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Abstract

We formulate general conditions which imply that L(-,. ), the space of operators from a Banach space X to a

Banach space Y, has 2c closed ideals, where c is the cardinality of the continuum. These results are applied to

classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed

ideals in L
(
ℓ? ⊕ ℓ@

)
is exactly 2c for all 1 < ? < @ < ∞.

1. Introduction

Given Banach spaces - and . , we call a subspace J of the space L(-,. ) of bounded operators an

ideal if �)� ∈ J for all � ∈ L(. ), ) ∈ J and � ∈ L(-). In the case that - = . , this coincides

with the standard algebraic definition of J being an ideal in the algebra of bounded operators L(-). In

this paper we will only be considering closed ideals. For example, if - and . are any Banach spaces,

then the space of compact operators from - to . and the space of strictly singular operators from -

to . are both closed ideals in L(-,. ). In the case of - = . = ℓ? , the compact and strictly singular

operators coincide and they are the only closed ideal in L
(
ℓ?

)
other than the trivial cases of {0} and

the entire space L
(
ℓ?

)
. For ? ≠ 2, the situation for !? is very different from that for ℓ?. If - contains a

complemented subspace / such that / is isomorphic to / ⊕ / , then the closure of the set of operators

in L(-) which factor through / is a closed ideal, and moreover the map that associates this closed ideal

with the isomorphism class of / is injective. In the case 1 < ? < ∞ with ? ≠ 2, there are infinitely

many (even uncountably many) distinct complemented subspaces of !? which are isomorphic to their

square [3], and thus there are infinitely many distinct closed ideals in L
(
!?

)
.

Obviously, constructing infinitely many closed ideals for L
(
ℓ? ⊕ ℓ@

)
or L

(
ℓ? ⊕ c0

)
with 1 6 ? <

@ < ∞ requires different techniques than just considering complemented subspaces, and it was a long

outstanding question from Pietsch’s book [21] whether these spaces have infinitely many distinct closed

ideals. For the cases 1 6 ? < @ < ∞, the closures of the set of operators which factor through ℓ? and

the operators which factor through ℓ@ are distinct closed ideals (indeed, the only maximal ideals) in

L
(
ℓ? ⊕ ℓ@

)
, and all other proper closed ideals in L

(
ℓ? ⊕ ℓ@

)
correspond to closed ideals in L

(
ℓ?, ℓ@

)
.

Progress on constructing new ideals in L
(
ℓ? , ℓ@

)
proceeded through building finitely many ideals at a

time (see [23] and [25]) until it was shown using finite-dimensional versions of Rosenthal’s -?,F spaces

that there is chain of a continuum of distinct closed ideals in L
(
ℓ? , ℓ@

)
for all 1 < ? < @ < ∞ [27]. For
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1 < ? < ∞, ? ≠ 2, ℓ? ⊕ ℓ2 is isomorphic to a complemented subspace of !? , and thus there are at least

a continuum of closed ideals in L
(
!?

)
. Other new constructions for building infinitely many closed

ideals soon followed. Wallis observed [31] that the techniques of [27] extend to prove the existence of

a chain of a continuum of closed ideals for L
(
ℓ?, c0

)
in the range 1 < ? < 2, and for L

(
ℓ1, ℓ@

)
in the

range 2 < @ < ∞. Then, using ordinal indices, Sirotkin and Wallis proved that there is an l1-chain of

closed ideals in L
(
ℓ1, ℓ@

)
for 1 < @ 6 ∞ as well as in L (ℓ1, c0) and in L

(
ℓ? , ℓ∞

)
for 1 6 ? < ∞ [28].

Using matrices with the restricted isometry property, both chains and anti-chains of a continuum of

distinct closed ideals were constructed in L
(
ℓ? , c0

)
, L

(
ℓ?, ℓ∞

)
and L

(
ℓ1, ℓ?

)
for all 1 < ? < ∞ [6].

Recently, using the infinite-dimensional -?,F spaces of Rosenthal and almost disjoint sequences of

integers, Johnson and Schechtman proved that there are 2c distinct closed ideals inL
(
!?

)
for 1 < ? < ∞

with ? ≠ 2 [11]. In particular, the cardinality of the set of closed ideals in L
(
!?

)
is exactly 2c .

