
JFP 29, e14, 46 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000108

Pure iso-type systems

Y A N P E N G Y A N G and B R U N O C . D . S . O L I V E I R A
The University of Hong Kong, Pokfulam, Hong Kong
(e-mails: ypyang@cs.hku.hk, bruno@cs.hku.hk)

Abstract

Traditional designs for functional languages (such as Haskell or ML) have separate sorts of syntax for
terms and types. In contrast, many dependently typed languages use a unified syntax that accounts for
both terms and types. Unified syntax has some interesting advantages over separate syntax, including
less duplication of concepts, and added expressiveness. However, integrating unrestricted general
recursion in calculi with unified syntax is challenging when some level of type-level computation
is present, since properties such as decidable type-checking are easily lost. This paper presents a
family of calculi called pure iso-type systems (PITSs), which employs unified syntax, supports gen-
eral recursion and preserves decidable type-checking. PITS is comparable in simplicity to pure type
systems (PTSs), and is useful to serve as a foundation for functional languages that stand in-between
traditional ML-like languages and fully blown dependently typed languages. In PITS, recursion and
recursive types are completely unrestricted and type equality is simply based on alpha-equality, just
like traditional ML-style languages. However, like most dependently typed languages, PITS uses
unified syntax, naturally supporting many advanced type system features. Instead of implicit type
conversion, PITS provides a generalization of iso-recursive types called iso-types. Iso-types replace
the conversion rule typically used in dependently typed calculus and make every type-level compu-
tation explicit via cast operators. Iso-types avoid the complexity of explicit equality proofs employed
in other approaches with casts. We study three variants of PITS that differ on the reduction strategy
employed by the cast operators: call-by-name, call-by-value and parallel reduction. One key finding
is that while using call-by-value or call-by-name reduction in casts loses some expressive power, it
allows those variants of PITS to have simple and direct operational semantics and proofs. In contrast,
the variant of PITS with parallel reduction retains the expressive power of PTS conversion, at the
cost of a more complex metatheory.

1 Introduction

Dependent types are gaining popularity in functional programming language design and
research in recent years (Augustsson, 1998; Stump et al., 2008; Altenkirch et al., 2010;
Sjöberg et al., 2012; Weirich et al., 2013; Gundry, 2013; Casinghino et al., 2014; Sjöberg
& Weirich, 2015; Sjöberg, 2015; Eisenberg, 2016; Weirich et al., 2017). Several new full-
spectrum dependently languages, including Agda (Norell, 2007) or Idris (Brady, 2011),
are emerging. These languages are designed to be both programming languages and proof
assistants. As such, they support different forms of assurances, such as strong normaliza-
tion and logical consistency, not typically present in traditional programming languages
such as Haskell and ML. Nevertheless, traditional designs for functional languages still
have some benefits. While strong normalization and logical consistency are certainly nice
properties to have, and can be valuable to have in many domains, they can also impose

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108
https://orcid.org/0000-0001-5240-999X
mailto:ypyang@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.1017/S0956796819000108

2 Y. Yang and B. Oliveira

restrictions on how programs are written. For example, the termination checking algo-
rithms typically employed by dependently typed languages such as Agda or Idris can only
automatically ensure termination of programs that follow certain patterns. Incorporating
recursion and recursive types in such languages needs careful checks (e.g. termination
and positivity) for not breaking the logical consistency and strong normalization. In
contrast, Haskell or ML programmers can write their programs much more freely and
can support general recursion and recursive types easily, since they do not need to retain
strong normalization and logical consistency. Thus, the design space between ML-style
languages and full-blown dependently typed languages like Agda or Idris is very large.

From an implementation and foundational point of view, dependently typed languages
and traditional functional languages also have important differences. Languages like
Haskell or ML have a strong separation between terms and types (and also kinds).
This separation often leads to duplication of constructs. For example, when the type
language provides some sort of type-level computation, constructs such as type appli-
cation (Eisenberg et al., 2016) (mimicking value-level application) may be needed. In
contrast, many dependently typed languages unify types and terms. There are benefits in
unifying types and terms. In addition to the extra expressiveness afforded, for example,
by dependent types, only one syntactic level is needed. Thus, duplication can be avoided.
Having less language constructs simplifies the language, making it easier to study (from
the meta-theoretical point of view) and maintain (from the implementation point of view).

In principle, having unified syntax would be beneficial even for more traditional designs
of functional languages, which do not have strong normalization or logical consistency
and have only restricted forms of type-level computation. Not surprisingly, researchers
have in the past considered options for implementing functional languages based on uni-
fied syntax (Cardelli, 1986; Peyton Jones & Meijer, 1997; Augustsson, 1998), using some
variant of pure type systems (PTSs) (Barendregt, 1992) (normally extended with general
recursion). Thus, with a simple and tiny calculus, they showed that powerful and quite
expressive functional languages could be built with unified syntax.

However, having unified syntax for types and terms brings challenges. One pressing
problem is that integrating (unrestricted) general recursion in dependently typed cal-
culi with unified syntax, while retaining logical consistency, strong normalization and
decidable type-checking is difficult. Indeed, many early designs using unified syntax and
unrestricted general recursion (Cardelli, 1986; Augustsson, 1998) lose all three properties.
For pragmatic reasons, languages like Agda or Idris also allow turning off the termination
checker, which allows for added expressiveness, but loses the three properties as well.

For traditional languages, only the loss of decidable type-checking is problematic.
Unlike strong normalization and logical consistency, decidable type-checking is nor-
mally one property that is often desirable in a traditional programming language design.
Decidable type-checking implies that an algorithm that checks whether an expression is
typeable or not exists. It is natural to ask the question of whether it is possible to come
up with a simpler language design for unified syntax and general recursion, if all we
wish to preserve is decidable type-checking. Surprisingly, there are not so many designs
that attempt to support unified syntax and general recursion with decidable type-checking.
Notable exceptions are dependently typed Haskell (Weirich et al., 2017) and PTSs with
explicit convertibility proofs (PTSf) (van Doorn et al., 2013). However, these works are
still quite involved due to the need of a separate language for building equality proof terms.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 3

This paper presents a family of calculi called pure iso-type systems (PITSs), which
employs unified syntax, supports general recursion and preserves decidable type-checking.
PITS is comparable in simplicity to PTSs by making each type-level computation step
explicit. In essence, each type-level reduction or expansion is controlled by a type-safe
cast. Since single computation steps are trivially terminating, decidability of type-checking
is possible even in the presence of non-terminating programs at the type level. At the same
time, term-level programs using general recursion work as in any conventional functional
languages and can be non-terminating. Such design choice is useful to serve as a foun-
dation for functional languages that stand in-between traditional ML-like languages and
fully blown dependently typed languages. In PITS, recursion and recursive types are com-
pletely unrestricted and type equality is simply based on alpha-equality, just like traditional
ML-style languages. However, like most dependently typed languages, PITS uses unified
syntax, naturally supporting many advanced type system features (such as higher-kinded
types (Girard, 1972) or kind polymorphism (Yorgey et al., 2012)).

PITS design means that instead of an implicit type conversion (employed by PTS), PITS
provides a generalization of iso-recursive types (Crary et al., 1999; Pierce, 2002) called
iso-types. Iso-types replace the conversion rule typically used in dependently typed calcu-
lus, and make every type-level computation explicit via cast operators. While such explicit
casts would make many forms of dependently typed programming inconvenient, they are
sufficient to express the kind of type-level computation required by more traditional lan-
guage designs. We study three variants of PITS that differ on the choice of the reduction
strategy used by cast operators: call-by-name, call-by-value or parallel reduction. The dif-
ferent variants give different trade-offs in terms of simplicity and expressiveness, which
we discuss thoroughly in the paper.

One key finding is that while using call-by-value or call-by-name reduction in casts
loses some expressive power for type-level computation, it allows those variants of PITS
to have simple and direct operational semantics and proofs. In contrast, the variant of PITS
with parallel reduction retains the expressive power of PTS conversion, at the cost of a
more complex metatheory where type-safety proofs must be shown indirectly by showing
soundness/completeness to another variant of PTS. A detailed discussion of the trade-offs
between the variants of PITS, as well as PTSf , is given in Section 7.1.

To demonstrate the application of PITS, we build a simple surface language Fun that
extends PITS with algebraic datatypes using a Scott encoding of datatypes (Mogensen,
1992). We also implement prototype interpreter and compiler for Fun, which can run all
examples shown in this paper.

In summary, the contributions of this work are:

• PITS: A variant of PTS with general recursion, unified syntax and decidable type-
checking.

• Iso-types: A generalization of iso-recursive types, which makes all type-level com-
putation steps explicit via casts operators. The combination of casts and recursion
subsumes iso-recursive types.

• Studying three different reduction strategies: We study PITS with three different
reduction strategies: call-by-name PITS, call-by-value PITS and PITS with parallel
reduction at the type level. One key conclusion is that call-by-name and call-by-
value PITS have very simple and direct operational semantics and proofs. The

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

4 Y. Yang and B. Oliveira

added expressive power brought by parallel reduction complicates the semantics
and metatheory, and requires a more complex formalization.

• Mechanized proofs: All proofs of PITS in the paper are machine-checked in Coq
theorem prover (The Coq Development Team, 2016) and available online.

• Prototype implementation: Prototype interpreter and compiler for Fun, a simple
language based on PITS extended with algebraic datatypes, are implemented and
available online.

This paper is a significantly revised and expanded version of a conference paper (Yang
et al., 2016). There are three main novelties with respect to the conference version.
Firstly, while the conference version of the paper only deals with a calculus of construc-
tions (Coquand & Huet, 1988) style calculus (with the “type-in-type” axiom), PITS is
generalized to deal with a whole family of calculi in the PTS tradition. Secondly, the study
of call-by-value is new. Finally, for the third variant with parallel reduction, we prove a
completeness theorem that demonstrates that our parallel reduction relation subsumes full
beta reduction used in PTS. All related online materials are available from:

https://bitbucket.org/ypyang/pits-jfp

2 Motivation and overview

In this section, we motivate the design and informally introduce the main features of PITS.
In particular, we show how iso-types can be used to allow general recursion, instead of the
typical conversion rule in PTS. We also give examples to illustrate how features of modern
functional languages can be encoded in PITS. The formal details of PITS are presented in
Sections 4, 5 and 6.

2.1 Implicit type conversion in PTSs

PTSs (Barendregt, 1991) are a generic framework to study a family of type sys-
tems, including the Simply Typed Lambda Calculus, System F (Girard, 1972) and the
Calculus of Constructions (Coquand & Huet, 1988). A PTS is determined by a triple
(Sorts, A , R) (Barendregt, 1991) where A ⊂ Sorts × Sorts is a set of Axioms to type
sorts and R ⊂ Sorts × Sorts × Sorts is a set of Rules to type �-types. By specifying
the PTS triple, we can obtain specific type systems. For example, given Sort = {�, �}
and A = {(�, �)}, if R = {(�, �, �)}, we obtain Simply Typed Lambda Calculus; if R =
{(�, �, �), (�, �, �)}, we obtain System F.

The typing rules for PTS contain a conversion rule:

� � e : A A =β B

� � e : B

This rule allows one to derive e : B from the derivation of e : A with the beta equality of A
and B. This rule is important to automatically allow terms with beta equivalent types to be
considered type-compatible. For example, consider the following identity function:

f = λy : (λx : �. x) Int. y

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://bitbucket.org/ypyang/pits-jfp
https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 5

The type of y is a type-level identity function applied to Int. Without the conversion rule,
f cannot be applied to 3, for example, since the type of 3 (Int) differs from the type of y
((λx : �. x) Int). Note that the beta equivalence (λx : �. x) Int =β Int holds. Therefore, the
conversion rule allows the application of f to 3 by converting the type of y to Int.

Decidability of type-checking and strong normalization. While the conversion rule in
PTS brings a lot of convenience, an unfortunate consequence is that it couples decidability
of type-checking with strong normalization of the calculus (van Benthem Jutting, 1993).
Therefore, adding general recursion to PTS becomes difficult, since strong normalization
is lost. Due to the conversion rule, any non-terminating term would force the type checker
to go into an infinite loop (by constantly applying the conversion rule without termina-
tion), thus rendering the type system undecidable. For example, assume a term z that has
type loop, where loop stands for any diverging computation. If we type check (λx : Int. x) z
under the normal typing rules of PTS, the type checker would get stuck as it tries to normal-
ize and compare two terms: Int and loop, where normalizing the latter is non-terminating.

2.2 Newtypes: A mechanism for explicit type conversion in Haskell

Early designs of functional languages such as Haskell deliberately forbid implicit type
conversions. However, although not widely appreciated, since the very beginning Haskell
(and other functional languages) has supported explicit type conversions via algebraic
datatypes, or their simpler sibling newtypes. In essence, encapsulated behind algebraic
datatypes and newtypes is a language mechanism that supports explicit type conversions.
Such language mechanism is closely related to iso-recursive types, but also allows for
computations that are not recursive.

In early versions of Haskell, such as Haskell 98, there is no real type-level compu-
tation as in dependently typed languages such as Coq (The Coq Development Team,
2016). In particular, there are no computational type-level lambdas. Indeed, Haskell for-
bids type-level lambdas to avoid higher-order unification that is required in dependently
typed languages such as Coq or Agda (Jones, 1993). While modern Haskell is half the way
in evolving into a dependently typed language, it still does not support type-level lambdas.

Despite the absence of type-level lambdas, it is still possible to express type-level
functions via newtype or data constructs. For example, the type Id defined by

newtype Id a = MkId {runId :: a}
can be viewed as a type-level identity function and Id a is isomorphic to type a. To convert
the type back and forth between a and Id a, one needs to explicitly use the constructor
MkId or the destructor runId:

MkId :: a → Id a
runId :: Id a → a

Iso-recursive types in Haskell. More generally, it is possible to use newtypes to model
recursive types in Haskell as well:

newtype Fix f = Fold {unfold :: f (Fix f)}

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

6 Y. Yang and B. Oliveira

The type Fix is a type-level fixpoint. Its constructor Fold forms a recursive type from func-
tion f and destructor unfold forces the computation to obtain the unrolling f (Fix f). Such
treatment of recursive types is well-studied, and it is essentially a form of iso-recursive
types.

While the explicit type-level computations enabled by newtypes or algebraic datatypes
are very simple, they are essential for many of the characterizing programming styles
employed in Haskell. For example, without such simple explicit type conversions it would
not be possible to have monadic programming (Wadler, 1995), or modular interpreters
enabled by approaches such as Datatypes à la Carte (Swierstra, 2008).

