one way or another. Although the mathematical

properties of the quantized harmonic oscillator play an essential role in account-

ing for the particle concept in free quantum field theory, those same properties

generate fundamental problems in interacting field theories. For instance, the

ultraviolet divergences encountered in most Feynman loop integrals are linked

to the unbounded energy spectrum of the standard QM oscillator, while infrared
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divergences are linked to the assumed continuity of spacetime and the zero-point

energy of the quantized oscillator.

The issue of zero-point energy of the quantized oscillator was explicitly

addressed in quantum optics by Glauber in his landmark papers on photon

correlations (Glauber, 1963a,b,c). He pointed out that the irreversibility of

quantum detection processes involves the non-Hermitian positive energy electric

field operator E(+)(t,x) rather than the Hermitian electric field operator

E(t,x) ≡ E(+)(t,x) + E(−)(t,x). It is the vacuum expectation values (VEVs)

involving the E field operators that are affected by zero-point energy, whereas

VEVs involving the E(+) alone are not. Glauber’s conclusion was the following:

The electric field in the vacuum undergoes zero-point oscillations which, in the
correctly formulated theory, have nothing to do with the detection of photons.
(Glauber, 1963c)

According to Glauber, then, the standard quantum field theory approach to

quantum detection, if it involves VEVs of Hermitian operators, will be inad-

equate to model irreversible, local detection processes as they actually occur

in real laboratories. The reason the standard Lehmann–Symanzik–Zimmerman

(LSZ) (Lehmann et al., 1955) scattering formalism works is that the in and

out Hilbert spaces representing prepared and outcome states, respectively, are

applied at infinitely remote times in the past and future, respectively, in a

causally irreversible way. In between those two remote times, a quantum process

is technically in what we have called in earlier chapters the information void, a

laboratory regime during which no signal detection takes place. During such a

regime, unitary evolution can be assumed to take place without violating any

of the principles of QM. That is the essential reason why the standard model

Lagrangian, which respects CPT1 inversion symmetry and is used to work out

unitary evolution, is a good basis for particle scattering calculations. However,

finite time processes, which are generally not considered in high-energy physics,

would require the same review that Glauber carried out for photonic processes.

Given the apparatus An at stage Σn, its associated detectors, both real and

virtual, are represented by a set of signal qubits {Qi
n : i = 1, 2, . . . , rn}, with

qubit Qi
n being identified with vertex in. Here as elsewhere, upper indices label

individual qubits and detectors, while lower indices denote stages. The tensor

product Q1
nQ

2
n . . . Q

rn
n , plus the information held by the observer about the

physical significance of those qubits, constitute a quantum register of rank rn.

This is a Hilbert space of dimension 2rn .

A fundamental property of any quantum register of rank greater than one is

that it contains entangled states as well as separable states. Separability and

entanglement are discussed in some detail in Chapter 22.

1 Charge, space (parity), and time.
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Example 7.1 Given a rank-three quantum register Q1Q2Q3, the state

Ψ ≡ 110213 − 010203 is partially separable relative to the chosen basis,

because we can write Ψ = {1113−0103}02. On the other hand, Φ ≡ 110213−
011203 cannot be written as a product, so is entangled relative to the chosen

basis.

In QDN, entanglement is regarded as contextual on the observer’s information

about their apparatus, and not as an intrinsic property of SUOs. QDN tries

to avoid terms such as “entangled photons,” but we reserve the right to use

such terminology occasionally, provided it does not mislead. The concept of an

entangled labstate is not only perfectly acceptable in QDN but actually essential

for the correct calculation of outcome signal detection probabilities in many

experiments.

7.4 Persistence and Ensembles

A conventional assumption in QM is that pure states of a system under obser-

vation may be represented by time-dependent elements of a fixed Hilbert space.

The chosen Hilbert space is usually assumed fixed for two reasons. First, there

is the conditioned belief that an SUO “exists” in time as a separate entity long

enough for the observer to study it. Another contributory factor is the persistence

of the apparatus , or the tendency of actual apparatus to exist in its original form

and functionality in a laboratory before and after its useful role has ended.

Most physics experiments deal with persistent apparatus. That is generally

arranged by the observer as a matter of economy: experimentalists generally do

not have the resources to scrap their apparatus at the end of each run and then

rebuild it in time for the next run.

There are situations, however, where persistence cannot be assumed. For

example, astronomers can catch light from a supernova shock wave only during

an extremely limited time, and that particular observation cannot be repeated

because the source of the signal has long gone. What helps the observers is the

vast numbers of photon signals that they manage to detect during that limited

window of opportunity.

A similar issue arises in quantum cosmology. The Universe is believed to be

expanding. On that account, any approach to quantum cosmology should take

the attendant irreversibility into consideration, and not treat the evolution of

the Universe in traditional QM terms as a typical SUO. The Universe is in an

ensemble of one, and not only contains the observer and the apparatus, but will

outlast both of them.