The goal for this paper is to present a general method for proving when L(-,. ) contains 2c distinct

closed ideals for some Banach spaces - and . with unconditional finite-dimensional decompositions.

Given a collection of operators ()# )# ∈[N]l from - to . indexed by the set of all infinite subsets of

the natural numbers, we give sufficient conditions for there to exist an infinite subset ! of N so that if

S ⊂ [!]l is a set of pairwise almost disjoint subsets of !, then for all A,B ⊂ (, if " ∈ A \ B, the

operator )" is not contained in the smallest closed ideal containing {)# : # ∈ B}. Thus, L(-,. )

contains 2c closed ideals. We are able to apply this method to prove in particular that the cardinality

of the set of closed ideals in L
(
ℓ? ⊕ ℓ@

)
is exactly 2c for all 1 < ? < @ < ∞. It follows at once that

L
(
!?

)
contains exactly 2c closed ideals for 1 < ? ≠ 2 < ∞, and thus we have another proof of the

aforementioned result of Johnson and Schechtman [11]. It is worth pointing out that they construct

closed ideals using operators that are not even strictly singular (and on the other hand, their ideals do

not contain projections onto non-Hilbertian subspaces). By contrast, our 2c closed ideals are small in

the sense that they consist of finitely strictly singular operators.

In [7] it was shown that there are 2c distinct closed ideals inL
(
ℓ? , c0

)
,L

(
ℓ? , ℓ∞

)
andL

(
ℓ1, ℓ?

)
for all

1 < ? < ∞. In this article, we will show that this result can also be obtained by our general construction.

Although our initial goals were to construct closed ideals between classical Banach spaces, the

generality of our approach allows us to construct 2c closed ideals in L(-,. ) when - and . are exotic

Banach spaces such as, for example, ?-convexified Tsirelson spaces. In [2] it was shown that the

projection operators in Tsirelson and Schreier spaces generate a continuum of distinct closed ideals. So

again, an interesting distinction between these two methods is that the operators we use to generate ideals

are finitely strictly singular, whereas the projections used in [2] are clearly not even strictly singular.

The paper is organised as follows. In the next section we give general conditions on Banach spaces

- and . that ensure that L(-,. ) contains 2c closed ideals. We also prove two further results giving

criteria that help with verifying those general conditions. Each one of these two results has applications

that we present in the following two sections. In the final section we give further remarks and state some

open problems.

2. General conditions for having 2c closed ideals in L(X,Y)

Let - and. be Banach spaces and let T be a subset of L(-,. ), the space of all bounded linear operators

from - to . . The closed ideal generated by T is the smallest closed ideal in L(-,. ) containing T and

is denoted by JT (-,. ). That is, JT (-,. ) is the closure in L(-,. ) of the set



=∑
9=1

� 9)9� 9 : = ∈ N,
(
� 9

)=
9=1

⊂ L(. ),
(
)9

)=
9=1

⊂ T,
(
� 9

)=
9=1

⊂ L(-)




consisting of finite sums of operators factoring through members of T. When T consists of a single

operator ) ∈ L(-,. ), then we write J) (-,. ) instead of J{) } (-,. ).

In [6], for each 1 < ? < ∞, a collection ()# )# ⊂N ⊂ L
(
ℓ? , c0

)
of operators was constructed such that

J)"
(
ℓ? , c0

)
≠ J)#

(
ℓ?, c0

)
whenever " △# is infinite. For a nonempty family A of subsets ofN, let JA
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be the closed ideal in L
(
ℓ?, c0

)
generated by {)# : # ∈ A}. There are at most a continuum of closed

ideals in L
(
ℓ? , c0

)
that are generated by a single operator. However, it was observed in [7] that if S is

an almost disjoint family of cardinality c consisting of infinite subsets of N, then {JA : A ⊂ S, A ≠ ∅}

is a lattice of 2c distinct closed ideals in L
(
ℓ? , c0

)
.

In this section, we will present a general condition which implies that L(-,. ) has 2c closed ideals

in the following framework, in which the example already given also sits.

We are given two Banach spaces - and. which are assumed to have unconditional finite-dimensional

decompositions (UFDDs) (�=) and (�=), respectively. By this we mean that �= is a finite-dimensional

subspace of - for each = ∈ N, that each element of G can be written in a unique way as G =
∑
=∈N G=

with G= ∈ �= for each = ∈ N and that
∑
=∈N G= converges unconditionally. We can therefore think of the

elements G ∈ - as sequences (G=) with G= ∈ �=, which we call the =-component of G, for each = ∈ N.