2.3 Iso-types: Explicit type conversion in PITS

The main source of inspiration for the design of PITS comes from iso-recursive types
(Crary et al., 1999; Pierce, 2002). Iso-types offer an alternative to the conversion rule
of PTS, making it explicit as to when and where to convert one type to another. Type
conversions are explicitly controlled by two language constructs: cast↓ (one-step reduc-
tion) and cast↑ (one-step expansion). In PITS, not only folding/unfolding of recursion at
the type level is explicitly controlled by term-level constructs, but also any other type-
level computation (including beta reduction/expansion). There is an analogy to language
designs with equi-recursive types and iso-recursive types, which are normally the two
options for adding recursive types to programming languages. With equi-recursive types,
type-level recursion is implicitly folded/unfolded, which makes establishing decidability
of type-checking much more difficult. In iso-recursive designs, the idea is to trade some
convenience by a simple way to ensure decidability.

We view the design of traditional dependently typed calculi, such as PTS, as analogous
to systems with equi-recursive types. In PTS, it is the conversion rule that allows type-level
computation to be implicitly triggered. However, the proof of decidability of type-checking
for PTS is non-trivial, as it depends on strong normalization (van Benthem Jutting, 1993).
Moreover, decidability is lost when adding general recursion. In contrast, the cast operators
in PITS have to be used to explicitly trigger each step of type-level computation, but it is
easy to ensure decidable type-checking, even in the presence of general recursion. Another
potential benefit of iso-types is that the problem of type-inference may be significantly
simpler in a language with iso-types than in a language with a conversion rule. Jones’ work
on type-inference for higher-kinded types in Haskell (Jones, 1993) seems to back up this
idea. We leave for future work exploring type-inference and unification for dependently
typed systems with iso-types.

PITS iso-types also have strong similarities with the explicit conversion mechanism
found in languages like Haskell. Differently from Haskell (and similarly to iso-recursive
types) iso-types are purely structural, while Haskell datatypes and newtypes are nominal.
Because iso-types are structural, they can be directly represented with type-level lambdas
(and other constructs). Moreover, since in PITS type equality is just alpha-equality, type-
level lambdas are not problematic, since they do not trigger computation during type-
checking.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 7

Reduction. The cast↓ operator allows a type conversion provided that the resulting type is
a reduction of the original type of the term. To explain the use of cast↓, assume an identity
function g defined by g = λy : Int. y and a term e such that e : (λx : �. x) Int. In contrast
to PTS, we cannot directly apply g to e in PITS since the type of e ((λx : �. x) Int) is not
syntactically equal to Int. However, note that the reduction relation (λx : �. x) Int ↪→ Int
holds. Therefore, we can use cast↓ for the explicit (type-level) reduction:

cast↓ e : Int

Then, the application g (cast↓ e) type checks.

Expansion. The dual operation of cast↓ is cast↑, which allows a type conversion provided
that the resulting type is an expansion of the original type of the term. To explain the use
of cast↑, let us revisit the example from Section 2.1:

f = λy : (λx : �. x) Int. y

We cannot apply f to 3 without the conversion rule. Instead, we can use cast↑ to expand
the type of 3:

(cast↑ [(λx : �. x) Int] 3) : (λx : �. x) Int

Thus, the application f (cast↑ [(λx : �. x) Int] 3) becomes well-typed. Intuitively, cast↑ per-
forms expansion, as the type of 3 is Int, and (λx : �. x) Int is the expansion of Int witnessed
by (λx : �. x) Int ↪→ Int. Notice that for cast↑ to work, we need to provide the resulting
type as argument. This is because for the same term, there may be more than one choice
for expansion. For example, 1 + 2 and 2 + 1 are both the expansions of 3.

One-step. The cast operators allow only one-step reduction or expansion. If two type-
level terms require more than one step of reductions or expansions for normalization, then
multiple casts must be used. Consider a variant of the example such that e : (λx : �. λy :
�. x) Int Bool. Given g = λy : Int. y, the expression g (cast↓ e) is ill-typed because cast↓ e
has type (λy : �. Int) Bool, which is not syntactically equal to Int. Thus, we need another
cast↓:

cast↓ (cast↓ e) : Int

to further reduce the type and allow the program g (cast↓ (cast↓ e)) to type check.

Analogy to newtypes in Haskell. Using cast operators, we can model the Haskell
example shown in Section 2.2:

Id = λx : �. x
cast↑ [Id a] : a → Id a
cast↓ : Id a → a

cast↑ and cast↓ are analogous to the datatype constructor MkId and destructor runId,
respectively. The difference is that PITS directly supports type-level lambdas without
the need of using newtype, though PITS only has alpha-equality without implicit beta

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

8 Y. Yang and B. Oliveira

conversion. In some sense, type-level lambdas in PITS are non-computational as newtype-
style “type functions” in Haskell. Nevertheless, we can still trigger type-level computation
by casts, similarly to newtype constructors and destructors in Haskell.

Decidability without strong normalization. With explicit type conversion rules, the
decidability of type-checking no longer depends on the strong normalization property.
Thus, the type system remains decidable even in the presence of non-termination at type
level. Consider the same example using the term z from Section 2.1. This time the type
checker will not get stuck when type-checking (λx : Int. x) z. This is because in PITS,
the type checker only performs a syntactic comparison between Int and loop, instead of
beta equality. Thus, it rejects the above application as ill-typed. Using explicit casts, the
type checker does not need to normalize types and it becomes decidable.

Variants of casts. A reduction relation is used in cast operators to convert types. We
study three possible reduction relations: call-by-name reduction, call-by-value reduction
and full reduction. Call-by-name and call-by-value reduction cannot reduce sub-terms at
certain positions (e.g., inside λ or � binders), while full reduction can reduce sub-terms at
any position. We also create three variants of PITS for each variant of casts. Specifically,
full PITS uses a decidable parallel reduction relation with full cast operators cast⇑ and
cast⇓. All variants reflect the idea of iso-types, but have trade-offs between simplicity and
expressiveness: call-by-name and call-by-value PITS use the same reduction relation for
both casts and evaluation to keep the system and metatheory simple, but lose some expres-
siveness, e.g. cannot convert λx : Int. (1 + 1) to λx : Int. 2. Full PITS is more expressive
but results in a more complicated metatheory (see Section 6). Note that when generally
referring to PITS, we do not specify the reduction strategy, which could be any variant.

2.4 General recursion

PITS supports general recursion and allows writing unrestricted recursive programs at the
term level. The recursive construct is also used to model recursive types at the type level.
Recursive terms and types are represented by the same μ primitive.

Recursive terms. The primitive μx : A. e can be used to define recursive functions. For
example, the factorial function would be written as:

fact = μ f : Int → Int. λx : Int. if x == 0 then 1 else x × f (x − 1)

We treat the μ operator as a fixpoint, which evaluates μx : A. e to its recursive unfold-
ing e[x
→ μx : A. e]. Term-level recursion in PITS works as in any standard functional
language, e.g., fact 3 produces 6 as expected (see Section 4.4).

Recursive types. The same μ primitive is used at the type level to represent iso-recursive
types (Crary et al., 1999). In the iso-recursive approach, a recursive type and its unfolding
are different, but isomorphic. The isomorphism is witnessed by two operations, typi-
cally called fold and unfold. This is also similar to the previous Haskell example of
(iso-)recursive types with Fold and unfold (see Section 2.2). In call-by-name PITS, such

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 9

Table 1. Encodable features of Fun

Full casts
Encodable features Section Encoding method Casts inferred required?

Algebraic datatypes 3.1 Scott encoding Yes No
Higher-kinded types 3.2 Directly by datatypes Yes No
Datatype promotion 3.2 Directly by datatypes Yes No
Higher-order abstract syntax 3.2 Directly by datatypes Yes No
Object encodings 3.3 Existential types No No
Vectors and GADTs 3.4 Leibniz equality No Yes

isomorphism is witnessed by cast↑ and cast↓. In fact, cast↑ and cast↓ generalize fold and
unfold: they can convert any types, not just recursive types, as we shall see in the example
of encoding parametrized datatypes in Section 3.

To demonstrate the use of casts with recursive types, we show the formation of the
“hungry” type (Pierce, 2002) H = μx : �. Int → x. A term z of type H will accept one more
integer every time when it is unfolded by a cast↓:

(cast↓ z) 3 : H

cast↓ ((cast↓ z) 3) 3 : H

cast↓(. . . (cast↓ z) 3 . . .) 3 : H

3 Applications

PITS is a simple core calculus, but expressive enough to encode useful language constructs.
In order to show how features of modern functional languages can be encoded in PITS,
we implemented a simple functional language Fun, a thin layer that is desugared to a
specific PITS with only a single sort � and “type-in-type” axiom. Thus, Fun is not logically
consistent due to the “type-in-type” axiom. We focus on common features available in
traditional functional languages and some interesting type-level features, but not the full
power of dependent types. In this section, we briefly introduce the implementation of Fun
and present examples.

Encodable features. Table 1 shows a summary of encodable features in Fun, including
algebraic datatypes (Section 3.1), higher-kinded types (Section 3.2), datatype promotion
(Section 3.2), high-order abstract syntax (Section 3.2) and object encodings (Section 3.3).
The encoding of algebraic datatypes in Fun uses Scott encodings (Mogensen, 1992). The
encoding itself uses casts, but the use of casts is completely transparent to programmers.
In other words, the elaboration process inserts the casts automatically. Thus, in all the
examples in 3.2, the casts are inferred automatically. We illustrate how to encode a simple
form of objects in Section 3.3, but since we did not develop a source syntax for objects
the encoding is manual and requires programmers to use casts explicitly. All the examples
(except the last one) work in the 3 variants of PITS. We also discuss one final example on
dependently typed vectors (Section 3.4) that only works with parallel reduction. Vectors
are an example of what would be called a GADT in Haskell terminology. All examples
can run in the prototype interpreter and compiler.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

10 Y. Yang and B. Oliveira

3.1 Fun implementation

Fun uses PITS as its core language and provides surface language constructs for alge-
braic datatypes and pattern matching. The core language is a specific call-by-name PITS
called λ I (Yang et al., 2016). λ I specifies the PITS triple (see Section 2.1) as Sort = {�},
A = {(�, �)} and R = {(�, �, �)}. Algebraic datatypes and pattern matching in Fun are
implemented using Scott encodings (Mogensen, 1992), which can be later desugared into
PITS (λ I) terms. For demonstration, we implemented a prototype interpreter and compiler
for Fun, both written in GHC Haskell (Marlow, 2010). Fun terms are firstly desug-
ared into λ I terms and then type-checked using PITS typing rules. The type-checked λ I
terms can be evaluated directly by the interpreter or compiled to JavaScript or Haskell
code.

Inferring casts. As a surface language, explicit casts are mostly intended to be generated
by the compiler but not by the programmers. Indeed, some casts in Fun are automati-
cally inferred by elaboration rules. In particular, the elaboration of algebraic datatypes
and pattern matching infers casts. Since the focus of this work is to illustrate the design
space of the core language with casts, we do have not yet explored the addition of surface-
level mechanisms for doing more advanced type-level computation built on top of casts.
Languages like Haskell have a similar design to Fun with a very explicit core language
with casts. In Haskell, cast inference is taken to an extreme. Many surface features in
Haskell, e.g., type families (Schrijvers et al., 2008) and associated types (Chakravarty
et al., 2005), involve type-level computation where casts are inferred by the compiler.
We hope to explore similar type-level computation mechanisms in Fun in the future.

In this section, most examples written in Fun do not require programmers to write casts
directly as they are automatically inferred. Two exceptions are the encodings of objects and
vectors, whose elaboration rules are not implemented in the Fun yet. We demonstrate these
two examples by manually adding casts. Also, to make them runnable in the prototype
implementation, cast operators from the core language are allowed to be called from the
surface programs.

Encoding parametrized algebraic datatypes. We give an example of encoding
parametrized algebraic datatypes in PITS via the μ-operator and explicit casts. Note that
for simplicity reasons, we use call-by-name casts to demonstrate the encoding. Call-by-
value casts can similarly be used for encoding but require a more complex treatment of
recursive types, since they become values in call-by-value PITS (will be discussed later in
Section 5.2). Importantly, we should note that having iso-recursive types alone (and alpha-
equality) would be insufficient to encode parametrized types: the generalization afforded
by iso-types is needed here.

In Fun, we can define a polymorphic list as

data List a = Nil | Cons a (List a);

This Fun definition is translated into PITS using a Scott encoding (Mogensen, 1992) of
datatypes:

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 11

List = μL : � → �. λa : �. �b : �. b → (a → L a → b) → b
Nil = λa : �. cast2

↑ [List a] (λb : �. λn : b. λc : (a → List a → b). n)

Cons = λa : �. λx : a. λ(xs : List a).
cast2

↑ [List a] (λb : �. λn : b. λc : (a → List a → b). c x xs)

The type constructor List is encoded as a recursive type.1The body is a type-level function
that takes a type parameter a and returns a dependent function type, i.e., �-type. The
body of �-type is universally quantified by a type parameter b, which represents the result
type instantiated during pattern matching. Following are the types corresponding to data
constructors: b for Nil, and a → L a → b for Cons, and the result type b at the end. The
data constructors Nil and Cons are encoded as functions. Each of them selects a different
function from the parameters (n and c). This provides branching in the process flow, based
on the constructors. Note that cast↑ is used twice here (written as cast2

↑): one for one-
step expansion from τ to (λa : �. τ) a and the other for folding the recursive type from
(λa : �. τ) a to List a, where τ is the type of cast2

↑ body.
We have two notable remarks from the example above. Firstly, iso-types are critical

for the encoding and cannot be replaced by iso-recursive types. Since type constructors
are parametrized, not only folding/unfolding recursive types but also type-level reduc-
tion/expansion is required, which is only possible with casts. Secondly, although casts
using call-by-value and call-by-name reduction are not as powerful as casts using full
beta reduction, they are still capable of encoding many useful constructs, such as alge-
braic datatypes and records. Nevertheless, full-reduction casts enable other important
applications. Some applications of full casts are discussed later (see Section 3.4).

3.2 Combining algebraic datatypes with advanced features

Languages like Haskell support several advanced type-level features. Such features, when
used in combination with algebraic datatypes, have important applications. Next, we dis-
cuss some of these features and their applications. The purpose is to show all these
advanced features are encodable in PITS. For simplicity reasons, we use arrow syntax
(x : A) → B as syntactic sugar for �-types �x : A.B in the following text.