In QDN, individual detectors are never persistent. Each detector is assigned a

particular stage at which it operates as an detector, and outside that time, has

no role in the formalism. This is the QDN analogue of the concept of an event

in relativity. Some applications of QDN will for convenience assume persistence
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of apparatus (Jaroszkiewicz, 2004), the only effect being to increase the number

of qubits used in the formalism.

7.5 Observers and Time

Observers generally come equipped with their own sense of time, and quantum

experiments are carried out relative to that time. Relativity teaches that there

are two observer-related time concepts with different properties; coordinate time

and proper time. In both special relativity (SR) and general relativity (GR), the

former time concept is used to label events in spacetime and is generally locally

integrable. This means that spacetime can be discussed in terms of coordinate

patches (Schutz, 1980). Within a given coordinate patch, events can be labeled by

spacetime coordinates in a path-independent way. When a particular coordinate

patch is related to clocks and rods in a specific laboratory, we shall refer to

that coordinate time as labtime. In GR, the description of labtime requires some

assumption about time-like foliations of spacetime and frame fields. On the other

hand, proper time is nonintegrable, which is to say that the proper time between

two events depends on the particular path taken between those events. In other

words, proper time is contextual.

In QDN, the time parameter associated with an experiment can normally be

identified with the proper time of an idealized inertial observer moving along a

time-like worldline, and for whom their laboratory appears to be at rest at all

times. In some situations, we may have to apply QDN to what we call interframe

experiments. These involve state preparation in one inertial frame and signal

detection in another. The Doppler effect in observational cosmology is an example

of interframe physics.

What are important in such situations in SR and GR are space-like hypersur-

faces : these are the analogues of the concept of stages in QDN. On a space-like

hypersurface, no two events can be causally connected; that is, no event can be

the cause of any other event on the same hypersurface of simultaneity. In QDN,

the analogous statement is that no two detectors on a given stage can affect each

other in any way. This could be because the detectors are really relatively space-

like separated, but the possibility exists, frequently in real experiments, that the

detectors are relatively time-like separated but shielded from each other.

In the real world, observers have finite existence: they come and go. Observers

and their apparatus are created at certain times and disappear at later times,

as seen by other observers in the wider universe. QDN as formulated here allows

for a discussion of different observers, each with their individual time param-

eters and lifetimes. The use of quantum registers also raises the possibility of

accounting for the origin of various temporally related concepts such as light

cones, time dilation, and other metric-based phenomena in terms of quantum

register dynamics. A useful way to discuss what is going on is in terms of causal

sets , the structures of which arise naturally within quantum register dynamics

(Eakins and Jaroszkiewicz, 2005). Causal sets are discussed in Chapter 23.
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During their operational lifetimes, observers quantify their time in terms of real

numbers, usually read from clocks. Most clocks give only a crude estimate of the

passage of time, and as a result, the ordinary human perception of time as a one-

dimensional continuum is just a convenient approximation. The classical view

of time is that it is a continuum at all scales and for all phenomena. Certainly,

things appear consistent with that view in the ordinary world.

In QM, however, the situation is quite different. What matters in a quantum

experiment is information acquisition from the observer’s apparatus and this can

only ever be done in a discrete way, regardless of any theoretical assumption to

the contrary (Misra and Sudarshan, 1977). While an observer’s effective sense

of time can be modeled accurately as continuous, it is certainly the case that

an observer can look at a detector and determine its status in a discrete way

only. There are no truly continuous-in-time observations. It is important here to

distinguish between what experimentalists actually do in experiments and what

theorists imagine they do.

The discreteness of the information extraction process forms the basis of the

time concept in QDN. In general, a given observer will represent the state of

their apparatus (the labstate) at a finite sequence of their own (observer) times,

denoted by the integer n. These times will be referred to as stages. In QDN, a

pure labstate at stage Σn will be denoted by Ψn.

In QDN, stage Σn+1 is always regarded as definitely later than stage Σn. There

is no scope in QDN for the concept of closed time-like curve (CTC) found in some

GR spacetimes, such as the Gödel model (Gödel, 1949). Invariably, discussions

that do involve CTCs cannot accommodate quantum processes properly, at least

not those that involve probabilities.2

A final point on this topic: there is no need to assume that the laboratory time

interval between stages has a definite value or that a succession of stages involves

equal intervals of labtime.

7.6 The Born Probability Rule

One of the most significant attributes of quantum processes is the randomness

of quantum outcomes. Given identical state preparation, different runs of a

given experiment generally demonstrate controlled unpredictability. Controlled,

because the observer may know all about the range of possible outcomes and the

probabilities of those outcomes before one is actually observed, but unpredictable

because the observer cannot in general say beforehand which particular one of

those outcomes will occur in any particular run.