As in the case of unconditional bases, this implies that for # ⊂ N, the map

%-# : - → -, (G=)=∈N ↦→ (G=)=∈# ,

where (G=)=∈# is identified with the element in - whose <-component vanishes for < ∈ N \ # , is well

defined and uniformly bounded. It follows that for some � > 0 we have
∑

=∈N f=G=
 6 �∑

=∈N G=


for all (G=) ∈ - and all (f=) ∈ {±1}N. In this case we say that (�=) is a �-unconditional finite-

dimensional decomposition (or �-unconditional FDD) of - . After renorming - , we can (and will)

assume that
%-

#

 = 1 for a nonempty # ⊂ N and that moreover


∑
=∈N

G=

 =

∑
=∈N

f=G=

 (1)

for all (G=) ∈ - and all (f=) ∈ {±1}N. We denote for # ⊂ N the image of - under %-
#

by -# . Thus

-# = %-
#
(-) = span

⋃
=∈# �= is 1-complemented in - and (�= : = ∈ #) is a 1-unconditional FDD

of -# . Similarly, for the space . with UFDD (�=), we define %.
#

and .# for every # ⊂ N. We further

assume that
%.

#

 = 1 for every nonempty # ⊂ N and that (�=) is a 1-unconditional FDD of . .

For each = ∈ N we are given a linear operator )= : �= → �= and we assume that the linear operator

) : span
⋃
=∈N �= → span

⋃
=∈N �=, (G=) ↦→ ()= (G=)),

extends to a bounded operator ) : - → . . We then define for # ⊂ N the diagonal operator )# : -# →

.# by )# = ) ◦ %-
#
= %.

#
◦ ) . Note that ‖)# ‖ 6 ‖) ‖.

Our goal is to formulate conditions which imply that the following holds for some Δ > 0:

∀", # ∈ [N]l , if " \ # ∈ [N]l , then dist
(
)" , J

)#
)
> Δ . (2)

Using an observation in [11], we can conclude that L(-,. ) has 2c closed ideals when formula (2) holds.

Proposition 1. Let - , . and ()=) be as before, and assume that condition (2) holds for some Δ > 0.

Let S ⊂ [N]l be an almost disjoint family of cardinality c. For A ⊂ S, let JA be the closed ideal in

L(-,. ) generated by {)# : # ∈ A}. Then if A,B ⊂ S with A ≠ B, then JA ≠ JB. In particular, the

cardinality of the set of closed ideals in L(-,. ) is 2c .

Proof. Let A and B be two different subsets of S. Without loss of generality, we assume that there is an

" ∈ A \B. We claim that )" ∉ JB, and that actually dist()" , JB) > Δ .

Indeed, set = ∈ N,
(
� 9

)=
9=1

⊂ L(. ),
(
� 9

)=
9=1

⊂ L(-) and
(
# 9

)=
9=1

⊂ B. Put # =
⋃=
9=1 # 9 . It follows

that

=∑
9=1

� 9 ◦ )# 9
◦ � 9 =

=∑
9=1

� 9 ◦ %
.
# 9

◦ )# ◦ � 9 ∈ J)# .
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Since " \ # is infinite, it follows from formula (2) that
=∑
9=1

� 9 ◦ )# 9
◦ � 9 − )"

 > Δ .

Since JB is the closure of the set of operators of the form
∑=
9=1 � 9 ◦)# 9

◦� 9 with = ∈ N,
(
� 9

)=
9=1

⊂ L(. ),(
� 9

)=
9=1

⊂ L(-) and
(
# 9

)=
9=1

⊂ B, we deduce our claim. �

In order to separate )" from J)# if " \ # is infinite, the following condition is sufficient:

For each = ∈ N there exist ;= ∈ N and vectors
(
G=, 9

) ;=
9=1

⊂ (�=
,(

H∗=, 9

) ;=
9=1

⊂ (� ∗
=

so that

H∗=, 9
(
)=

(
G=, 9

) )
> 1 for = ∈ N and 9 = 1, 2, . . . , ;=, (3a)

lim
<→∞
<∈"\#

1

;<

;<∑
8=1

)# ◦ �(G<,8)
 = 0 (3b)

whenever ", # ∈ [N]l satisfy " \ # ∈ [N]l , and � ∈ L(-).