Higher-kinded types. Higher-kinded types are type-level functions. To support higher-
kinded types, languages like Haskell use core languages that account for kind expressions.
The existing core language of Haskell, System FC (Sulzmann et al., 2007), is an extension
of System Fω (Girard, 1972), which natively supports higher-kinded types. We can simi-
larly construct higher-kinded types in PITS. We show an example of encoding the functor
“type-class” as a record:

data Functor (f : � → �) =
Func { fmap : (a : �) → (b : �) → (a → b) → f a → f b};

1 An alternative way of encoding is to flip L and a as List = λa : �. μL : �. �b : �. b → (a → L → b) → b.
However, L here is not parametric and implicitly has a fixed parameter a. Such encoding is more limited
and does not work with non-uniform types where parameters can vary (e.g. PTree example in Section 3.2).

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

12 Y. Yang and B. Oliveira

Note that in PITS, records are encoded using algebraic datatypes in a similar way as
Haskell’s record syntax (Marlow, 2010). Here, we use a record to represent a functor,
whose only field is a function called fmap. The functor “instance” of the Maybe datatype is:

data Maybe (a : �) = Nothing | Just a;

def maybeInst : Functor Maybe =
Func Maybe (λa : �. λb : �. λf : a → b. λx : Maybe a.

case x of
Nothing ⇒ Nothing b

| Just (z : a) ⇒ Just b (f z));

After the translation process, the Functor record is desugared into a datatype with only one
data constructor (Func) that has type:

(f : � → �) → (a : �) → (b : �) → (a → b) → f a → f b

Since Maybe has kind � → �, it is legal to apply Func to Maybe.

Datatype promotion. Recent versions of Haskell introduced datatype promotion (Yorgey
et al., 2012), in order to allow ordinary datatypes as kinds and data constructors as types.
With the power of unified syntax, data promotion is made trivial in Fun. We show a rep-
resentation of a labeled binary tree, where each node is labeled with its depth in the tree.
Below is the definition:

data Nat = Z | S Nat;

data PTree (n : Nat) = Empty | Fork (z : Int) (x : PTree (S n)) (y : PTree (S n));

Notice how the datatype Nat is “promoted” to be used at the kind level in the definition of
PTree. Next, we can construct a binary tree that keeps track of its depth statically:

Fork Z 1 (Empty (S Z)) (Empty (S Z))

If we accidentally write the wrong depth, for example:

Fork Z 1 (Empty (S Z)) (Empty Z)

The above will fail to pass type-checking.
The PTree example can also be viewed as a dependent variant of nested datatypes (Bird

& Meertens, 1998). For example, Nest is a non-dependent nested datatype as follows
(written in Haskell):

data Nest a = NilN | ConsN a (Nest (a, a))

where ConsN contains a parameter with type Nest (a, a) that varies from Nest a. This is
similar to Fork that contains a parameter of type PTree (S n). Notice that nested datatypes
are supported in Haskell 98. Pattern matching for nested datatypes in Haskell already
worked before GADTs were added to Haskell. In other words, such restricted subset of
non-uniform types (i.e. nested datatypes) do not require the use of equality during pattern
matching (unlike the more general case of GADTs).

Higher-order abstract syntax. Higher-order abstract syntax (Pfenning & Elliott, 1988)
is a representation of abstract syntax where the function space of the meta-language is used

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 13

to encode the binders of the object language. We show an example of encoding a simple
lambda calculus:

data Exp = Num Int
| Lam (Exp → Exp)
| App Exp Exp;

Note that in the lambda constructor (Lam), the recursive occurrence of Exp appears in a
negative position (i.e. in the left side of a function arrow). Systems like Coq (The Coq
Development Team, 2016) and Agda (Norell, 2007) would reject such programs since
it is well-known that such datatypes can lead to logical inconsistency. Moreover, such
logical inconsistency can be exploited to write non-terminating computations and make
type-checking undecidable. In contrast, Fun is able to express higher-order abstract syntax
in a straightforward way, while preserving decidable type-checking.

Using Exp, we can write an evaluator for the lambda calculus. As noted by Fegaras and
Sheard (1996), the evaluation function needs an extra function (reify) to invert the result
of evaluation. The code for the evaluator is shown next (we omit most of the unsurprising
cases; text after “--” are comments):

data Value = VI Int | VF (Value → Value);
data Eval = Ev {eval′ : Exp → Value, reify′ : Value → Exp};
defrec ev : Eval =

Ev (λe : Exp. case e of ... -- excerpted
| Lam fun ⇒ VF (λe′ : Value. eval′ ev (fun (reify′ ev e′)))

(λv : Value. case v of ... -- excerpted
| VF fun ⇒ Lam (λe′ : Exp. reify′ ev (fun (eval′ ev e′)));

def eval : Exp → Value = eval′ ev;

The definition of the evaluator is mostly straightforward. Here, we create a record Eval,
inside which are two name fields eval′ and reify′. Similarly to the record syntax of Haskell,
both eval′ and reify′ are also functions for projections of fields. The eval′ function is con-
ventional, dealing with each possible shape of an expression. The tricky part lies in the
evaluation of a lambda abstraction, where we need a second function, called reify′, of
type Value → Exp that lifts values into terms. Thanks to the flexibility of the μ primitive,
mutual recursion can be encoded using records.

Evaluation of a lambda expression proceeds as follows:

def show = λv : Value. case v of VI n ⇒ n;
def expr = App (Lam (λf : Exp. App f (Num 42))) (Lam (λg : Exp. g));
show (eval expr) -- returns 42

3.3 Object encodings

Casts are useful for modeling examples other than algebraic datatypes. For example, we
can model a simple form of object encodings with call-by-name cast operators (Yang &
Oliveira, 2017). We present an example of existential object encodings (Pierce & Turner,
1994) in Fun, which originally requires System Fω. First, we encode the existential type

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

14 Y. Yang and B. Oliveira

and its constructor in Fun by a standard Church encoding (Pierce, 2002) using the universal
type (i.e. �-type):

def Ex = λP : � → �. (z : �) → ((x : �) → P x → z) → z;
def pack = λP : � → �. λe1 : �. λe2 : P e1.

cast↑ [Ex P] (λz : �. λf : (x : �) → P x → z. f e1 e2);

where pack is the constructor to build an existential package. Thus, we can encode an
existential type ∃x. A as Ex (λx : �. A) in Fun. The object type operator Obj can be encoded
as follows:

data Pair (A : �) (B : �) = MkPair { fst : A, snd : B};
def Obj = λI : � → �. Ex (λX : �. Pair X (X → I X));

where Pair A B encodes the pair type A × B. In the definition of Obj, the binder I denotes
the interface. The body is an existential type which packs a pair. The pair consists of a hid-
den state (with type X) and methods which are functions depending on the state (with type
X → I X). For a concrete example of objects, we use the interface of cell objects (Bruce
et al., 1999):

data Cell (X : �) = MkCell {get : Int, set : Int → X , bump : X };
The interface indicates that a cell object consists of three methods: a getter get to return
the current state, a setter set to return a new cell with a given state and bump to return a
new cell with the state increased by one.

We can define a cell object c as follows:

data Var = MkVar {getVar : Int};
def CellT = λX : �. Pair X (X → Cell X);
def pair = MkPair Var (Var → Cell Var)

(MkVar 0) -- Initial state
(λs : Var. MkCell Var -- Methods

(getVar s) -- Method get
(λn : Int.MkVar n) -- Method set
(MkVar (getVar s + 1))); -- Method bump

def p = pack CellT Var (cast↑ [CellT Var] pair);
def c = cast↑ [Obj Cell] p;

The body of object c is an existential package p of type ∃X.Pair X (X → Cell X) built
by the pack operator. The first parameter of pack is CellT that represents the body of the
existential type. The second parameter is the integer variable type Var which corresponds
to the existential binder X . The third parameter has type CellT Var which can be reduced
to a pair type Var × (Var → Cell Var) which is defined in the definition pair constructed
by MkPair. The first component of the pair is the initial hidden state MkVar 0. The
second component is a function containing three methods that are defined in a record by
MkCell and abstracted by the state variable s. The definition of the three methods follows
the cell object interface Cell.

Note that we have two cast↑ operators here: one over the existential package p and
another over the pair. Due to the lack of a conversion rule in PITS, the desired type of the

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 15

object c (i.e. Obj Cell) is an application, which is different from the type of the existential
package (i.e. Ex CellT). Noticing that

Obj Cell ↪→ Ex (λX : �. Pair X (X → Cell X)) = Ex CellT

We can use cast↑ to do one-step type expansion for the package. Similarly, the second
cast↑ operator used in the third parameter of pack converts the pair type into CellT Var.
We emphasize that the object encoding example exploits fundamental features of PITS,
namely higher-kinded types, higher-order polymorphism and explicit casts. The absence
of a conversion rule does not prevent the object encoding because the required type-level
computation is recovered by explicit casts.

3.4 Fun with full reduction

So far, all the examples can be encoded in Fun with casts using weak-head reduction.
However, for some applications, full reduction is needed at the type level. In this subsection
particularly, we show one such application. For brevity, we move types of arguments in
def bindings to top-level annotations without repeating them in λ-binders, e.g., we change
def f = λx : Int. 1 into

def f : Int → Int = λx. 1

Leibniz equality, kind polymorphism and vectors. One interesting type-level feature
of GHC Haskell is generalized algebraic datatypes or GADTs (Xi et al., 2003; Cheney &
Hinze, 2003; Peyton Jones et al., 2004). GADTs require a non-trivial form of explicit type
equality, which is built in Haskell’s core language (System FC (Sulzmann et al., 2007)),
called a coercion. PITS does not have such built-in equality. However, a form of equality
can be encoded using Leibniz Equality (Cheney & Hinze, 2002):

data Eq (k : �) (a : k) (b : k) =
Proof {subst : (f : k → �) → f a → f b};

Note that the definition uses kind polymorphism: the kind of types a and b is k, which is
polymorphic and not limited to �. For brevity, we use a ≡ b to denote Eq k a b by omitting
the kind k. Then we can encode a GADT, for example, length-indexed list (or vector) as
follows:

data Vec (a : �) (n : Nat) =
Nil (Eq Nat n Z)

| Cons (m : Nat) (Eq Nat n (S m)) a (Vec a m);

However, it is difficult to use such encoding approach to express the injectivity of construc-
tors (Cheney & Hinze, 2003), e.g., deducing n ≡ m from S n ≡ S m. It would be challenging
to encode the tail function of a vector:

def tail : (a : �) → (n : Nat) → (v : Vec a (S n)) → Vec a n =
λa. λn. λv. case v of

Cons m p x xs ⇒ xs; -- ill-typed

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

16 Y. Yang and B. Oliveira

The case expression above is ill-typed: xs has the type Vec a m, but the function requires
the case branch to return Vec a n. To convert xs to the correct type, we need to show n ≡ m.
But the equality proof p has type Eq Nat (S n) (S m), i.e., S n ≡ S m. Thus, the injectivity of
constructor S is needed.

Fun incorporates two full cast operators (cast⇑ and cast⇓) from full PITS. With the
power of full casts, we can “prove” the injectivity of S. We first define a partial function
predNat to destruct S:

def predNat : Nat → Nat =
λn. case n of S m ⇒ m;

Given S n ≡ S m, by congruence of equality, it is trivial to show predNat (S n) ≡
predNat (S m). Noticing the reduction predNat (S n) ↪→ n holds, we can use a full cast
operator cast⇓ to reduce both sides of the equality to obtain n ≡ m:

def injNat : (n : Nat) → (m : Nat) → Eq Nat (S n) (S m) → Eq Nat n m =
λn. λm. λp. cast⇓ (lift Nat Nat (S n) (S m) predNat p);

The auxiliary function “lift”2 lifts the type of equality proof p from S n ≡ S m to
predNat (S n) ≡ predNat (S m). Then cast⇓ converts it to Eq Nat n m (type annotations are
omitted for brevity):

p : S n ≡ S m
lift predNat p : predNat (S n) ≡ predNat (S m)
cast⇓ (lift predNat p) : n ≡ m

Now we can write a well-typed version of tail:

def castVec : (a : �) → (n : Nat) → (m : Nat) →
Eq Nat n m → Vec a m → Vec a n =

λa. λn. λm. λp. to (Vec a n) (Vec a m) (lift Nat � n m (Vec a) p);

def tail : (a : �) → (n : Nat) → (v : Vec a (S n)) → Vec a n =
λa. λn. λv. case v of

Cons m p x xs ⇒ castVec a n m (injNat n m p) xs;

We use injNat to obtain a proof n ≡ m from S n ≡ S m. Finally, we call an auxiliary func-
tion castVec that uses the proof n ≡ m to convert xs from Vec a m to Vec a n. The definition
of castVec relies on another auxiliary function “to”3 that unfolds the Leibniz equality
Vec a n ≡ Vec a m, lifted from n ≡ m, to a function with type Vec a m → Vec a n.

Note that Fun is not logically consistent and does not check whether the proof is ter-
minating. Nonetheless, we can manually ensure that the injectivity proof injNat used in
tail is valid. There are no recursive terms in injNat, which could be bogus proofs. Though
predNat is a partial function, it is always applied to numbers with the form S n and never
goes to the invalid branch. Finally, while this encoding deals with injectivity, an encod-
ing of equality still has a computational cost. Therefore, a motivation to natively support
equality constraints instead (as done, e.g., in Haskell (Sulzmann et al., 2007)) is to have
equality without any computational costs, since equality constraints can simply be erased.

2 The definition of lift is omitted and available from online materials.
3 The definition of to is omitted and available from online materials.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 17

Fig. 1. Syntax of call-by-name PITS.

4 Call-by-name PITSs

We formally present the first variant of PITSs. PITS is very close to PTSs (Barendregt,
1992), except for two key differences: the existence of cast operators and general recursion.
In this section, we focus on the call-by-name variant of PITS, which uses a call-by-name
weak-head reduction strategy in casts. We show type-safety for any PITS and decidability
of type-checking for a particular subset, i.e., functional PITS (see Definition 4.1). One
important remark is that the dynamic semantics of call-by-name PITS is given by a direct
small-step operational semantics, and type-safety is proved using the usual preservation
and progress theorems. Full proofs of the metatheory are mechanized in Coq and can be
found in the online repository.

4.1 Syntax

Figure 1 shows the syntax of PITS, including expressions, values and contexts. Like PTSs,
PITS uses a unified representation for different syntactic levels. There is no syntactic
distinction between terms, types or kinds/sorts. Such unified syntax brings economy for
type-checking, since one set of typing rules can cover all syntactic levels. As in PTS, PITS
contains a set of constants called Sorts, e.g., �, �, denoted by metavariable s. By conven-
tion, we use metavariables A, B, etc. for an expression on the type-level position and e for
one on the term level. We use A → B as a syntactic sugar for �x : A. B if x does not occur
free in B.