2 This is for the good reason that the probability concept requires an observer accumulating
information with an irreversible sense of time, something that a genuine CTC is
incompatible with.
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Remark 7.2 This subject is a minefield of issues that lurk unseen until

we stumble across them. Reference was made to “identical state preparation”

in the previous paragraph. That is clearly a vacuous concept. By definition,

different runs of a given experiment cannot have absolutely identical state

preparation: the Universe will have aged for sure during any two runs,

and there will be vast changes in the local environment of any apparatus

on atomic scales. Yet clearly, most of those changes will not influence the

outcome probabilities. As pointed out by Kraus, what appears significant

are equivalence classes of state preparation processes (Kraus, 1983). Exactly

where the line between influence and noninfluence of external factors in state

preparation should be drawn is one of those deep questions that no one knows

anything much about. The Heisenberg cut is a hypothetical line demarcating

the classical world of the observer and the quantum world of the SUO. We

propose the term Kraus cut to denote the hypothetical line between those

factors that have no influence on state preparation or outcome and those

that do. All we can do is to observe that some things are critical in state

preparation, and everything else seems unimportant. Much the same point is

emphasized in Peres (1995).

In practice the QM approach to probability works brilliantly and we use it in

QDN. The Born probability rule (Born, 1926) in QM states that if a final state

|Ψ〉 is represented by a superposition of the form

|Ψ〉 =
d∑

i=1

Ψi|i〉, (7.1)

where the possible outcomes are represented by orthonormal vectors |i〉, i =

1, 2, . . . , d, in some Hilbert space, then the conditional probability Pi of outcome

|i〉 is given by Pi = |〈i|Ψ〉|2, if the final state is normalized to unity.

This rule is used in much the same way in QDN, as follows. Consider a

normalized pure labstate Ψn at stage Σn. This can always be expanded in terms

of the computational basis representation (CBR) of the preferred register basis

Bn at that stage in the form

Ψn =

2rn−1∑
i=0

Ψi
nin, (7.2)

where the coefficients Ψi
n are complex and

2rn−1∑
i=0

|Ψi
n|2 = 1. (7.3)

In QDN, labstates are usually normalized to unity for convenience. Because the

preferred basis states form a complete orthonormal basis set, we may immediately
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read off from (7.2) the various CBR conditional probabilities Pr(in|Ψn), which

are given by the rule

Pr(in|Ψn) ≡ |inΨn|2 = |Ψi
n|2, 0 � i < 2rn . (7.4)

Pr(in|Ψn) is the conditional (Bayesian) probability for the observer to find the

apparatus in signal state in at stage Σn, if the observer looked at their apparatus

at that time. These probabilities are conditional on the observer being sure, just

before they looked, that the labstate at stage Σn was Ψn.

There is no natural restriction in QDN to labstates that are eigenstates of

signality; i.e., superpositions of basis states from different signality classes are

permitted in principle. QDN is analogous in this respect to the extension of

Schrödinger wave mechanics to Fock space and to quantum field theory.

7.7 Principles of QDN Dynamics

We are now in a position to discuss the principles of labstate dynamics from

the perspective of a single observer. At stage Σn, this observer will hold in their

memory current information about their apparatus An, the associated quantum

register Qn, and the labstate Ψn (assumed pure here). An analogous statement

will hold for each stage in a finite sequence of stages running from some initial

stage Σ0 to some final stage ΣN , where N > 0. QDN does not assume observers

exist over unbounded intervals of time, so the formalism is applied only over a

finite number of stages.

We restrict attention in this chapter to pure labstates, that is, labstates fully

specified by single elements in a quantum register. A mixed-state, density matrix

approach to QDN dynamics is discussed in Chapter 9.

For the most basic sort of experiment, labstate preparation will be assumed to

have taken place by initial stage Σ0 and outcome detection is to take place at final

stage ΣN . For each integer n such that 0 � n � N , the observer associates with

their apparatusAn at that time a quantum registerQn. This register is the tensor

product Qn ≡ Q1
nQ

2
n . . . Q

rn
n of a finite number rn of qubits, Q1

n, Q
2
n, . . . , Q

rn
n ,

each qubit Qi
n representing the ith real or virtual detector in in An. The quantum

register Qn is a Hilbert space with preferred basis Bn consisting of the 2rn CBR

signal states.

There is no requirement in QDN or implication in our notation for the detector

represented by Qi
n+1 to be related in any obvious way to the detector represented

by Qi
n; that is, we do not assume persistence. In other words, successive quantum

registers are understood as different Hilbert spaces, even if they have the same

rank, that is, if rn+1 = rn. This is one of the factors which makes QDN more

general in its scope than standard QM, although all the principles of QM are

incorporated in QDN.

At stage Σn, the observer describes the quantum state of their apparatus

at that time by a labstate Ψn, which is some normalized vector in Qn. Using
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the CBR, this state can be written in the form (7.2) and normalized according

to (7.3).

A given run of an experiment will be described by the observer in terms of

a sequence {Ψn : 0 � n � N} of normalized labstates, each element of which is

associated with a particular quantum register Qn, ending with state outcome

observation at the final stage ΣN .3 The question now is how successive labstates

relate to each other between times M and N .

Provided each run is prepared in the same way, and provided the apparatus

during eah run is controlled in the same way, we can discuss a typical labstate Ψn

as a representative for an ensemble of runs. Indeed, that is the only interpretation

that makes sense if an objectivized or hidden-variables interpretation of the wave

function is to be avoided. QDN follows the traditional QM view as emphasized

by Peres in this respect (Peres, 1995).