Indeed, for = ∈ N we define the functional Ψ= ∈ L(-,. )∗ by

Ψ= (() =
1

;=

;=∑
9=1

H∗=, 9
(
(

(
G=, 9

) )
, for ( ∈ L(-,. ).

Given ", # ∈ [N]l with " \ # ∈ [N]l , we let Ψ be a F∗-accumulation point of (Ψ< : < ∈ " \ #).

It follows from formula (3a) that

Ψ()" ) > lim inf
<∈"\#

Ψ<()" ) > 1,

and for any � ∈ L(. ) and � ∈ L(-) it follows from equation (3b) that

��Ψ(�)# �)
�� 6 lim sup

<∈"\#

����� 1

;<

;<∑
8=1

H∗<,8
(
�)# �(G<,8)

) �����
= lim sup
<∈"\#

����� 1

;<

;<∑
8=1

�∗H∗<,8
(
)# �(G<,8)

) �����
6 ‖�‖ lim sup

<∈"\#

1

;<

;<∑
8=1

‖)# �(G<,8)‖ = 0.

Since ‖Ψ=‖ 6 1 for all = ∈ N, it follows that ‖Ψ‖ 6 1, which in turn implies condition (2) with Δ = 1.

Remark. Some extension of this result is possible. Assume for example that formula (3) holds and that

* is an isomorphism of. into another Banach space / . Then L(-, /) also has at least 2c distinct closed

ideals. Indeed, by Hahn–Banach, there are functionals I∗=, 9 ∈ /
∗ such that*∗

(
I∗=, 9

)
= H∗=, 9 for all = ∈ N

and 9 = 1, 2, . . . , ;=, and moreover, � = sup=, 9

I∗=, 9
 < ∞. If we now define Ψ= ∈ L(-, /)∗ as before

but replace H∗=, 9 with I∗=, 9 , then the previous argument will show that condition (2) holds with Δ = 1/�

if we replace )# with* ◦ )# for every # ⊂ N.
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We now want to formulate conditions on the spaces - and . and the operators )= : �= → �=, = ∈ N,

which imply that condition (3) is satisfied. From now on we assume that for each = ∈ N, the spaces

�= and �= have 1-unconditional, normalised bases
(
4=, 9

)dim(�=)

9=1
and

(
5=, 9

)dim(�=)

9=1
with coordinate

functionals
(
4∗=, 9

)dim(�=)

9=1
and

(
5 ∗=, 9

)dim(�=)

9=1
, respectively.

We write for = ∈ N the operator )= : �= → �= as

)= : �= → �=, )= (G) =

dim(�=)∑
9=1

G∗=, 9 (G) 5=, 9 ,

where G∗=, 9 ∈ �
∗
= for = ∈ N and 1 6 9 6 dim(�=). In applications, we will define the )= by choosing the

G∗=, 9 so that

the operator ) : - → ., (G=) ↦→ () (G=)), is well defined and bounded. (4)

We secondly demand that dim(�=) = ;= and that H∗=, 9 = 5 ∗=, 9 for = ∈ N and 9 = 1, 2, . . . , ;=. Thus, in

order to obtain formula (3a), we require

G∗=, 9
(
G=, 9

)
> 1 for all = ∈ N and 9 = 1, 2, . . . , ;=. (5)

Finally, in order to satisfy equation (3b), we will ensure that for < ∈ N and any operator � ∈

L
(
�<, -N\{<}

)
with ‖�‖ 6 1, it follows that

1

;<

;<∑
8=1

)# \{<}�(G<,8)
 6 Y<, (6)

where (Y<) is a sequence in (0, 1) decreasing to 0 not depending on �. Now � can be written as the

sum � = � (1) + � (2) , where � (1) ∈ L(�<, -{1,2,...,<−1}) and � (2) ∈ L(�<, -N\{1,2,...,<}).