Cast operators. We introduce two new primitives cast↑ and cast↓ (pronounced as “cast
up” and “cast down”) to replace the implicit conversion rule of PTS with one-step explicit
type conversions. The cast operators perform two directions of conversion: cast↓ is for the
one-step reduction of types, and cast↑ is for the one-step expansion. The cast↑ construct
needs a type annotation A as the result type of one-step expansion for disambiguation,
while cast↓ does not, since the result type of one-step reduction can be uniquely determined
as discussed in Section 4.5.

We use syntactic sugar castn
↑ and castn

↓ to denote n consecutive cast operators (see
Figure 1). Alternatively, one can introduce them as built-in operators and treat one-step
casts as syntactic sugar instead. Though using built-in n-step casts can reduce the number

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

18 Y. Yang and B. Oliveira

Fig. 2. Operational semantics of call-by-name PITS.

of individual cast constructs, we do not adopt such alternative design in order to simplify
the discussion of metatheory. Note that castn

↑ is simplified to take just one type parameter,
i.e., the last type A1 of the n cast operations. Due to the determinacy of one-step reduction
(see Lemma 4.2), the intermediate types can be uniquely determined and left out.

General recursion. We use the μ-operator to uniformly represent recursive terms and
types. The expression μx : A. e can be used on the type level as a recursive type, or on term
level as a fixpoint that is possibly non-terminating. For example, A can be a single sort s,
as well as a function type such as Int → Int or s1 → s2.

4.2 Operational semantics

Figure 2 shows the small-step, call-by-name operational semantics. Three base cases
include rule R-BETA for beta reduction, rule R-MU for recursion unrolling and
rule R-CASTELIM for cast canceling. Two inductive cases, rule R-APP and
rule R-CASTDN, define reduction at the head position of an application and the inner
expression of cast↓ terms, respectively. Note that rule R-CASTELIM and rule R-CASTDN

do not overlap because in the former rule, the inner term of cast↓ is a value (see Figure 1),
i.e., cast↑ [A] e. In rule R-CASTDN, the inner term is reducible and cannot be a value.

The reduction rules are called weak-head since only the head term of an application
can be reduced, as indicated by the rule R-APP. Reduction is also not allowed inside the
λ-term and �-term which are both defined as values. To remove such restrictions, we need
the parallel reduction, as will be discussed in Section 6. Weak-head reduction rules are
used for both type conversion and term evaluation. To evaluate the value of a term-level
expression, we apply the one-step (weak-head) reduction multiple times, i.e., multi-step
reduction, the transitive and reflexive closure of the one-step reduction.

4.3 Typing

Figure 3 gives the syntax-directed typing rules of PITS, including rules of context well-
formedness � � and expression typing � � e : A. Note that there is only a single set of rules
for expression typing, as there is no distinction of different syntactic levels. Most typing
rules are quite standard. We write � � if a context � is well-formed. We use � � A : s to
check if A is a well-formed type.

PITS is a family of type systems similarly to PTS, parametrized by the axiom set
A ⊂ (Sorts × Sorts) for typing sorts and rule set R ⊂ (Sorts × Sorts × Sorts) for check-
ing well-formedness of �-types. Rule T-AX checks whether sort s1 can be typed by sort

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 19

Fig. 3. Typing rules of call-by-name PITS.

s2 if (s1, s2) ∈ A holds. Rule T-VAR checks the type of variable x from the valid context.
Rule T-APP and rule T-ABS check the validity of application and abstraction, respectively.
Rule T-PROD checks the type well-formedness of the dependent function type by check-
ing if (s1, s2, s3) ∈ R. Rule T-MU checks the validity of a recursive term. It ensures that the
recursion μx : A. e should have the same type A as the binder x and also the inner term e.

The cast rules. We focus on the rule T-CASTUP and rule T-CASTDN that define
the semantics of cast operators and replace the conversion rule of PTS. The relation
between the original and converted type is defined by one-step call-by-name reduction
(see Figure 2). For example, given a judgment � � e : A2 and relation A1 ↪→ A2 ↪→ A3,
cast↑ [A1] e expands the type of e from A2 to A1, while cast↓ e reduces the type of e from
A2 to A3. We can formally give the typing derivations of the examples in Section 2.3:

� � e : (λx : �. x) Int
(λx : �. x) Int ↪→ Int

� � (cast↓ e) : Int

� � 3 : Int � � (λx : �. x) Int : �
(λx : �. x) Int ↪→ Int

� � (cast↑ [(λx : �. x) Int] 3) : (λx : �. x) Int

Importantly, in PITS term-level and type-level computation are treated differently. Term-
level computation is dealt in the usual way using multi-step reduction until a value is finally
obtained. Type-level computation, on the other hand, is controlled by the program: each
step of the computation is induced by a cast. If a type-level program requires n steps of
computation to reach the normal form, then it will require n casts to compute a type-level
value.

Syntactic equality. Finally, the definition of type equality in PITS differs from PTS.
Without the conversion rule, the type of a term in PITS cannot be converted freely against
beta equality, unless using cast operators. Thus, types of expressions are equal only if they
are syntactically equal (up to alpha renaming).

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

20 Y. Yang and B. Oliveira

4.4 The two faces of recursion

One key difference from PTS is that PITS supports general recursion for both terms and
types. We discuss general recursion on two levels and show how iso-types generalize iso-
recursive types.

Term-level recursion. In PITS, the μ-operator works as a fixpoint on the term level. By
rule R-MU, evaluating a term μx : A. e will substitute all x’s in e with the whole μ-term
itself, resulting in the unrolling e[x
→ μx : A. e]. The μ-term is equivalent to a recursive
function that should be allowed to unroll without restriction.

Recall the factorial function example in Section 2.4. By rule T-MU, the type of fact
is Int → Int. Thus, we can apply fact to an integer. Note that by rule R-MU, fact will
be unrolled to a λ-term. Assuming the evaluation of if-then-else construct and arithmetic
expressions follows the one-step reduction, we can evaluate the term fact 3 as follows:

fact 3
↪→ (λx : Int. if x == 0 then 1 else x × fact (x − 1)) 3 -- by rule R-APP

↪→ if 3 == 0 then 1 else 3 × fact (3 − 1) -- by rule R-BETA

↪→ . . . ↪→ 6

Note that we never check if a μ-term can terminate or not, which is an undecidable
problem for general recursive terms. The factorial function example above can stop, while
there exist some terms that will loop forever. However, term-level non-termination is only
a run-time concern and does not block the type checker. In Section 4.5, we show type-
checking PITS is still decidable in the presence of general recursion.

Type-level recursion. On the type level, μx : A. e works as an iso-recursive type (Crary
et al., 1999), a kind of recursive type that is not equal but only isomorphic to its unrolling.
Normally, we need to add two more primitives fold and unfold for the iso-recursive
type to map back and forth between the original and unrolled form. Assuming that there
exist expressions e1 and e2 such that e1 : μx : A. B and e2 : B[x
→ μx : A. B], we have the
following typing results:

unfold e1 : B[x
→ μx : A. B]
fold [μx : A. B] e2 : μx : A. B

by applying standard typing rules of iso-recursive types (Pierce, 2002):

� � e1 : μx : A. B

� � unfold e1 : B[x
→ μx : A. B]

� � μx : A. B : s
� � e2 : B[x
→ μx : A. B]

� � fold [μx : A. B]e2 : μx : A. B

We have the following relation between types of e1 and e2 witnessed by fold and unfold:

μx : A. B
unfold−−−−−−−⇀↽−−−−−−−

fold [μx:A. B]
B[x
→ μx : A. B]

In PITS, we do not need to introduce fold and unfold operators, because with the
rule R-MU, cast↑ and cast↓ generalize fold and unfold, respectively. Consider the same

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 21

expressions e1 and e2 above. The type of e2 is the unrolling of e1’s type, which follows the
one-step reduction relation by rule R-MU:

μx : A. B ↪→ B[x
→ μx : A. B]

By applying rule T-CASTUP and rule T-CASTDN, we can obtain the following typing
results:

cast↓ e1 : B[x
→ μx : A. B]
cast↑ [μx : A. B] e2 : μx : A. B

Thus, cast↑ and cast↓ witness the isomorphism between the original recursive type and its
unrolling, behaving in the same way as fold and unfold in iso-recursive types.

μx : A. B
cast↓−−−−−−−−⇀↽−−−−−−−−

cast↑ [μx:A. B]
B[x
→ μx : A. B]

An important remark is that casts are necessary, not only for controlling the unrolling
of recursive types but also for type conversion of other constructs, which is essential for
encoding parametrized algebraic datatypes (see Section 3.1).

4.5 Metatheory of call-by-name PITS

We now discuss the metatheory of call-by-name PITS. We focus on two properties: the
decidability of type-checking and the type-safety of the language. Firstly, we show that
type-checking for a functional subset (Siles & Herbelin, 2012) of PITS is decidable with-
out requiring strong normalization. Secondly, any PITS is type-safe, proven by subject
reduction and progress lemmas (Wright & Felleisen, 1994).

Decidability of type-checking for functional PITS. We limit the discussion in this
paragraph to a subclass of PITS, functional PITS:

Definition 4.1. A PITS is functional if:

1. for all s1, s2, s′
2, if (s1, s2) ∈ A and (s1, s′

2) ∈ A , then s2 ≡ s′
2.

2. for all s1, s2, s3, s′
3, if (s1, s2, s3) ∈ R and (s1, s2, s′

3) ∈ R, then s3 ≡ s′
3.

Such definition is similar to the one of functional PTS (Siles & Herbelin, 2012) or singly
sorted PTS (Barendregt, 1992). Functional PITS enjoys uniqueness of typing, i.e., typing
result is unique up to alpha-equality:

Lemma 4.1 (Uniqueness of Typing for Functional PITS). In any functional PITS, if � �
e : A and � � e : B, then A ≡ B.

For simplicity reasons, we only discuss decidability for functional PITS, where the proof
can be significantly simplified by the uniqueness of typing lemma. For non-functional
PITS, one may follow the proof strategy similarly used in non-functional PTS (van
Benthem Jutting, 1993), by proving the “Uniqueness of Domains” lemma instead. We
leave the decidability proof for non-functional PITS as future work.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

22 Y. Yang and B. Oliveira

For functional PITS, the proof for decidability of type-checking is by induction on the
structure of e. The non-trivial case is for cast-terms with typing rule T-CASTUP and
rule T-CASTDN. Both rules contain a premise that needs to judge if two types A and B
follow the one-step reduction, i.e., if A ↪→ B holds. We show that B is unique with respect
to the one-step reduction, or equivalently, reducing A by one step will get only a sole result
B. Such property is given by the following lemma:

Lemma 4.2 (Determinacy of One-step Call-by-name Reduction). If e ↪→ e1 and e ↪→ e2,
then e1 ≡ e2.

We use the notation ≡ to denote the alpha equivalence of e1 and e2. Note that the presence
of recursion does not affect this lemma: given a recursive term μx : A. e, by rule R-MU,
there always exists a unique term e′ ≡ e[x
→ μx : A. e] such that μx : A. e ↪→ e′. With this
result, we show that it is decidable to check whether the one-step relation A ↪→ B holds.
We first reduce A by one step to obtain A′ (which is unique by Lemma 4.2), and compare
if A′ and B are syntactically equal. Thus, we can further show type-checking cast-terms is
decidable.

By the definition of functional PITS, checking the type of sorts and well-formedness of
�-types are decidable. For other cases, type-checking is decidable by the induction hypoth-
esis and uniqueness of typing (see Lemma 4.1). Thus, we can conclude the decidability of
type-checking:

Theorem 4.1 (Decidability of Type-Checking for Functional PITS). In any functional
PITS, given a well-formed context � and a term e, it is decidable to determine if there
exists A such that � � e : A.

We emphasize that when proving the decidability of type-checking, we do not rely on
strong normalization. Intuitively, explicit type conversion rules use one-step call-by-name
reduction, which already has a decidable checking algorithm according to Lemma 4.2. We
do not need to further require the normalization of terms. This is different from the proof
for PTS which requires the language to be strongly normalizing (van Benthem Jutting,
1993). In PTS, the conversion rule needs to examine the beta equivalence of terms, which
is decidable only if every term has a normal form.

Type-safety for all PITS. Type-safety holds for any PITS, not just functional PITS. The
proof of the type-safety is by showing subject reduction and progress lemmas (Wright &
Felleisen, 1994):

Theorem 4.2 (Subject Reduction of Call-by-name PITS). If � � e : A and e ↪→ e′, then
� � e′ : A.

Theorem 4.3 (Progress of Call-by-name PITS). If ∅� e : A, then either e is a value v or
there exists e′ such that e ↪→ e′.

The proof of subject reduction is straightforward by induction on the derivation of � �
e : A and inversion of e ↪→ e′. Some cases need supporting lemmas: rule R-CASTELIM

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 23

requires Lemma 4.2; rule R-BETA and rule R-MU require the following substitution
lemma:

Lemma 4.3 (Substitution of Call-by-name PITS). If �1, x : B, �2 � e1 : A and �1 � e2 : B,
then �1, �2[x
→ e2] � e1[x
→ e2] : A[x
→ e2].

The proof of progress is also standard by induction on ∅� e : A. Notice that cast↑ [A] e
is a value, while cast↓ e1 is not: by rule R-CASTDN, e1 will be constantly reduced until it
becomes a value that could only be in the form cast↑ [A] e by typing rule T-CASTDN. Then
rule R-CASTELIM can be further applied and the evaluation does not get stuck. Another
notable remark is that when proving the case for application e1 e2, if e1 is a value, it could
only be a λ-term but not a cast↑-term. Otherwise, suppose e1 has the form cast↑ [�x :
A. B] e′

1. By inversion, we have ∅� e′
1 : A′ and �x : A. B ↪→ A′. But such A′ does not exist

because �x : A. B is a value which is not reducible.

5 Call-by-value PITSs

PITSs enjoy the flexibility of choosing different reduction rules for type conversion or
term evaluation. In this section, we present another variant of PITS which uses call-by-
value reduction, a more commonly used reduction strategy. All metatheory presented in
Section 4, including type-safety and decidability of typing, still holds for this variant. Call-
by-value is interesting because, for applications, the arguments are reduced before beta
reduction. Such reduction is problematic for dependent functions types in a setting with
iso-types, since it may endanger type-safety. We address this problem using a form of
value restriction, inspired by previous work (Swamy et al., 2011; Sjöberg et al., 2012).
Full proofs are mechanized in Coq and can be found in the online repository.