The dynamical transition from labstate Ψn to labstate Ψn+1 involves a map-

ping from quantum register Qn to quantum register Qn+1 that satisfies two

criteria fundamental to quantum mechanics: linearity and norm preservation.

This leads us to give a number of definitions and theorems that have proved

central to QDN.

7.8 Born Maps and Semi-unitarity

In the following, we restrict the discussion to Hilbert spaces of finite dimension.

This is in line with our general philosophy in QDN that there are no empirically

observable infinities in physics.

Definition 7.3 A Born map is a norm-preserving map from one Hilbert

space H to some other Hilbert space H′; if Ψ in H is mapped into Ψ′ ≡ B(Ψ)

in H′ by a Born map B, then (Ψ′,Ψ′)′ = (Ψ,Ψ).

Born maps are used in QDN in order to preserve total probabilities (hence

the terminology), but unfortunately, their properties are insufficient to model all

quantum processes. Born maps are not necessarily linear, as can be seen from

the elementary example B(Ψ) = |Ψ|Φ′ for all Ψ in H, where Φ′ is a fixed element

of H′ normalized to unity and |Ψ| is the norm of Ψ in H. To go further, it is

necessary to impose linearity.

Henceforth, we adopt the rule that if U is a linear map, then we may drop the

parentheses and write UΨ instead of U(Ψ).

Definition 7.4 A semi-unitary operator is a linear Born map. If U is such

a map, then for any elements ψ, φ in H and complex α, β, we may write

|αψ + βφ| = |αUψ + βUφ|′.

3 QDN allows partial observations to be made at intermediate stages.
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The proofs of the following theorems are left to the reader.

Theorem 7.5 A semi-unitary operator from Hilbert space H to Hilbert space

H′ exists if and only if dimH � dimH′.

Theorem 7.6 A semi-unitary operator from H to H′ is an injection; that

is, {Uψ = Uφ} if and only if ψ = φ.

Theorem 7.7 If U is a semi-unitary operator from H to H′, then its

retraction U exists; that is, we have UU = IH, where IH is the identity

operator over H.

Corollary 7.8 A semi-unitary operator preserves inner products and not

just norms. This means that an orthonormal basis set for Hilbert space H is

mapped by a semi-unitary operator into a mutually orthonormal set of vectors

in H′ with the same cardinality.

Theorem 7.9 If U is a semi-unitary operator from H to H′ and dimH =

dimH′, then the retraction U of U is also a semi-unitary operator from H′ to

H. For such an operator, UU = IH and UU = IH′ .

Definition 7.10 An operator U satisfying the conditions of Theorem 7.9

will be called a unitary .

Remark 7.11 If U is a semi-unitary operator from H to H′ and dimH <

dimH′, then UU 	= IH′ , simply because the retraction U is defined not over

H′ but over the proper subset U(H) of H′.

7.9 Application to Dynamics

It is normally assumed in QDN that a labstate Ψn in Qn at stage Σn is mapped

into a labstate Ψn+1 in Qn+1 by some Born map Bn+1,n. Because Ψn+1Ψn+1 =

ΨnΨn under such a map, the Born rule used in conjunction with the signal bases

Bn and Bn+1 means that total probability is conserved. This is not the same

thing as conservation of signality, charge, particle number, or any other quantum

variable.

The following three scenarios are possible.
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Bn+1,n Is Nonlinear

By Theorem 7.5, nonlinearity is unavoidable if the rank rn of Qn is greater than

the rank rn+1 of Qn+1, but can arise even if this is not the case. Nonlinearity

here is interpreted as a marker of classical intervention by the observer. For

example, switching off any apparatus at stage Σn+1 would be modeled by the

Born map Bn+1,n(Ψn) = 0n+1 for any state Ψn in Qn, where 0n+1 is the signal

ground state of the apparatus at stage Σn+1. Another example is state reduction

due to observation; that is, if at stage Σn+1 the observer actually looks at the

apparatus and determines its signal status, then this would be modeled by the

nonlinear Born map Bn+1,n(Ψn) = kn+1, where now kn+1 is some element

of the CBR of the preferred basis Bn+1, chosen randomly with a probability

weighting given by the Born rule. In this particular case, however, there are

actually two labstates associated with stage Σn+1: Ψn+1 representing the state of

the apparatus immediately prior to state reduction and k representing the actual

observed outcome immediately after. None of this represents anything more than

mathematical modeling of the observer’s actual or potential knowledge about the

signal status of their apparatus. QDN makes no comment on whether anything

deeper than changes in apparatus signal status has occurred. In particular, any

speculation of superluminal information flow concerns correlations, which is a

phenomenon that occurs in all forms of mechanics and has everything to do with

what the observer did in the past.