It is not very hard to force formula (6) to hold for � (1) with Y</2 instead of Y<: it will be enough

to ensure that ;< is very large compared to dim
(
-{1,2,...,<−1}

)
and (see the proof of Proposition 2) that

1
;<

sup±

∑;<
8=1

±G<,8

 decreases to 0 for increasing <. To also ensure the necessary estimates for � (1) ,

we will assume the following slightly stronger condition:

lim
<→∞

;< = ∞ and lim
;→∞

sup
<∈N,;<>;

i<(;)

;
= 0, where (7)

i< (;) = sup

{
∑
8∈�

f8G<,8

 : � ⊂ {1, . . . , ℓ<}, |�| 6 ;, (f8)8∈� ⊂ {±1}

}
.

Ensuring that formula (6) holds for � (2) is more complicated and will be done in two steps. The second

of these two steps is more straighforward: it will be enough to assume that )N\{1,2,...<} maps vectors

with small coordinates into vectors with small norm (see Proposition 2(a) for the precise statement).

The first step is then to assume (see Proposition 2(b)) that the set{
(=, 9) : = > <, 1 6 9 6 ;=,

���G∗=, 9 (� (2)G<,8

)��� > X for some 1 6 8 6 ;<

}
has small cardinality compared to ;<. In many situations, guaranteeing that this set has small cardinality

relative to ;< is the trickiest part, as � (2) is an arbitrary norm 1 operator. However, in Lemmas 3 and 4

we present conditions which imply this result and are stated in terms of only basic properties of the

sequences
(
G=, 9

)
and

(
G∗=, 9

)
, as well as the Banach spaces - and . .
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Of course, since for any # ∈ [N]l , -# and .# are complemented subspaces of - and . , re-

spectively, we can pass to subsequences
(
�:=

)
,
(
�:=

)
and

(
):=

)
for which we are able to verify con-

dition (2), in order to conclude that the lattice of closed ideals in L(-,. ) is of cardinality 2c . This

follows from the following observation, whose verification is routine. Suppose that + and , are com-

plemented subspaces of - and . , respectively. For a closed ideal J in L(+,,), let J̃ be the closure

in L(-,. ) of the set of operators of the form
∑=
9=1 � 9( 9� 9 , where = ∈ N,

(
� 9

)=
9=1

⊂ L(,,. ),(
( 9

)=
9=1

⊂ J and
(
� 9

)=
9=1

⊂ L(-,+). Then J̃ is a closed ideal in L(-,. ) and the map J ↦→ J̃ is

injective.

Proposition 2. Assume that the spaces - and . , their 1-unconditional FDDs (�=) and (�=) and the

operators )= : �= → �=, = ∈ N, satisfy conditions (4), (5) and (7). Assume, moreover, that the following

conditions hold:

(a) For all Y > 0 and all " ∈ [N]l , there are a X > 0 and # ∈ ["]l so that

∀G ∈ �-#
, if sup

=∈# ,16 96;=

���G∗=, 9 (G)��� 6 X, then ‖)# (G)‖ < Y.

(b) For all X, Y > 0 and all " ∈ [N]l , there are < ∈ " and # ∈ ["]l so that for every

� ∈ L(�<, -# ) with ‖�‖ 6 1, we have

���{(=, 9) : = ∈ #, 1 6 9 6 ;=,

���G∗=, 9 (�G<,8)��� > X for some 1 6 8 6 ;<

}��� < Y;<.
Then there is a subsequence (:=) of N so that for �̃= = �:= , �̃= = �:= , )̃= = ):= , ;̃= = ;:= ,

(
G̃=, 9

) ;̃=
9=1

=(
G:= , 9

) ;:=
9=1

⊂ �̃= and
(
H̃∗=, 9

) ;̃=
9=1

= ( 5 ∗
:= , 9

)
;:=
9=1

⊂
(
�̃=

)∗
, condition (3) is satisfied. Hence,L(-,. ) contains

2c closed ideals.