5.1 Value restriction

Call-by-value reduction (↪→v) requires the argument of beta reduction to be a value (v).
A typical leftmost reduction strategy of an application is that one first reduces the func-
tion part to a value, then further reduces the argument. Such process is witnessed by the
following reduction rules:

RV_BETA

(λx : A. e) v ↪→v e[x
→ v]

RV_APPL
e1 ↪→v e′

1

e1 e2 ↪→v e′
1 e2

RV_APPR
e ↪→v e′

v e ↪→v v e′

A function in PITS can be dependent. That is the function type can depend on the argu-
ment. For example, suppose that f is a dependent function generating a length-indexed list
with given length n, with the following type:

f : (�n : Int.Vec n)

By rule RV-APPR, the reduction f (1 + 1) ↪→v f 2 holds. However, the types of two sides
of the reduction are different:

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

24 Y. Yang and B. Oliveira

f (1 + 1) : Vec (1 + 1)
f 2 : Vec 2

Notice that PITS does not contain an implicit conversion rule. Without an explicit type
conversion, subject reduction does not hold. There are at least two possible ways to deal
with this issue: (1) introducing a type cast for reduction; (2) requiring the dependent func-
tion to be applied to a value only. For simplicity reasons, we choose the second method: a
value restriction. The first method entangles types with reduction, which makes the seman-
tics more complicated. The value restriction is also used by several existing call-by-value
calculi to ensure type-safety or simplify the design, e.g., by Zombie (Sjöberg et al., 2012;
Casinghino et al., 2014) to prevent bogus proofs that are non-terminating, and by depen-
dent object type (Amin et al., 2012, 2016), a core language of Scala (Odersky et al., 2004),
to simplify the formalization of path-dependent types (Amin et al., 2014).

Typing rules with value restriction. Now we have two typing rules for the function
application:

TV_APPV
� �v e : �x : A. B � �v v : A

� �v e v : B[x
→ v]

TV_APP

� �v e1 : A → B � �v e2 : A

� �v e1 e2 : B

If a function is dependent, the argument must be a value (v). Otherwise, the function is
non-dependent and there is no restriction on its argument. Recall that the arrow type is
syntactic sugar for the non-dependent �-type (see Figure 1). Note that these two typing
rules overlap: the �-type of e in rule TV-APPV could be non-dependent. In such case,
B = B[x
→ v] and rule TV-APPV has the same typing result as rule TV-APP. Thus, such
overlapping does not cause any determinacy issues.

Two sides of value restriction. Imposing such value restriction in PITS has both pros
and cons. On one side, type-safety proofs are quite simple (see Section 5.3). We can safely
rule out the case that breaks type preservation when reducing the argument of a dependent
function application. Recalling the example above, a reduction like f (1 + 1) ↪→v f 2 is not
possible since f (1 + 1) will be rejected by the type system in the first place. The argument
(1 + 1) of the dependent function f is not a value, so f (1 + 1) is not a well-typed term.
Thus, if a function is applied to a reducible argument, it must be a non-dependent function
in order to ensure type preservation.

Though users can easily write f 2 as a workaround to satisfy the type system instead of
f (1 + 1), there is no alternative way to express terms such as f (x + y) where the argu-
ment cannot be reduced to a value. Thus, the value restriction makes the type system more
restrictive on dependent function applications — users can only provide values but not
arbitrary arguments to dependent functions. Nonetheless, there is no restriction on apply-
ing non-dependent functions to arguments, e.g., id (x + y) where id = λz : Int. z. In other
words, there is no loss of expressiveness with respect to non-dependently typed program-
ming. One nice aspect of call-by-value casts is that they can be erased after type-checking
(i.e. computational irrelevance, see Section 7.1).

Also, the value restriction does not make call-by-value PITS necessarily less expressive
than call-by-name PITS. Though dependent applications such as f (1 + 1) can be written

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 25

in call-by-name PITS, the argument (1 + 1) may never be reduced and is always kept as
is. Thus, one may not be able to prove equality between f (1 + 1) and f 2 in call-by-name
PITS. On the other hand, one can reduce id (1 + 1) to id 2 in call-by-value PITS but not in
call-by-name PITS.

Alternative to the value restriction. Instead of the value restriction, one could simulta-
neously add casts when reducing dependent function applications. Supposing we drop the
value restriction, for the same example of f , noticing that Vec (1 + 1) ↪→v Vec 2, we can
obtain

f 2 : Vec 2
cast↑[Vec (1 + 1)](f 2) : Vec (1 + 1)

Then, f (1 + 1) ↪→v cast↑[Vec (1 + 1)](f 2) preserves the type with an extra cast↑.
However, such reduction relation involves types due to the annotation of casts. Moreover,
call-by-value casts may not be expressive enough for certain type conversions, such as
conversions inside binders. Parallel reduction and full casts may be required, as will be
discussed in Section 6. For simplicity reasons, we leave this extension as future work and
stick to value restriction for a simpler metatheory.

5.2 Reduction with open terms

In call-by-value PITS, cast operators also use one-step call-by-value reduction to perform
type conversions. Open terms that contain free variables may occur during reduction, e.g.,
(λx : Int. x) y, where y is a free variable. Using the rule RV-BETA, the reduction can only be
performed if y is a value. To allow beta reduction of such open terms, we allow variables
as values. Traditional call-by-value calculi do not have such definitions, since reduction
is used for term evaluation but not type conversion. Nevertheless, several call-by-value
calculi that involve type conversion allow treating variables as values, such as several open
call-by-value calculi (Accattoli & Guerrieri, 2016) (including Fireball Calculus (Paolini &
Della Rocca, 1999)) and Zombie (Sjöberg et al., 2012; Casinghino et al., 2014). To make
such definition work, we need to ensure that a variable is substituted with a value. The
rule RV-BETA already ensures such requirement.

Recursion and recursive types. For a recursive term μx : A. e, its unrolling has the form
e[x
→ μx : A. e] such that the substituted term is the term itself. Thus, we need to treat
μ-terms as values as in traditional call-by-value settings. One consequence is that a μ-
term now is only unrolled when it is placed at the function part of an application, or inside
cast↓:

RV_MU

(μx : A. e) v ↪→v (e[x
→ μx : A. e]) v

RV_CASTDN_MU

cast↓ (μx : A. e) ↪→v cast↓ (e[x
→ μx : A. e])

Thus, μ-terms only represent term-level recursive functions, as in most call-by-value lan-
guages. They cannot directly represent recursive types at the same time. This is different
from the call-by-name PITS where μ-terms are both term-level fixpoints and recursive
types, since substituted terms are not necessarily values. Nevertheless, one can still recover

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

26 Y. Yang and B. Oliveira

recursive types in call-by-value PITS by feeding the type-level recursive function a dummy
argument, e.g., the unit value ():

PITS Variant Recursive Type Reduction
Call-by-name f = μy : A. e f ↪→ e[y
→ f]
Call-by-value f ′ = μx : Unit → A. e[y
→ x ()] f ′ () ↪→v (e[y
→ x ()][x
→ f ′]) ()

where x does not occur free in e. The recursive type f in call-by-name PITS can be
simulated by a type-level recursive function f ′ applied to a dummy argument, i.e., f ′ ().

Finally, we show the full definition of call-by-value PITS in Figure 4. The changes from
the call-by-name variant are highlighted.

5.3 Metatheory

All the metatheory of call-by-name PITS still holds in the call-by-value variant, including
two key properties: type-safety and decidability of type-checking. The proofs are almost
the same. The only relevant change is the statement of the substitution lemma:

Lemma 5.1 (Substitution of Call-by-value PITS). If �1, x : B, �2 �v e : A and �1 �v v : B,
then �1, �2[x
→ v] �v e[x
→ v] : A[x
→ v].

We now require substituted terms to be values. With such a change, type preservation of
reducing open terms is possible, as discussed in Section 5.2. Such restricted substitution
lemma is sufficient for proving subject reduction, because all substituted terms are values
in reduction rules (see Figure 4). The subject reduction and progress lemmas can be proved
in a similar way to call-by-name PITS:

Theorem 5.1 (Subject Reduction of Call-by-value PITS). If � �v e : A and e ↪→v e′, then
� �v e′ : A.

Theorem 5.2 (Progress of Call-by-value PITS). If ∅�v e : A, then either e is a value v or
there exists e′ such that e ↪→v e′.

Like call-by-name reduction, the one-step call-by-value reduction is deterministic:

Lemma 5.2 (Determinacy of One-step Call-by-value Reduction). If e ↪→v e1 and e ↪→v e2,
then e1 ≡ e2.

Similarly, for functional PITS, we have typing uniqueness and decidable type-checking:

Lemma 5.3 (Uniqueness of Typing for Functional PITS). In any functional PITS, if � �v

e : A and � �v e : B, then A ≡ B.

Theorem 5.3 (Decidability of Type-Checking for Functional PITS). In any functional
PITS, given a well-formed context � and a term e, it is decidable to determine if there
exists A such that � �v e : A.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 27

Fig. 4. Call-by-value PITS

6 Iso-types with full casts

In Sections 4 and 5, we have introduced two variants of PITS that use one-step call-
by-name/value reduction for both term evaluation and type conversion. The use of those
reduction strategies simplifies the design and metatheory, at the cost of some expressive-
ness. To gain extra expressiveness, we take one step further to generalize casts with full
reduction. In this section, we present a third variant of PITS called full PITS, where casts
use a decidable parallel reduction relation for type conversion. The trade-off is some extra
complexity in the metatheory. We show that full PITS has decidable type-checking and
type-safety that holds up to erasure of casts. The proofs and metatheory design is inspired
by approaches used in Zombie (Sjöberg & Weirich, 2015) and Guru (Stump et al., 2008).

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

28 Y. Yang and B. Oliveira

Fig. 5. One-step decidable parallel reduction of erased terms.

Fig. 6. Erasure of casts.

6.1 Full casts with parallel reduction

Cast operators in call-by-name/value PITS use the same one-step reduction as term evalu-
ation for type-level computation. We refer to them as weak casts, because they lack the
ability to do full type-level computation where reduction can occur at any position of
terms. For example, weak casts cannot convert the type Vec (1 + 1) to Vec 2, because (1)
for call-by-name reduction, the desired reduction is at the non-head position; (2) for call-
by-value reduction, the term is rejected due to the value restriction. Thus, we generalize
weak casts to full casts (cast⇑ and cast⇓) utilizing a one-step decidable parallel reduction
(↪→p) relation for type conversion. Figure 5 shows the definition of ↪→p. This relation
allows reducing terms at any position, including non-head positions or inside binders, e.g.,
λx : Int. 1 + 1 ↪→p λx : Int. 2. Thus full type-level computation for casts is enabled.

There are three remarks for parallel reduction worth mentioning. Firstly, parallel reduc-
tion is defined up to erasure denoted by |e| (see Figure 6), a process that removes all casts
from term e. We also extend erasure to context denoted by |�|. It is feasible to define
parallel reduction only for erased terms because casts in full PITS (also call-by-value
PITS) are only used to ensure the decidability of type-checking and have no effect on
dynamic semantics, thus are computationally irrelevant (will be discussed in Section 7.1).

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 29

Fig. 7. PTSμ.

We use metavariables r and R to range over erased terms and types, respectively. The
only syntactic change of erased terms is that there is no cast. The type system after erasure
is essentially a variant of PTS with recursion. We call it PTSμ. The syntax and semantics
of PTSμ is shown in Figure 7.

Secondly, the definition of parallel reduction in Figure 5 is slightly different from the
standard one for PTS (Adams, 2006). It is partially parallel: rule P-RED and rule P-MURED

do not parallel reduce sub-terms, but only do beta reduction and recursion unrolling,
respectively. The confluence property for one-step reduction is lost.4 Nevertheless, such
definition makes the decidability property (see Lemma 6.5) easier to prove than the
conventional fully parallel version, thus it is called decidable parallel reduction. It also
requires fewer reduction steps than the non-parallel version, thus correspondingly needs
fewer casts.

Thirdly, parallel reduction does not have the determinacy property like weak-head
reduction (Lemma 4.2). For example, for the term (λx : Int. 1 + 1) 3, we can (parallel)
reduce it to either (λx : Int. 2) 3 by rule P-APP and rule P-ABS, or 1 + 1 by rule P-RED.

4 Notice that multi-step reduction ↪→→p is still confluent since it is equivalent to multi-step full beta reduction
−→∗

β (see Lemma 6.3) which is confluent.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

30 Y. Yang and B. Oliveira

Fig. 8. Full PITS.

Thus, to ensure the decidability, we also need to add the type annotation for cast⇓ operator
to indicate what exact type we want to reduce to. Similarly to cast⇑, cast⇓ [A] v is a value,
which is different from the call-by-name/value variant.

Figure 8 shows the specification of full PITS. Changes from call-by-name/value PITS
are highlighted. Note that we do not define operational semantics directly but up to erasure.
Reduction relations are defined in PTSμ only for terms after erasure. Similarly, syntactic
values are not defined in full PITS but defined for erased terms, ranged over by u in PTSμ

(see Figure 7). This is different from call-by-name/value PITS, where reduction rules for
type casting and term evaluation are the same, i.e., the one-step call-by-name/value reduc-
tion. In full PITS, parallel reduction is only used by casts, while a separate reduction is
used for term evaluation. For simplicity reasons, we choose the call-by-name reduction
(↪→) for term evaluation for erased terms in PTSμ (see Figure 7).

6.2 Metatheory

We show that the two key properties, type-safety and decidability of type-checking, still
hold in full PITS.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 31

Fig. 9. Full beta reduction.

Type-safety. Full casts are more expressive but also complicate the metatheory: term
evaluation could get stuck using full casts. For example, the following term:

(cast⇓ [Int → Int] (λx : ((λy : �. y) Int). x)) 3

cannot be further reduced because the head position is already a value but not a λ-term.
Note that weak casts do not have such problem because only cast↑ is annotated and it is
not legal to have a �-type in the annotation (see last paragraph of Section 4.5). To avoid
getting stuck by full casts, one could introduce several cast push rules similar to System
FC (Sulzmann et al., 2007). For example, the stuck term above can be further evaluated by
pushing cast⇓ into the λ-term:

(cast⇓ [Int → Int] (λx : ((λy : �. y) Int). x)) 3 ↪→ (λx : Int. x) 3

However, adding “push rules” significantly complicates the reduction relations and
metatheory. Instead, we adopt the erasure approach inspired by Zombie (Sjöberg &
Weirich, 2015) and Guru (Stump et al., 2008) that removes all casts when proving the
type-safety. The typing of erased terms follow the type system PTSμ (see Figure 7). The
typing judgment is � � r : R where � ranges over the erased context.

PTSμ is a variant of PTS with recursion. We follow the standard proof steps for
PTS (Barendregt, 1992). The substitution and progress lemmas are stated as follows:

Lemma 6.1 (Substitution of PTSμ). If �1, x : R′, �2 � r1 : R and �1 � r2 : R′, then
�1, �2[x
→ r2] � r1[x
→ r2] : R[x
→ r2].

Theorem 6.1 (Progress of PTSμ). If ∅� r : R, then either r is a value u or there exists r′

such that r ↪→ r′.