Bn+1,n Is Linear and rn = rn+1

This scenario corresponds to unitary evolution in standard QM, and to reflect

this, we use the notation Bn(Ψn) ≡ Un+1,nΨn = Ψn+1. From Theorem 7.9,

Un+1,n in this case satisfies the rules

Un+1,nUn+1,n = In, Un+1,nUn+1,n = In+1, (7.5)

where Un+1,n is the retraction of Un+1,n. In such a case it is reasonable to call

Un+1,n unitary, being the formal analogue of a unitary operator in QM.

Bn+1,n Is Linear and rn < rn+1

In this case we use the same notation as in the second case above, i.e.,

Bn+1,n(Ψn) ≡ Un+1,nΨn = Ψn+1, but now Un+1,n is properly semi-unitary

and only the first relation Un+1,nUn+1,n = In in (7.5) carries over. Such a

scenario arises in particle decay experiments, for example. These are discussed

in Chapter 15.

We cannot in general expect the rank rn of the quantum register Qn to be

constant with n, so if we wish to preserve probability and restrict the dynamical

evolution to be linear in the labstate, then we have to assume

rM � rM+1 � · · · � rn � · · · � rN , (7.6)
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where ΣM is the initial stage and ΣN is the final stage. From this, we can

appreciate that unless experimentalists are careful, their quantum registers will

grow irreversibly in rank. On the other hand, the particle decay experiments

discussed in Chapter 15 specifically require the rank to increase at each time step.

The use of Born maps means total probability is always conserved, even if lin-

earity is absent. In principle, therefore, QDN allows for a discussion of nonlinear

QM, still based on most of the familiar Hilbert space concepts used in QM. As

we have mentioned in the case of nonlinear Born maps, necessarily nonlinear pro-

cesses such as state preparation, state reduction, the switching on and off of appa-

ratus, and so on, which are outside the scope of unitary (Schrödinger) evolution

in standard QM, can all be discussed in QDN in terms of nonlinear Born maps.

Our interest will generally be in experiments based on linear quantum pro-

cesses, so (7.6) will be assumed. For such an experiment running from stage ΣM

to stage ΣN , for N > M , and knowing rn � rn+1, then the labstate Ψn will

change according to the rule

Ψn → Ψn+1 ≡ Un+1,nΨn, M � n < N, (7.7)

where Un+1,n is a semi-unitary operator (this terminology will be used from now

on even in the case where rn = rn+1).

The CBR at stages Σn and Σn+1 can be used to represent Un+1,n. Specifically,

we find

Un+1,n =

2rn+1−1∑
j=0

2rn−1∑
i=0

jn+1U
j,i
n+1,nin. (7.8)

This representation can be used to define a retraction operator Un+1,n, given by

Un+1,n =

2rn+1−1∑
j=0

2rn−1∑
i=0

inU
j,i∗
n+1,njn+1, (7.9)

where U j,i∗
n+1,n is the complex conjugate of U j,i

n+1,n, if the semi-unitarity condition

holds, that is, if

2rn+1−1∑
j=0

U j,i
n+1,nU

j,k∗
n+1,n = δik. (7.10)

A useful way of thinking about the semi-unitarity condition (7.10) and the

rules of semi-unitary operators is in terms of complex vectors as follows. Let

V be a finite-dimensional complex vector space with inner product a† · b. An
orthonormal d-subset of V is any set of elements {ai : i = 1, 2, . . . , d} of V

that are normalized to unity and mutually orthogonal; that is, we have the rule

ai† · aj = δij .

Now let V ′ be another finite-dimensional complex vector space with inner

product a′† · b′. The question of semi-unitarity reduces to the possibility of

finding an injection from any given orthonormal d-subset of V into at least one
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orthonormal d-subset of V ′. The above semi-unitarity theorems tell us that this

cannot be done if d > dimV ′.

7.10 The Signal Theorem

The mathematical properties of semi-unitary operators and their relationship

to signal bases have an important bearing on the permitted physics of QDN

dynamics. Consider an experiment at stages Σn and Σn+1 and assume semi-

unitarity. At stage Σn the labstate Ψn is given by a superposition of signal states

from signal basis Bn ≡ {in : 0 � i < 2rn}, while the labstate Ψn+1 is given as

a superposition of signal states from signal basis Bn+1 ≡ {in+1 : 0 � i < 2rn+1}.
Because of linearity, the crucial question as far as the dynamics is concerned is

how individual signal states evolve. Semi-unitarity imposes the following con-

straint, which we call the signal theorem:

Theorem 7.12 Two different preferred basis states in and jn in a signal

basis Bn cannot evolve by semi-unitary dynamics into labstates that have only

one preferred signal basis state in common.

Proof Take 0 � i < j < 2rn . Suppose in evolves by semi-unitarity dynamics

into a labstate according to the rule

in → Un+1,nin = αkn+1 + φn+1, (7.11)

while jn evolves according to the rule

jn → Un+1,njn = βkn+1 +ψn+1. (7.12)

Here k is some integer in the semi-open interval [0, 2rn+1), α and β are non-

zero complex numbers, and φn+1 and ψn+1 are elements in Qn+1 sharing no

signal states in common either with each other or with kn+1 in their CBR

basis expansions, which means

kn+1φn+1 = kn+1ψn+1 = φn+1ψn+1 = 0. (7.13)

From Corollary 7.8, semi-unitarity preserves inner products and not just
norms, so we must have

0= injn = inUn+1,nUn+1,njn=αkn+1 + φn+1(βkn+1 +ψn+1) (7.14)

=(α∗kn+1 +φn+1)(βkn+1 +ψn+1)=α∗β, (7.15)

using (7.12). This establishes the theorem.