Proof. Let (YA )
∞
A=1

⊂ (0, 1) be a sequence which decreases to 0. Put :0 = 0 and "0 = N. We will

inductively choose :A ∈ N and "A ∈ [N]l so that for all A ∈ N

min("A ) > :A , (8)

:A−1 < :A , "A ⊂ "A−1 and :A ∈ "A−1, (9)

1

;:A

;:A∑
8=1

� (
G:A ,8

) 6 YA for all � ∈ L
(
�:A , -{:1 ,:2 ,...,:A−1 }

)
, ‖�‖ 6 1, (10)

1

;:A

;:A∑
8=1

)"A
�

(
G:A ,8

) 6 YA for all � ∈ L
(
�:A , -"A

)
, ‖�‖ 6 1. (11)

Assume that for some A ∈ N, we have already chosen suitable :1 < :2 < · · · < :A−1 and N = "0 ⊃

"1 ⊃ · · · ⊃ "A−1. Put � = ‖) ‖. By using (a), we choose X > 0 and " ∈ ["A−1]
l so that

‖)" (G)‖ 6
YA

2
for all G ∈ �-"

, with sup
<∈",1686;<

��G∗<,8 (G)�� 6 X. (12)

Note that condition (12) still holds if we replace " by any infinite subset of " .

We now let ? ∈ N be large enough so that there exists a sequence
(
I∗9

) ?
9=1

⊂ (-{:1 ,:2 ,...,:A−1 }
which

normalises the elements of -{:1 ,:2 ,...,:A−1 } up to the factor 2 – that is,

‖G‖ 6 max
16 96?

2

���I∗9 (G)��� for all G ∈ -{:1 ,:2 ,...,:A−1 }. (13)
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We now apply equation (7) and choose ; ∈ N and <1 > :A−1 large enough so that for all < > <1 we

have ;< > ;, and if � ⊂ {1, 2, . . . , ;<} has |�| > ;, then

sup
±


∑
8∈�

±G<,8

 < min

(
X

�
,
YA

2?

)
|�|. (14)

For any < > <1 and any � ∈ L
(
�<, -{:1 ,:2 ,...,:A−1 }

)
with ‖�‖ 6 1, it follows that

1

;<

;<∑
8=1

�(G<,8) 6 2

;<

;<∑
8=1

?∑
9=1

���I∗9�(G<,8)��� (15)

=
2

;<

?∑
9=1

I∗9 ◦ �

(
;<∑
8=1

f8, 9G<,8

)

(
with f8, 9 = sign

(
I∗9�(G<,8)

)
for 1 6 8 6 ;< and 1 6 9 6 ?

)

6
2?

;<
sup
±


;<∑
8=1

±G<,8

 6 YA .
Thus formula (10) will hold for any :A > <1. We now apply assumption (b) and choose :A ∈ " and an

infinite subset "A of " with <1 6 :A < min("A ) so that for every � ∈ L
(
�:A , -"A

)
with ‖�‖ 6 1 we

have

|� (�) | <
YA ;:A

2�;
, where

� (�) =
{
(=, 9) : = ∈ "A , 1 6 9 6 ;=,

���G∗=, 9 (�G:A ,8 ) ��� > X for some 1 6 8 6 ;:A

}
. (16)

We now verify condition (11) and complete the inductive construction. Set � ∈ L
(
�:A , -"A

)
with

‖�‖ 6 1 and set � = � (�). For each (=, 9) ∈ � we denote

�=, 9 =
{
8 ∈

{
1, 2, . . . , ;:A

}
:

���G∗=, 9 (�G:A ,8 ) ��� > X} .
We now have for each (=, 9) ∈ � that

� sup
±


∑
8∈�=, 9

±G:A ,8

 > sup
±


∑
8∈�=, 9

±)"A
�G:A ,8


> sup

±

∑
8∈�=, 9

± 5 ∗=, 9
(
)"A

�G:A ,8
)

>

���=, 9 �� X,
where we used the fact that 5 ∗=, 9 ◦ )"A

= G∗=, 9 . On the other hand, we have by formula (14) that if���=, 9 �� > ;, then

sup
±


∑
8∈�=, 9

±G:A ,8

 < X
���=, 9 �� /�.
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Thus,
���=, 9 �� < ; for all (=, 9) ∈ �. We now set � =

⋃
(=, 9) ∈� �=, 9 and calculate

;:A∑
8=1

)"A
�

(
G:A ,8

) 6∑
8∈�

)"A
�

(
G:A ,8

) + ∑
8∉�

)"A
�

(
G:A ,8

)
6

∑
8∈�

)"A
�

(
G:A ,8

) + YA ;:A /2, by formula (12),

6

∑
(=, 9) ∈�

∑
8∈�=, 9

)"A
�

(
G:A ,8

) + YA ;:A /2
6 �; |� | + YA ;:A /2, as

���=, 9 �� < ; for all (=, 9) ∈ �,

6 YA ;:A , by condition (16).

Thus we have proven formula (11) and our induction is complete.