Notice that term evaluation uses the weak-head reduction ↪→. We only need to prove
subject reduction and progress theorems for ↪→. But we generalize the result for subject
reduction, which holds up to the parallel reduction ↪→p. We first show subject reduction
holds for one-step full beta reduction −→β (see Figure 9) and multi-step full beta reduction
−→∗

β , i.e., reflexive and transitive closure of −→β :

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

32 Y. Yang and B. Oliveira

Lemma 6.2 (Subject Reduction for Full Beta Reduction).

1. If � � r : R and r −→β r′, then � � r′ : R.
2. If � � r : R and r −→∗

β r′, then � � r′ : R.

Then, we show −→∗
β is equivalent to multi-step parallel reduction ↪→→p, i.e., transitive

closure of ↪→p (since it is already reflexive):

Lemma 6.3 (Equivalence of Parallel Reduction). Given r1 and r2, r1 −→∗
β r2 holds if and

only if r1 ↪→→p r2 holds.

Thus, subject reduction for parallel reduction ↪→p is an immediate corollary:

Theorem 6.2 (Subject Reduction for Parallel Reduction). If � � r : R and r ↪→p r′ then
� � r′ : R.

Finally, given that the PTSμ is type-safe, if we want to show the type-safety of full PITS,
it is sufficient to show the typing is preserved after erasure:

Lemma 6.4 (Soundness of Erasure). If � �f e : A, then |�| � |e| : |A|.

Decidability of type-checking. The proof of decidability of type-checking full PITS is
similar to call-by-name PITS in Section 4.5. We also limit discussion of decidability to
functional PITS (see Definition 4.1). The only difference is for cast rule TF-CASTUP and
rule TF-CASTDN, which use parallel reduction |A1| ↪→p |A2| as a premise. We first show
the decidability of parallel reduction:

Lemma 6.5 (Decidability of Parallel Reduction). Given r1 and r2, it is decidable to
determine whether r1 ↪→p r2 holds.

The proof is by induction on the length of r1 and attempting to construct a parallel reduc-
tion step from r1 to r2. A checking algorithm can be derived from the proof and runs in
linear time in the size of both terms. Notice that the proof does not rely on the single-
step confluence of ↪→p. The confluence of ↪→p is lost due to two base reduction rules
P-RED and P-MURED, which do not simultaneously reduce sub-terms but only do one-
step beta reduction and recursive unrolling, respectively (see Section 6.1). However, both
rules become deterministic, which makes it easier to determine if ↪→p in both cases. We
can just check if one-step reduction of r1 is equal to r2, similarly to the proof for call-by-
name PITS (see Section 4.5). For example, consider r1 = (λx : R3. r3) r4 and r2 = r5 r6. If
case P-APP applies, i.e., λx : R3. r3 ↪→p r5 and r4 ↪→p r6 hold, then r1 ↪→p r2 holds triv-
ially. Otherwise, r1 ↪→p r2 holds if and only if P-RED holds. The latter can be determined
by testing the equality of r3[x
→ r4] and r5 r6. By contrast, the proof will be much com-
plicated for the standard parallel reduction. To ensure one-step confluence, the rule P-RED

becomes

r1 ↪→p r′
1 r2 ↪→p r′

2

(λx : R. r1) r2 ↪→p r′
1[x
→ r′

2]

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 33

We now need to determine if r3 ↪→p r′
3 holds or not. This is non-trivial since the induction

hypothesis only gives the hint whether λx : R3. r3 ↪→p r5 holds but not directly for r3.
As cast⇑ and cast⇓ are annotated, both A1 and A2 can be determined and the well-

typedness is checked in the original system. By Lemma 6.4, the erased terms keep the
well-typedness. By Lemma 6.5, it is decidable to check if |A1| ↪→p |A2|. We conclude the
decidability of type-checking by the following lemmas:

Lemma 6.6 (Uniqueness of Typing for functional PITS). In any functional PITS, if � �f

e : A1 and � �f e : A2, then A1 ≡ A2.

Theorem 6.3 (Decidability of Type-Checking for functional PITS). In any functional
PITS, given a well-formed context � and a term e, it is decidable to determine if there
exists A such that � �f e : A.

6.3 Completeness to PTSs

We have shown that full PITS is complete to a variant of PTSμ. Such variant uses an
alternative single-step conversion rule (Geuvers, 1995):

TS_BETAUP

� � r : R1 � � R2 : s R2 −→β R1

� � r : R2

TS_BETADN

� � r : R1 � � R2 : s R1 −→β R2

� � r : R2

where −→β denotes full beta reduction (see Figure 9). We call this variant PTSstep (see
Figure 10). Its typing judgment is denoted by � � r : R. PITS can be seen as an annotated
version of PTSstep. We first show that full PITS is complete to PTSstep by the following
lemma:

Lemma 6.7 (Completeness of Full PITS to PTSstep). If � � r : R, then there exists �,e and
A such that � �f e : A where |�| = �, |e| = r and |A| = R.

Furthermore, Siles and Herbelin have proved that single-step conversion rule is equiva-
lent to the original conversion rule using beta conversion in PTS (see Corollary 2.9 in (Siles
& Herbelin, 2012)). We have the following relation between PTSstep and PTSμ:

Lemma 6.8 (Completeness of One-step PTS to PTS). If � � r : R, then � � r : R holds.

Thus, we can conclude the full PITS is complete to PTSμ:

Theorem 6.4 (Completeness of Full PITS to PTSμ). If � � r : R, then there exists �, e, A
such that � �f e : A where |�| = �, |e| = r and |A| = R.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

34 Y. Yang and B. Oliveira

Fig. 10. Typing rules of PTSstep.

7 Discussion and related work

In this work, we have developed three variants of PITS. The three variants differ on the
reduction rules used in the cast operators. As it turns out, the specific choice of reduction
has quite a bit of impact on the formalization and the metatheory. In this section, we start
by presenting an extensive comparison between the three variants of PITS, as well as PTSf

(which is a closely related variant of PTS). Then, we discuss other closely related work.

7.1 Comparing the three variants of PITS and PTSf

We have developed PITS with the aim of using such family of calculi as foundations to
programming languages supporting unified syntax and recursion. PITS trades the conve-
nience of implicit type conversion that is afforded in most dependently typed calculi by a
simple metatheory that allows for decidable type-checking. Closely related to our work is
PTS with explicit convertibility proofs (PTSf) (van Doorn et al., 2013), which is a variant
of PTS. PTSf replaces the conversion rule by embedding explicit conversion steps into
terms. PTSf has strong connections to PITS in the sense that both systems are based on
PTSs and require explicit type conversions — PTSf uses proof-annotated terms, while
PITS uses cast operators. Nevertheless, the design of PTSf is still quite complex, as it
requires a separate sub-language for building convertibility (equality) proofs.

Although PTSf was motivated by applications to theorem proving, PTSf (like PTS) can
be instantiated to form inconsistent calculi, which can encode fixpoints and general recur-
sion. Therefore, PTSf could also, in principle, be used as a foundation for programming
languages. However, the underlying mechanisms and foundations of PTSf and PITS are
different. Generally speaking, when dealing with programming languages with general

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 35

Table 2. Comparison between PTSf and PITS

Call-by-name Call-by-value
Features PTSf PITS PITS Full PITS

Direct dynamic semantics � � � �
Direct proofs � � � ��∗
No mutually dependent judgments � � � �
Implicit proofs by reduction � � � �
Full type-level computation � � � �
Consistency of reduction — � � �
Decidability with recursion ��† � � �
Erasability of casts � � � �
Equality � ��‡ ��‡ �‡

No value restriction � � � �
SLOC of Coq proofs 7318 1217 1477 3796
Lemmas of Coq proofs 319 62 66 221

∗ Proofs for typing decidability are direct, but not for type-safety.
† We believe that decidability should hold, but there is no discussion or proofs in the formalization
of PTSf (van Doorn et al., 2013).
‡ Encoding via Leibniz equality.

recursion, it is important to study not only the static semantics but also the dynamic
semantics. Unlike strongly normalizing languages where any choice of reduction leads
to termination, in languages that are not strongly normalizing this is not usually the case
and the choice of reduction is important. Furthermore, the choice of the style of reduc-
tion in casts has a profound impact on the properties and metatheory of the language. Our
work on PITS puts great emphasis on the study of the dynamic semantics and the trade-
offs between different choices, while in PTSf only the static semantics is studied. Next
we give a detailed comparison on features between PTSf and the three variants of PITS,
summarized in Table 2.

Direct dynamic semantics. One important difference between call-by-value and call-by-
name PITS and the variant with full reduction is that the former two calculi have a direct
small-step operational semantics, while the semantics of the later calculus is indirectly
given by elaboration. A direct operational semantics has the advantage that the reduction
rules can be used to directly reason about expressions in the calculus. This reasoning can
be used to perform, for example, equational reasoning steps or to justify the correctness of
some optimizations. In an elaboration-based semantics, the lack of reduction rules means
that one must first translate the source expression into a corresponding expression in the
target calculus, and then do all reasoning there. This is a much more involved process.

As discussed in Section 6.2, it is difficult to directly define a type-preserving operational
semantics for full PITS. The problem is not intrinsic to PITS, but rather it is a general
problem whenever full reduction is used in cast-like operators. Indeed, this problem has
been identified previously in the literature (Sulzmann et al., 2007; Sjöberg et al., 2012),
and two major approaches have been used to address it. One approach is not to use a direct
semantics but instead to use an elaboration semantics, which is precisely the approach that

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

36 Y. Yang and B. Oliveira

we used in our variant of PITS with full reduction. This approach is quite common and
it is also the approach used in PTSf as well as several other calculi (Stump et al., 2008;
Sjöberg et al., 2012; Sjöberg & Weirich, 2015). Another approach that has been presented
in the literature is to use push rules as in System FC (Sulzmann et al., 2007; Yorgey et al.,
2012; Weirich et al., 2013) and System DC (Weirich et al., 2017). However, push rules
significantly complicate the reduction rules (see Section 6.2).

In this work, we show a third approach to achieve a simple type-preserving direct
dynamic semantics: we can use alternative weaker reduction relations (call-by-value or
call-by-name) for type conversion. The weaker reduction relations are straightforward and
do not have the extra complication of the push rules (although some expressiveness is lost).

There is no discussion on how to achieve direct dynamic semantics using the proof term
approach by PTSf , since they use an elaboration approach. Furthermore, this is unlikely
to be trivial. We expect that it may be possible to give a direct operational semantics to
full PITS or PTSf using push rules similar to the ones employed in System DC (Weirich
et al., 2017), but this would come at the cost of a much more involved set of reduction
rules (as well as the corresponding metatheory).

Direct proofs. Because of the direct dynamic semantics, it is possible to do direct proofs
of preservation and progress in call-by-value and call-by-name PITS. The metatheory of
Full PITS is significantly more involved because we need a target calculus and to prove
several lemmas in both the target and the source, as well as showing the correspondence
between the two systems. To give a rough idea of the complexity of the different devel-
opments, Table 2 shows the total number of lines of Coq code used and lemmas used
to formalize the three variants of PITS. Roughly speaking, the development of full PITS
requires twice as many SLOC and nearly four times more lemmas than the other two
variants, since we also need to formalize PTSμ along with full PITS.

PTSf is shown to be equivalent to plain PTS and its type-safety then can be guaran-
teed by showing the correspondence to plain PTS (Barendregt, 1991). However, the proof
for soundness and completeness between PTSf and PTS is highly non-trivial (Siles &
Herbelin, 2012; van Doorn et al., 2013). In PTSf , there is no discussion on proving sub-
ject reduction directly in PTSf . The type-safety of PTSf is indirectly shown by erasure of
explicit proofs to generate valid plain PTS terms. This is similar to the proof strategy for
type-safety of full PITS, which is shown up to erasure of casts (see Section 6.2). The for-
malization of PTSf requires about 7000 SLOC and 300 lemmas (see Table 2), including
auxiliary systems such as plain PTS and PTSe. These numbers cannot be directly com-
pared to the numbers of the PITS formalizations, since different approaches and libraries
are employed to deal with binding and the formalization of PTSf does not include proofs
of decidability of type-checking. Nevertheless, the numbers are useful to give an idea of
the effort in the PTSf formalization.

Ultimately, we believe that direct proofs and a direct operational semantics of the call-
by-name and call-by-value PITS are quite simple. Furthermore, such simplicity is helpful
when trying to extend calculi to study additional features. One non-trivial extension that we
have already studied, based on a particular instance of the call-by-name PITS, is subtyp-
ing (Yang & Oliveira, 2017). Integrating subtyping and some form of dependent types
is a widely acknowledged difficult problem (Aspinall & Compagnoni, 1996; Castagna

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 37

& Chen, 2001; Hutchins, 2010). Nevertheless, using our call-by-name instance of PITS
extension with subtyping, we have managed to develop a calculus that subsumes System
F<: (Cardelli et al., 1994) and has several interesting properties, including subject reduc-
tion and transitivity of subtyping. We believe this development would be a lot harder to do
by extending full PITS or PTSf .

No mutually dependent judgments. PTSf requires more language mechanisms for type
conversions, including proof terms (H) and their typing rules (� �f H : A = B) to ensure
coercions (A = B) are well-typed. However, the well-formedness checking of coercions
depends on typing judgments (� �f e : A), which causes mutual dependency of judgments
and complicates proofs. Casts in PITS use reduction relations (A ↪→ B), which are untyped
and do not depend on typing rules. The well-formedness of types is checked separately in
typing rules of cast operators, e.g., TF-CASTUP and TF-CASTDN in full PITS. The fact
that PITS does not require such mutually dependent judgments means that many proofs
can be proved using simple inductions. In PTSf , the mutually dependent judgments leads
to several lemmas that need to be mutually proved.

Implicit proofs by reduction. PTSf uses coercions (i.e. equivalence relations) to explic-
itly write equality proofs, while PITS uses reduction relations that implicitly construct such
proofs. Equality proofs in PTSf are constructed by proof terms. Each language construct
requires a corresponding proof term to reason about equality of sub-terms, which adds to
the number of language constructs. On the contrary, PITS does not require proof terms but
two extra cast operators, thus has fewer language constructs.