The signal theorem leads to the following important result for conventional

physics. Suppose an observer constructs an apparatus that, if prepared at stage

Σn to be in its signal ground state 0n, would evolve into 0n+1. If the dynamics

is semi-unitary, then we may write
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0n → Un+1,n0n = 0n+1. (7.16)

This condition models an important physical property expected of most labora-

tory apparatus; we would not expect equipment that was in its signal ground

state to spontaneously generate outcome signals subsequently, unless it was

interfered with by some external agency. Any apparatus that satisfies (7.16) will

be called calibrated between stages Σn and Σn+1 on that account. The analogue

of such a situation in Schwinger’s source theoretic approach to quantum field

theory (Schwinger, 1969) would be one where the external sources were switched

off during some interval of time, so that the vacuum (empty space) remained

unchanged during that time.

Suppose now that, given such a calibrated apparatus, the observer had instead

prepared at stage Σn some labstate Ψn of the CBR form

Ψn =
2rn−1∑
i=1

Ψiin, (7.17)

that is, a labstate with no signal ground component (note that the summation

(7.17) in runs from 1, not 0). Then for calibrated apparatus with semi-unitary

labstate evolution, the signal theorem tells us that there can be no signal ground

component in the labstate Ψn+1 at time n+ 1, and so we may write

Ψn → Un+1,nΨn =

2rn+1−1∑
j=1

Φjjn+1, (7.18)

where

Φj =

2rn−1∑
i=1

U ji
n+1,nΨ

i. (7.19)

This is an important result, because it tells us that under normal circumstances,

calibrated apparatus does not normally fall into its signal ground state during

an experiment, unless forced to do so by an external agency, such as the observer

switching it off.

Example 7.13 Consider a calibrated rank-one apparatus evolving into

a rank-one apparatus between stages Σn and Σn+1 under semi-unitary

evolution. Then by a suitable choice of phase of basis elements, we may always

write

0n → Un+1,n0n = 0n+1,

1n → Un+1,n1n = 1n+1, (7.20)

from which we conclude the dynamics is essentially trivial.

The following example is important, as it models what happens in various

quantum optics modules such as beam splitters and Wollaston prisms.
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Example 7.14 Consider a calibrated rank-two apparatus evolving into

a rank-two apparatus between stages Σn and Σn+1 under semi-unitary

evolution. Then calibration means that we must have Un+1,n0n = 0n+1.

Suppose further that it is known that any signality-one labstate always evolves

into a signality-one labstate. Then we may write

Â1
n0n ≡ 1n → Un+1,n1n = α1n+1 + β2n+1,

Â2
n0n ≡ 2n → Un+1,n2n = γ1n+1 + δ2n+1, (7.21)

where the complex coefficients α, β, γ, and δ satisfy the unitarity constraints

|α|2 + |β|2 = |γ|2 + |δ|2 = 1, α∗γ + β∗δ = 0. (7.22)

Now consider the signality-two state Â1
nÂ

2
n0n ≡ 3n. Since the apparatus is

calibrated, this state must necessarily evolve into a state that has no signal

ground component. Therefore, we may write

Un+1,n3n = a1n+1 + b2n+1 + c3n+1, (7.23)

where |a|2 + |b|2 + |c|2 = 1. Moreover, since the evolution is given as semi-

unitary, then inner products are preserved. Hence we deduce

α∗a+ β∗b = γ∗a+ δ∗b = 0. (7.24)

Writing these relations in matrix form, we find[
α∗ β∗

γ∗ δ∗

] [
a

b

]
=

[
0

0

]
. (7.25)

The 2 × 2 matrix on the left-hand side of this expression is necessarily

invertible, leading to the conclusion that a = b = 0 and therefore that

3n → Un+1,n3n = 3n+1, (7.26)

modulo some arbitrary phase.

The following application of the signal theorem is surprising and somewhat

counterintuitive, because what appears to be a trivial mathematical result rules

out an entire class of physics experiment.

Example 7.15 Suppose an experimentalist prepares a rank-two, signality-

one labstate of the form

Ψn = (αÂ1
n + βÂ2

n)0n, (7.27)

where |α|2 + |β|2 = 1. Suppose further that the dynamics is semi-unitary and

that the apparatus at stage Σn+1 is of rank three. Then by the signal theorem,

semi-unitary evolution such that
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Â1
n0n → Un+1,nÂ

1
n0n = (aÂ1

n+1 + bÂ2
n+1)0n+1, |a|2 + |b|2 = 1,

Â2
n0n → Un+1,nÂ

2
n0n = (cÂ2

n+1 + dÂ3
n+1)0n+1, |c|2 + |d|2 = 1, (7.28)

is not possible.

This result tells us that a double-slit type of experiment where each slit has

only one quantum outcome site in common with the other cannot be physically

constructed. Experiments where two or more quantum outcome sites are in

common are possible, and then inevitable quantum interference terms will occur

in final state amplitudes. For example, in a standard double-slit experiment, every

site on the detector screen is affected by the presence of each of the two slits.

This result reinforces an important rule in QM: we cannot simply add pieces

of apparatus together and expect the result to conform to an addition of classical

expectations. A double-slit experiment where both slits are open is not equivalent

to two single-slit experiments run coincidentally and simultaneously.

7.11 Null Evolution

There is an interesting class of quantum process described by evolution operators

called null evolution operators , associated with the concept of a null test . Recall

that a null test is one that occurs between two or more stages but no information

is extracted. The phenomenon of persistence is associated with null evolution

operators

Persistence

To understand the action of a null evolution operator, consider the idealized

scenario of an initial labstate Ψn in a rank r quantum register Qn evolving into

labstate Ψn+1 in a quantum register Qn+1 of the same rank r. In the following,

we shall use the CBR at all stages.

Suppose we are given that

Ψn =

2r−1∑
i=0

Ψi
nin. (7.29)

Now consider a particular evolution operator Nn+1,n defined by

Nn+1,n ≡
2r−1∑
j=0

jn+1jn. (7.30)

Then under this evolution operator,

Ψn → Nn+1,nΨn =

2r−1∑
j=0

jn+1jn

2r−1∑
i=0

Ψi
nin =

2r−1∑
i,j=0

Ψi
njn+1jnin︸︷︷︸

δij

=

2r−1∑
i=0

Ψi
nin+1.

(7.31)
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This is a labstate at stage Σn+1 with exactly the same coefficient profile, that is,

set of coefficients {Ψi
n}, as the initial labstate. It is reasonable in this context to

refer to this phenomenon as an example of persistence and refer to Ψn+1 as a

persistent image of Ψn.

Such an evolution operator will be referred to as a null evolution operator

(NEO). An NEO Nn+1,n makes sense only under particular circumstances: the

rank of the quantum register at stage Σn+1 must be the same as that at stage Σn

and there has to be a one-to-one identification of the elements of the preferred

bases.

This form of evolution demonstrates the two faces of time: on the one hand,

labtime (the time of the observer) goes on as normal, being collated with rel-

ative external context such as the expansion of the Universe. The labtime of a

given observer cannot be reversed relative to other observers, according to all

known current physics, although it can be slowed relative to the labtime of other

observers. On the other hand, some objects such as labstate profiles of persistent

labstates may appear to be indifferent to labtime.

Dynamical Null Tests

In Chapter 11 we discuss Newton’s famous experiment that showed how a light

beam incident on one prism would split into a spectrum of subbeams that could

subsequently be refocused onto a second prism and recombined once more into

a single beam. This is an example of a nontrivial null test. Because the action of

the first prism is nontrivial, and therefore requires nontrivial “undoing” by the

second prism, we refer to the overall process as an example of a dynamical null

test . The generic QDN description of such tests is based on the following.

Consider an labstate Ψn in initial quantum register Qn of rank r = rn, given

by (7.29). Now apply semi-unitary evolution from stage Σn to stage Σn+1 given

by evolution operator

Un+1,n =

2rn+1−1∑
i=0

2rn−1∑
j=0

in+1U
i,j
n+1,njn, (7.32)

where d̂n ≡ dimQn − 1, d̂n+1 ≡ dimQn+1 − 1, and the coefficients
{
U i,j
n+1,n

}
satisfy the semi-unitary condition (7.10). According to our theorems on semi-

unitary operators, we require rn+1, the rank of Qn+1, to satisfy rn+1 � rn.

The labstate Ψn+1 at stage Σn+1 is given by

Ψn+1 = Un+1,nΨn =

2rn+1−1∑
i=0

2rn−1∑
j=0

in+1U
i,j
n+1,nΨ

j
n. (7.33)

Clearly, Ψn+1 will not be a persistent image of Ψn in general. Now consider

stage Σn+2, and suppose that the rank rn+2 of Qn+2 is given by rn+2 = rn + p,

where rn is the rank of Qn and p � 0. Then in terms of the qubits making up

the quantum register, we can write
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Qn+2 ≡ Q1
n+2Q

2
n+2 . . . Q

rn
n+2︸ ︷︷ ︸

Q̂n+2

Qrn+1
n+2 . . . Qrn+p

n+2 . (7.34)

Here Q̂n+2 is a subspace of Qn+2 of dimension equal to that of Qn. Note that, by

construction, the first 2rn elements of the CBR forQn+1 involve signal excitations

only of the detectors associated with Q̂n+2.