Type conversions in PTSf are more “explicit” than in PITS. One needs to specify which
proof terms to be used exactly in PTSf , while he/she just needs casts without specifying
which underlying reduction rule to use. This makes it easier to do explicit type conversions
in PITS. Assume that we have integer literals and use beta reduction to evaluate addition
(1 + 1 ↪→ 2). Recall the example from Section 1:

e : �x : Int. Vec (1 + 1)
e′ : �x : Int. Vec 2

To obtain e′ from e, in PTSf , e′ = eH where H is a proof term such that

H = {Int, [x : Int](Vec β(1 + 1))}
In full PITS, e′ = cast⇓ [�x : Int. Vec 2] e, which implicitly uses the reduction rules
P-PROD, P-APP and P-RED in the cast operator. In call-by-name/value PITS, due to the
determinacy of reduction used in casts, the cast↓ operator even does not require a type
annotation. For example, consider a simpler type conversion (λx : �. x) Int ↪→ Int from
Section 2.3:

e : (λx : �. x) Int
e′ : Int

where e′ can simply be cast↓ e without any annotation.
Generally speaking, we believe that for programming, and especially more traditional

forms of programming that do not involve complex forms of type-level reasoning, having
such implicit proofs of conversion is good. We believe that for a practical language design

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

38 Y. Yang and B. Oliveira

to be based directly on PTSf , it would require some degree of inference of the equality
proof terms. In some sense, full PITS can be thought of a system that implicitly generates
proof terms and in principle could be translated to PTSf , but it is one step closer to a
source language that infers equality proof terms. Of course, if the goal is to do theorem
proving and/or heavy uses of type-level computation, then having explicit control over the
equality proof terms can be an advantage. However, for PITS, our focus is on programming
languages with general recursion.

Full type-level computation. PTSf has full type-level computation since type conversion
uses equivalence relations which are congruent. It has the same expressive power as PTSs.
Full PITS similarly has full type-level computation, while call-by-name/value PITS do not.
Full type-level computation is useful for theorem proving and full-spectrum dependently
typed programming as in Coq and Agda, but not necessarily required for traditional pro-
gramming. As the examples presented in Section 3 show, iso-types that just use weak-head
call-by-name reductions in casts can encode many advanced type-level features. The extra
expressiveness of PTSf and full PITS also comes at the cost of additional complexity in
the metatheory and makes it non-trivial to achieve features like direct dynamic semantics
and direct type-safety proofs.

Consistency of reduction. In many strongly normalizing languages, a basic assumption
is that the order of reduction does not matter. This justifies reasoning that can be done in
any order of reduction. Reduction strategies such as parallel reduction embody this princi-
ple and enable reductions in terms to occur in multiple orders. However, in languages with
general recursion, this assumption is broken: i.e., reduction order does matter. For exam-
ple, given term (λx : Int. 1) ⊥, where ⊥ is any diverging computation, such term evaluates
to 1 with call-by-name semantics but diverges with call-by-value semantics. If we want to
conduct precise reasoning about programs and their behavior, we cannot ignore the order
of reduction. In particular, if we want the type-level reduction to respect the run-time
semantics/reduction, then we need to ensure that the two reductions are in some sense
consistent.

We study three different variants of PITS that differ on term evaluation strategy, as
well as the reduction strategy employed by the cast operators. They have different trade-
offs in terms of simplicity and expressiveness. Call-by-name PITS uses weak-head call-
by-name reduction, while call-by-value PITS enables standard call-by-value reduction by
employing a value restriction (Swamy et al., 2011; Sjöberg et al., 2012). In both designs,
the key idea is that the same reduction strategy is used for both term evaluation and type
casts, ensuring a consistent behavior of reduction at both type and term level. In call-by-
name/value PITS, we can trivially guarantee that no invalid reasoning steps can happen
due to mismatches with the evaluation strategy.

In full PITS, the use of parallel reduction breaks consistency because type-level reduc-
tion allows some reductions that are not allowed at the term level. For example, Int →
Vec (1 + 1) can be reduced to Int → Vec 2 by type-level parallel reduction but not term-
level reduction. We believe that it may be possible to have a variant of PITS that uses
call-by-name or call-by-value and has a consistent form of full reduction that respects the
reduction order. However, we leave this for future work.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 39

PTSf has no discussion on reduction rules for term evaluation, since its dynamic
semantics is given by elaboration into PTS. Since the focus of PTSf is primarily on the
applications to theorem proving the issues of consistency between term and type-level
reduction are not relevant, because such for theorem proving calculi are normally strongly
normalizing and reduction order does not affect the semantics.

Decidability in the presence of recursion. There is no formal discussion or direct proof
on decidability of the type system for PTSf , though this seems to be a plausible property
since the typing rules of PTSf are syntax-directed. Only uniqueness of typing is formally
discussed and proved for functional PTSf . This is similar to functional PITS which have
uniqueness of typing up to only alpha-equality due to the absence of implicit beta conver-
sion (see Lemma 4.1). Uniqueness of typing is used in the decidability proof of functional
PITS (see Section 4.5), and we believe that it should be useful to prove decidability of
PTSf as well.

Alternatively, note that an indirect proof for decidability of typing can be derived from
the plain metatheory of PTS through the equivalence of PTSf and PTS. However, the orig-
inal decidability proof for PTS relies on the normalization property (van Benthem Jutting,
1993). Thus, non-normalizing PTSf cannot use such indirect approach to prove decidabil-
ity for variants of PTSf with recursion/fixpoints.

For all three variants of PITS, decidability of type-checking has been proved directly
in the presence of general recursion without relying on normalization, though the proof is
done only for functional PITS for simplicity reasons. We expect that a similar proof would
work for PTSf as well, and this would be interesting to prove in future work.

Erasability of casts. Type casts are usually erased after type-checking to avoid run-time
cost. Erasure of casts is only valid if they are computationally irrelevant, meaning that
the operational semantics of expressions does not change after erasure. As mentioned in
Section 6.1, casts in call-by-value and full PITS are erasable. In full (call-by-value) PITS,
cast⇑ [A] v (cast↑ [A] v) is a value and becomes v after erasure, which is still a value and
does not change the computational behavior. Similarly, equality proofs in PTSf are also
computationally irrelevant and erasable. In contrast, casts in call-by-name PITS do not
have this property, as we define cast↑ [A] e to be a value. If we erase the cast operator, e
can be further reducible, which changes the dynamic semantics. Nonetheless, it is easy to
gain erasability of casts in call-by-name PITS by partially adopting the call-by-value rules
for cast↑ specifically. For example, we can define cast↑ [A] v as a value and further reduce
inner terms of a cast↑ by rule RV-CASTUP (see Figure 4). We did not adopt this approach
in call-by-name PITS, since such operational semantics requires additional reduction rules
and complicates the metatheory.

Equality. PTSf has built-in support for propositional equality, while PITS needs to encode
equality types using Leibniz equality. In Section 3.4, we show the encoding of Leibniz
equality, which works for all three variants of PITS. But full PITS is required for complete
reasoning on equality types. In call-by-name/value PITS, equality reasoning is limited
since type conversions are not congruent. The reasoning required for vectors (e.g. tail
function in Section 3.4) is not encodable.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

40 Y. Yang and B. Oliveira

No value restriction. We employ a value restriction in call-by-value PITS to retain sub-
ject reduction with a simple proof. As discussed in Section 5.1, we will consider an
alternative approach by adding cast operators during dynamic semantics for future work.
In contrast, call-by-name and full PITS, as well as PTSf , do not rely on the value restriction
to prove subject reduction.

7.2 Other related work

Core calculus for functional languages. Girard’s System Fω (Girard, 1972) is a typed
lambda calculus with higher-kinded polymorphism. For the well-formedness of type
expressions, an extra level of kinds is added to the system. In comparison, because of
unified syntax, PITS is considerably simpler than System Fω, both in terms of language
constructs and complexity of proofs. As for type-level computation, System Fω differs
from PITS in that it uses a conversion rule, while PITS uses explicit casts. PITS is also
inspired by the treatment of datatype constructors in Haskell (Jones, 1993). Iso-types have
similarities to newtypes and datatypes which involve explicit type-level computations.
The current core language for GHC Haskell, System FC (Sulzmann et al., 2007) is a
significant extension of System F, which supports GADTs (Peyton Jones et al., 2004),
functional dependencies (Jones, 2000), type families (Eisenberg et al., 2014) and kind
equality (Weirich et al., 2013). System DC (Weirich et al., 2017) is a further extension to
FC and foundation of dependently typed Haskell that extends Haskell with full-spectrum
dependent types. System DC is not logically consistent and can support recursion as
well as decidable type-checking. However, System DC is still quite ambitious in that it
comes with a rich notion of type equality aimed at supporting more sophisticated forms
of type-level computation. While such rich notion of type equality adds expressive power,
the details of type equality are quite involved and System DC is still significantly more
complex than classic PTSs or older Haskell/ML-style language designs based on System
F (Girard, 1972; Reynolds, 1974).

System FC and its extensions require a non-trivial form of type equality, which is cur-
rently missing from PITS. One possible direction for future work is to investigate the
addition of such forms of non-trivial type equality. On the other hand, PITS uses unified
syntax and has only 8 language constructs, whereas the original System FC uses multiple
levels of syntax and currently has over 30 language constructs, making it significantly more
complex. The simplicity of PITS makes it suitable to be combined with other language
features, such as subtyping, which seems hard to support in FC and its extensions. For
example, we proposed λ I� (Yang & Oliveira, 2017), in a separate paper, which extends a
variant of PITS called λ I with bounded quantification and subtyping and supports object
encodings (Pierce & Turner, 1994).

Unified syntax with decidable type-checking. PTSs (Barendregt, 1991) show how a
whole family of type systems can be implemented using just a single syntactic form. PTSs
are an obvious source of inspiration for our work. An early attempt of using a PTS-like
syntax for an intermediate language for functional programming was Henk (Peyton Jones
& Meijer, 1997). The Henk proposal was to use the lambda cube as a typed intermediate
language, unifying all three levels. However, the authors have not studied the addition of
general recursion, full dependent types or the metatheory.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 41

Zombie (Casinghino et al., 2014) is a dependently typed language using a single syntac-
tic category. It is composed of two fragments: a logical fragment where every expression
is known to terminate, and a programmatic fragment that allows general recursion. Though
Zombie has one syntactic category, it is still fairly complicated (with around 24 language
constructs) as it tries to be both consistent as a logic and pragmatic as a programming
language. Even if one is only interested in modeling a programmatic fragment, additional
mechanisms are required to ensure the validity of proofs (Sjöberg et al., 2012; Sjöberg &
Weirich, 2015). In contrast to Zombie, PITS takes another point of the design space, giving
up logical consistency and reasoning about proofs for simplicity in the language design.

Unified syntax with general recursion and undecidable type-checking. Cayenne
(Augustsson, 1998) integrates the full power of dependent types with general recursion,
which bears some similarities with PITS. It uses one syntactic form for both terms and
types, allows arbitrary computation at type level and is logically inconsistent because of
the presence of unrestricted recursion. Moreover, the most crucial difference from PITS is
that type-checking in Cayenne is undecidable. From a pragmatic point of view, this design
choice simplifies the implementation, but the desirable property of decidable type-checking
is lost. Cardelli’s Type:Type language (Cardelli, 1986) also features general recursion to
implement equi-recursive types. Recursion and recursive types are unified in a single con-
struct. However, both equi-recursive types and the Type:Type axiom make the type system
undecidable. � (Altenkirch et al., 2010) is another example of a language that uses one
recursion mechanism for both types and functions. The type-level recursion is controlled
by lifted types and boxes since definitions are not unfolded inside boxes. However, �

does not have decidable type-checking due to the “type-in-type” axiom. And its metatheory
is not formally developed.

Casts for managed type-level computation. Type-level computation in PITS is con-
trolled by explicit casts. Several studies (Sulzmann et al., 2007; Stump et al., 2008;
Sjöberg et al., 2012; Kimmell et al., 2012; Gundry, 2013; Sjöberg & Weirich, 2015;
Weirich et al., 2017) also attempt to use explicit casts for managed type-level compu-
tation. However, casts in those approaches are not inspired by iso-recursive types. Instead
they require equality proof terms, while casts in PITS do not. The need for equality
proof terms complicates the language design because: (1) building equality proofs requires
various other language constructs, adding to the complexity of the language design and
metatheory; (2) it is desirable to ensure that the equality proofs are valid. Otherwise,
one can easily build bogus equality proofs with non-termination, which could endanger
type-safety. Guru (Stump et al., 2008) and Sep3 (Kimmell et al., 2012) make syntactic
separation between proofs and programs to prevent certain programmatic terms turning
into invalid proofs. System DC (Weirich et al., 2017) and other FC variants (Sulzmann
et al., 2007; Yorgey et al., 2012) similarly distinguish coercions (i.e. equality proofs) and
programs syntactically. The programmatic part of Zombie (Sjöberg et al., 2012; Sjöberg
& Weirich, 2015), which has no such separation, employs value restriction that restricts
proofs to be syntactic values to avoid non-terminating terms. Gundry’s evidence lan-
guage (Gundry, 2013) also unifies all syntactic levels including coercions but uses different
phases for separating programs and proofs. The typing rules contain an access policy rela-
tion to determine the conversion of phases. Such mechanism is finer-grained yet more

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

42 Y. Yang and B. Oliveira

complicated. Note that our treatment of full casts in full PITS, using a separate erased
system for developing metatheory, is similar to the approach of Zombie or Guru which
uses an unannotated system.

Restricted recursion with termination checking. As proof assistants, dependently typed
languages such as Coq (The Coq Development Team, 2016) and Adga (Norell, 2007)
are conservative as to what kind of computation is allowed. They require all programs to
terminate by means of a termination checker, ensuring that recursive calls are decreas-
ing. Decidable type-checking and logical consistency are preserved. But the conservative,
syntactic criteria are insufficient to support a variety of important programming styles.
Agda offers an option to disable the termination checker to allow writing arbitrary func-
tions. However, this may endanger both decidable type-checking and logical consistency.
Idris (Brady, 2011) is a dependently typed language that allows writing unrestricted func-
tions. However, to achieve decidable type-checking, it also requires termination checker to
ensure only terminating functions are evaluated by the type checker. While logical consis-
tency is an appealing property, it is not a goal of PITS. Instead PITS aims at retaining (term-
level) general recursion as found in languages like Haskell or ML, while benefiting from a
unified syntax to simplify the implementation and the metatheory of the core language.

8 Conclusion and future work

This work proposes PITS: a family of minimal dependently typed core languages that
allow the same syntax for terms and types, support type-level computation and preserve
decidable type-checking under the presence of general recursion. The key idea is to con-
trol type-level computation using iso-types via casts. Because each cast can only account
for one step of type-level computation, type-checking becomes decidable without requir-
ing strong normalization of the calculus. At the same time, one-step casts together with
recursion provide a generalization of iso-recursive types. Different variants of PITS show
trade-offs of employing different reduction strategies in casts.

In future work, we hope to investigate more applications of iso-types. Two possible
directions are discussed next:

Type-level computation and subtyping. One possible direction is to implement more
surface language mechanisms, so as to express intensive type-level computation in a more
convenient way. For example, we can add lightweight (but not full) type-inference for
casts, or multi-step casts with step limits. Another direction is to combine iso-types with
more language features, e.g., subtyping and strong dependent sums, which are useful to
model object-oriented programming constructs and to model module systems. Thanks to
the simplicity of PITS, we can extend PITS without complicating the metatheory too much,
as our previous work on λ I� (Yang & Oliveira, 2017) illustrates. Such extensions of PITS
could also be used as underlying theories of feature-rich languages, similarly to dependent
object types of Scala (Amin et al., 2012). We plan to develop a language based on iso-
types and unified subtyping (Yang & Oliveira, 2017), which will have similar features
to dependent object type and be able to model Scala-like programming idioms, e.g., type
members and path-dependent types.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 43

Traditional language designs and type-inference. It will be also interesting to use PITS
to model traditional functional languages like (older versions of) Haskell and ML with
some extra features that come “for free” from the use of dependent types and unified
syntax. We believe PITS should easily allow the development of functional languages
that stand somewhere in-between older designs of functional languages (such as Haskell
98 and the original ML) and dependently typed languages like Idris (Brady, 2011) and
Agda (Norell, 2007) or dependently typed Haskell (Weirich et al., 2017). One short-term
goal for the future is to study a version of the Fun language with type-inference.

We believe that the absence of a conversion rule makes the problem of type-inference
and unification considerably easier than for dependently typed languages with a conversion
rule. Type-inference is still a major difference between ML-like languages (and Haskell)
and existing dependently typed languages. ML-like languages follow the Hindley–Milner
(Hindley, 1969; Milner, 1978; Damas & Milner, 1982) tradition and support global
type-inference requiring very few or no type annotations at all. Part of the reason why
type-inference works so well in those languages is that only first-order unification is nec-
essary. In contrast, dependently typed languages, like Agda or Idris, typically employ local
type-inference algorithms that require a considerable number of type annotations. This
is needed because the unification problem in such dependently typed languages is very
hard. Essentially, the presence of type-level functions and a conversion rule means that
a lot of types of different syntactic forms are equivalent. In the general case, this would
require higher-order unification, which is undecidable (Huet, 1973). Because there is no
conversion rule in PITS, the unification problem should be considerably simpler as two
types are only equivalent if they have the same syntactic form. If the unification problem
for PITS (or representative subsystems of PITS) is solved, this should enable forms of
type-inference closer to Haskell or ML.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful and useful comments.
This work has been sponsored by the Hong Kong Research Grant Council project numbers
17210617 and 17258816.

References

Accattoli, B. & Guerrieri, G. (2016) Open call-by-value. In Programming Languages and
Systems, Igarashi, A. (ed). Cham: Springer International Publishing, pp. 206–226.

Adams, R. (2006) Pure type systems with judgemental equality. J. Funct. program. 16(02), 219–246.
Altenkirch, T., Danielsson, N. A., Löh, A. & Oury, N. (2010) πσ : Dependent types without the sugar.

In Functional and Logic Programming, Blume, M., Kobayashi, N. & Vidal, G. (eds). Berlin,
Heidelberg: Springer, pp. 40–55.

Amin, N., Moors, A. & Odersky, M. (2012) Dependent object types. In 19th International Workshop
on Foundations of Object-Oriented Languages. FOOL’12.

Amin, N., Rompf, T. & Odersky, M. (2014) Foundations of path-dependent types. In OOPSLA’14.
ACM, pp. 233–249.

Amin, N., Grütter, S., Odersky, M., Rompf, T. & Stucki, S. (2016) The essence of dependent object
types. In A List of Successes That Can Change the World. Springer, pp. 249–272.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

44 Y. Yang and B. Oliveira

Aspinall, D. & Compagnoni, A. (1996) Subtyping dependent types. In LICS’96, IEEE, pp. 86–97.
Augustsson, L. (1998) Cayenne — a language with dependent types. In Proceedings of the Third

ACM SIGPLAN International Conference on Functional Programming. ICFP’98. New York, NY,
USA: ACM, pp. 239–250.

Barendregt, H. (1991) Introduction to generalized type systems. J. Funct. Program. 1(2), 125–154.
Barendregt, H. (1992) Lambda calculi with types. In Handbook of Logic in Computer Science,

vol. 2, Abramsky, S., Gabbay, D. M., & Maibaum, S. E. (eds). Oxford University Press, Inc.,
pp. 117–309.

Bird, R. & Meertens, L. (1998) Nested datatypes. In International Conference on Mathematics of
Program Construction. Springer, pp. 52–67.

Brady, E. C. (2011) Idris — systems programming meets full dependent types. In Proceedings of the
5th ACM Workshop on Programming Languages Meets Program Verification. PLPV’11. New
York, NY, USA: ACM, pp. 43–54.

Bruce, K. B., Cardelli, L. & Pierce, B. C. (1999). Comparing object encodings. Inf. Comput.
155(1–2), 108–133.

Cardelli, L. (1986) A polymorphic lambda-calculus with type: Type. Digital Systems Research
Center.

Cardelli, L., Martini, S., Mitchell, J.C. & Scedrov, A. (1994) An extension of system F with
subtyping. Inf. Comput. 109(1–2), 4–56.

Casinghino, C., Sjöberg, V. & Weirich, S. (2014) Combining proofs and programs in a dependently
typed language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL’14. New York, NY, USA: ACM, pp. 33–45.

Castagna, G. & Chen, G. (2001) Dependent types with subtyping and late-bound overloading. Inf.
Comput. 168(1), 1–67.

Chakravarty, M. M. T., Keller, G. & Jones, S. P. (2005) Associated type synonyms. In ICFP’05:
Proceedings of the Tenth ACM SIGPLAN International Conference on Functional Programming.
New York, NY, USA: ACM, pp. 241–253.

Cheney, J. & Hinze, R. (2002) A lightweight implementation of generics and dynamics. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell’02. New York, NY,
USA: ACM, pp. 90–104.

Cheney, J. & Hinze, R. (2003) First-Class Phantom Types. Technical Report CUCIS TR2003-1901.
Coquand, T. & Huet, G. (1988) The calculus of constructions. Inf. Comput. 76, 95–120.
Crary, K., Harper, R. & Puri, S. (1999) What is a recursive module? In Proceedings of the ACM

SIGPLAN 1999 Conference on Programming Language Design and Implementation. PLDI’99.
New York, NY, USA: ACM, pp. 50–63.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proceedings of the
9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL’82.
New York, NY, USA: ACM, pp. 207–212.

Eisenberg, R. A. (2016) Dependent Types in Haskell: Theory and Practice. PhD thesis, University
of Pennsylvania.

Eisenberg, R. A., Vytiniotis, D., Peyton Jones, S. & Weirich, S. (2014) Closed type families with
overlapping equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL’14. New York, NY, USA: ACM, pp. 671–683.

Eisenberg, R. A., Weirich, S. & Ahmed, H. G. (2016) Visible type application. In Programming
Languages and Systems, Thiemann, P. (ed). Berlin, Heidelberg: Springer, pp. 229–254.

Fegaras, L. & Sheard, T. (1996). Revisiting catamorphisms over datatypes with embedded func-
tions (or, programs from outer space). In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL’96. New York, NY, USA: ACM, pp.
284–294.

Geuvers, H. (1995) A short and flexible proof of strong normalization for the calculus of construc-
tions. In Types for Proofs and Programs, Dybjer, P., Nordström, B. & Smith, J. (eds). Berlin,
Heidelberg: Springer, pp. 14–38.

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

Pure iso-type systems 45

Gundry, A. M. (2013) Type Inference, Haskell and Dependent Types. PhD thesis, University of
Strathclyde.

Hindley, R. (1969) The principal type-scheme of an object in combinatory logic. Trans. Amer. Math.
Soc. 146, 29–60.

Huet, G. (1973) The undecidability of unification in third order logic. Inf. Control 22(3), 257–267.
Hutchins, D. S. (2010) Pure subtype systems. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL’10. ACM,
pp. 287–298.

Jones, M. P. (1993) A system of constructor classes: Overloading and implicit higher-order polymor-
phism. In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture. FPCA’93. New York, NY, USA: ACM, pp. 52–61.

Jones, M. P. (2000) Type classes with functional dependencies. In Programming Languages and
Systems, Smolka, G. (ed). Berlin, Heidelberg: Springer, pp. 230–244.

Kimmell, G., Stump, A., Eades III, H.D., Fu, P., Sheard, T., Weirich, S., Casinghino, C., Sjöberg,
V., Collins, N. & Ahn, K. Y. (2012) Equational reasoning about programs with general recursion
and call-by-value semantics. In Proceedings of the Sixth Workshop on Programming Languages
Meets Program Verification. PLPV’12. New York, NY, USA: ACM, pp. 15–26.

Marlow, S. (2010) Haskell 2010 language report. 2010.
Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17(3),

348–375.
Mogensen, T. Æ. (1992) Theoretical pearls: Efficient self-interpretation in lambda calculus. J. Funct.

Program 2(3), 345–364.
Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type Theory.

PhD thesis, Chalmers University of Technology.
Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N., Schinz, M.,

Stenman, E. & Zenger, M. (2004). An Overview of the Scala Programming Language. Technical
Report. IC/2004/64. EPFL Lausanne, Switzerland.

Paolini, L. & Della Rocca, S. R. (1999) Call-by-value solvability. Rairo-Theor. Inf. Appl. 33(6),
507–534.

Peyton Jones, S. & Meijer, E. (1997) Henk: a Typed Intermediate Language. In Types in Compilation
Workshop.

Peyton Jones, S., Washburn, G. & Weirich, S. (2004) Wobbly Types: Type Inference for Generalised
Algebraic Data Types. Technical Report. MS-CIS-05-26. University of Pennsylvania.

Pfenning, F. & Elliott, C. (1988). Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation. PLDI’88.
New York, NY, USA: ACM, pp. 199–208.

Pierce, B. C. (2002). Types and Programming Languages. MIT.
Pierce, B. C. & Turner, D. N. (1994) Simple type-theoretic foundations for object-oriented

programming. J. Funct. Program. 4(02), 207–247.
Reynolds, J. C. (1974) Towards a theory of type structure. In Proceedings of the ‘Colloque sur la

Programmation’, Berlin, Heidelberg: Springer-Verlag, pp. 408–425.
Schrijvers, T., Peyton Jones, S., Chakravarty, M. & Sulzmann, M. (2008) Type checking with

open type functions. In Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming. ICFP’08. New York, NY, USA: ACM, pp. 51–62.

Siles, V. & Herbelin, H. (2012) Pure type system conversion is always typable. J. Funct. Program
22(2), 153–180.

Sjöberg, V. (2015) A Dependently Typed Language with Nontermination. PhD thesis, University of
Pennsylvania.

Sjöberg, V., Casinghino, C., Ahn, K. Y., Collins, N., Eades III, H. D., Fu, P., Kimmell, G., Sheard,
T., Stump, A. & Weirich, S. (2012). Irrelevance, heterogenous equality, and call-by-value depen-
dent type systems. In Fourth workshop on Mathematically Structured Functional Programming
(MSFP’12). MSFP’12, pp. 112–162.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

46 Y. Yang and B. Oliveira

Sjöberg, V. & Weirich, S. (2015) Programming up to congruence. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL’15. New York, NY, USA: ACM, 369–382.

Stump, A., Deters, M., Petcher, A., Schiller, T. & Simpson, T. (2008) Verified programming in guru.
In Proceedings of the 3rd Workshop on Programming Languages Meets Program Verification.
PLPV’09. New York, NY, USA: ACM, pp. 49–58.

Sulzmann, M., Chakravarty, M. M. T., Peyton Jones, S. & Donnelly, K. (2007) System F with type
equality coercions. In Proceedings of the 2007 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation. TLDI’07. New York, NY, USA: ACM, pp. 53–66.

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K. & Yang, J. (2011) Secure dis-
tributed programming with value-dependent types. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming. ICFP’11. New York, NY, USA: ACM, pp.
266–278.

Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4), 423–436.
The Coq Development Team. (2016) The Coq Proof Assistant Reference Manual. Version 8.6.
van Benthem Jutting, L. S. (1993). Typing in pure type systems. Inf. Comput. 105(1), 30–41.
van Doorn, F., Geuvers, H. & Wiedijk, F. (2013) Explicit convertibility proofs in pure type systems.

In Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks &
Meta-Languages: Theory & Practice. LFMTP’13. New York, NY, USA: ACM, pp. 25–36.

Wadler, P. (1995) Monads for functional programming. In Advanced Functional
Programming, Jeuring, J. & Meijer, E. (eds). Berlin, Heidelberg: Springer, pp. 24–52.

Weirich, S., Hsu, J. & Eisenberg, R. A. (2013) System fc with explicit kind equality. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Programming. ICFP’13.
New York, NY, USA: ACM, pp. 275–286.

Weirich, S., Voizard, A., de Amorim, P. H. A. & Eisenberg, R. A. (2017). A specification for
dependent types in Haskell. Proc. ACM Program. Lang. 1(ICFP), 31:1–31:29.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf Comput. 115(1),
38–94.

Xi, H., Chen, C. & Chen, G. (2003) Guarded recursive datatype constructors. In Proceedings of the
30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL’03.
New York, NY, USA: ACM, pp. 224–235.

Yang, Y., Bi, X. & Oliveira, B. C. d. S. (2016) Unified syntax with iso-types. In Programming
Languages and Systems, Igarashi, A. (ed). Cham: Springer International Publishing, pp. 251–270.

Yang, Y. & Oliveira, B. C. d. S. (2017) Unifying typing and subtyping. Proc. ACM Program. Lang.
1(OOPSLA), 47:1–47:26.

Yorgey, B. A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D. & Magalhães, J. (2012)
Giving Haskell a promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation. TLDI ’12. New York, NY, USA: ACM, pp. 53–66.

https://doi.org/10.1017/S0956796819000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000108

	Pure iso-type systems
	Introduction
	Motivation and overview
	Implicit type conversion in PTSs
	Newtypes: A mechanism for explicit type conversion in Haskell
	Iso-types: Explicit type conversion in PITS
	General recursion

	Applications
	Fun implementation
	Combining algebraic datatypes with advanced features
	Object encodings
	Fun with full reduction

	Call-by-name PITSs
	Syntax
	Operational semantics
	Typing
	The two faces of recursion
	Metatheory of call-by-name PITS

	Call-by-value PITSs
	Value restriction
	Reduction with open terms
	Metatheory

	Iso-types with full casts
	Full casts with parallel reduction
	Metatheory
	Completeness to PTSs

	Discussion and related work
	Comparing the three variants of PITS and PTSf
	Other related work

	Conclusion and future work