Now define the operator

Vn+2,n+1 ≡
2rn−1∑
i=0

2rn+1−1∑
j=0

in+2U
j,i∗
n+1,njn+1. (7.35)

Note that the upper limit on the summation over the index i is 2rn − 1, not

2rn+1 − 1. This operator effectively maps states in Un+1,nQn into Q̂n+2. Under

evolution generated by Vn+2,n+1 we find

Ψn+2 ≡ Vn+2,n+1Ψn+1 =

2rn−1∑
i=0

Ψi
nin+2, (7.36)

which is a persistent image, in subspace Q̂n+2, of the original labstate Ψn.

This process demonstrates the principle known as microscopic reversibility :

operator Vn+2,n+1 has effectively “undone” the action of Un+1,n on Ψn. It is

important to understand that as far as QDN is concerned, nothing has remained

unchanged: the observer changes from stage to stage and all labstates change

with those jumps. Microscopic reversibility is an illusion in a sense, but one with

significant empirical content.

7.12 Path Summations

The QDN formulation of dynamics has some of the hallmarks of the Feynman

path integral formulation of quantum mechanics (Feynman and Hibbs, 1965),

with some significant differences: in QDN, time is not continuous, the Hilbert

space changes at each intermediate time step and is assumed finite dimensional,

and there is no need to introduce a Lagrangian or Hamiltonian.

A typical run or repetition of a basic experiment will be assumed to start at

stage Σ0 and finish at a later stage ΣN , for N > 0. Given labstate preparation at

stage Σ0, there will be semi-unitary evolution through a sequence of apparatus

stages {Σn : 0 < n < N}. At these intermediate stages, the observer does not

look at their detectors, which are therefore to be regarded as virtual. Outcome

detection takes place only at the final stage ΣN .

At the final stage ΣN , the observer looks at all of their detectors and works out

from rule (5.14) which element of the CBR of the preferred basis BN corresponds

to the observed set of signals, for that given run. The objective in practice is to

compare the statistical distribution of observed outcomes with the theoretically

derived conditional probability Pr(kN |Ψ0) for each of the possible final state

signal basis outcomes kN , 0 � k < 2rN .
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Semi-unitary evolution will be assumed to hold between stages Σ0 and ΣN ,

i.e., condition (7.6) is valid. Given an initial labstate Ψ0 ≡
∑2r0−1

i=0 Ψi
0i0, the next

labstate is given by Ψ1 = U1,0Ψ0, where U1,0 is semi-unitary, and so on, until

finally we may write

ΨN = UN,N−1UN−1,N−2 . . .U1,0Ψ0, N > 0. (7.37)

Inserting a resolution of each evolution operator of the form (7.8), the final state

can be expressed in the form

Ψn =
2rN −1∑
jN=0

2rN−1−1∑
jN−1=0

. . .
2r0−1∑
j0=0

jNU
jN ,jN−1

N,N−1 U
jN−1,jN−2

N−1,N−2 . . . U j1,j0
1,0 Ψj0

0 . (7.38)

We may immediately read off from this expression the coefficient of the signal

basis vector iN . This gives the QDN analogue of the quantum mechanics Feyn-

man amplitude 〈Φi
final|Ψinitial〉 for the initial state |Ψinitial〉 to go to a particular

final outcome state |Φi
final〉. In our case, what we are actually reading off is

A(iN |Ψ0), the amplitude for the labstate to propagate from its initial state Ψ0

and then be found in signal basis state i at stage ΣN . We find

A(iN |Ψ0) =

2rN−1−1∑
jN−1=0

2rN−2−1∑
jN−1=0

. . .

2r0−1∑
j0=0

U
i,jN−1

N,N−1U
jN−1,jN−2

N−1,N−2 . . . U j1,j0
1,0 Ψj0

0 . (7.39)

The required conditional probabilities are obtained from the Born rule as

discussed above, and so we conclude

Pr(iN |Ψ0) =

∣∣∣∣∣
2rN−1−1∑
jN−1=0

2rN−2−1∑
jN−2=0

. . .

2r0−1∑
j0=0

U
i,jN−1

N,N−1U
jN−1,jN−2

N−1,N−2 . . . U j1,j0
1,0 Ψj0

0

∣∣∣∣∣
2

.

(7.40)

By writing the amplitude (7.39) in the form

A(iN |Ψ0) =

2rN−1−1∑
jN−1=0

U i,j
N,N−1A(jN−1|Ψ0), (7.41)

it is straightforward to use induction and the semi-unitary matrix conditions

(7.10) to prove that

2rN −1∑
i=0

Pr(iN |Ψ0) = 1, (7.42)

which means total probability is conserved, as expected.

Feynman derived his path integral for continuous time quantum mechanics by

discretizing time and then taking the limit of the discrete time interval going

to zero. Technical problems occur in the taking of this limit, and because of

these, the path integral in its original formulation (Feynman and Hibbs, 1965) is

generally regarded as ill-defined. However, it is an invaluable heuristic tool that
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provides the best way to discuss the quantization of certain classical theories for

which other approaches prove inadequate. In QDN, time is discrete and in that

sense we follow Feynman’s lead while avoiding the pitfalls associated with the

continuum limit, which we do not take in QDN.

This completes our introduction to the QDN formalism. An obvious extension

is to include mixed labstates. These are discussed in Chapter 9.
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