We now prove that condition (3) holds. Assumption (5) and the definition of)= imply that formula (3a)

holds with H∗=, 9 = 5 ∗=, 9 . To verify equation (3b), we consider infinite subsets " and # of {:A : A ∈ N}

with " \ # ∈ [N]l . Set � ∈ L(-) and < ∈ " \ # . Define A by < = :A . Let #<< = {= ∈ # : = < <}

and #>< = {= ∈ # : = > <}. We then have

1

;<

;<∑
8=1

)# �(G<,8) 6 1

;<

;<∑
8=1

)#<<
�(G<,8)

 + 1

;<

;<∑
8=1

)#><
�(G<,8)



6
1

;:A

;:A∑
8=1

�
%{:1 ,...,:A−1 }�

(
G:A ,8

) + 1

;:A

;:A∑
8=1

)"A
�

(
G:A ,8

)
6 YA�‖�‖ + YA ‖�‖, by formulas (10) and (11).

Hence we have

lim
<→∞

1

;<

;<∑
8=1

)# �(G<,8) = 0

and equation (3b) is satisfied. �

As mentioned before, the key assumption in Proposition 2 is (b). We will now present conditions

(Lemmas 3 and 4) which imply this assumption. We will later give applications in Sections 3 and 4.

For a Banach space / with an unconditional basis
(
5 9
)
, we define the lower fundamental function

_/ : N→ R of / by

_/ (=) = inf




∑
9∈�

5 9

 : � ⊂ N, |�| > =




(= ∈ N).

Lemma 3. We are given X, Y ∈ (0, 1), ; ∈ N with Y; > 1, Banach spaces� and / and a 1-unconditional

basis
(
5 9
)∞
9=1

for / with biorthogonal functionals
(
5 ∗9

)∞
9=1

. Assume that for some sequence (G8)
;
8=1

⊂ (�

we have

i(;)/_/ (⌊Y;⌋) < X, (17)

where i(;) = sup {‖
∑
8∈� f8G8 ‖ : � ⊂ {1, 2, . . . , ;}, (f8)8∈� ⊂ {±1}}. Then for any � : � → / with

‖�‖ 6 1, we have ���{ 9 ∈ N :

��� 5 ∗9 (�G8)��� > X for some 1 6 8 6 ;
}��� 6 Y;.
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Proof. Fix an operator � : � → / with ‖�‖ 6 1 and set

� =
{
8 ∈ {1, 2, . . . , ;} :

��� 5 ∗9 (�G8)��� > X for some 9 ∈ N
}
,

� =
{
9 ∈ N :

��� 5 ∗9 (�G8)��� > X for some 1 6 8 6 ;
}
.

We next fix independent Rademacher random variables (A8)8∈� and establish the estimate

E

�����
∑
8∈�

A8 5
∗
9

(
�(G8)

) ����� > X for all 9 ∈ �. (18)

To see this, fix 9 ∈ � and set H8 = 5 ∗9
(
�(G8)

)
for 8 ∈ �. By the definition of �, there is an 80 ∈ � such that��H80 �� > X. Thus, by Jensen’s inequality we have

E

�����
∑
8∈�

A8H8

����� = E
�����
∑
8∈�

A80A8H8

����� = E
�����H80 +

∑
8∈� ,8≠80

A80A8H8

�����
>

�����H80 +
∑

8∈� ,8≠80

E(A80A8)H8

����� =
��H80 �� > X.

We then calculate

i(;) > E


∑
8∈�

A8�(G8)


/

, as ‖�‖ 6 1,

= E


∑
9

�����
∑
8∈�

A8 5
∗
9

(
�(G8)

) ����� 5 9

/

, as
(
5 9
)

is 1-unconditional,

>


∑
9

E

�����
∑
8∈�

A8 5
∗
9

(
�(G8)

) ����� 5 9

/

, by Jensen’s inequality,

> X


∑
9∈�

5 9


/

, using formula (18) and the 1-unconditionality of
(
5 9
)
,

> X_/ (|� |).

Since the lower fundamental function _/ is clearly increasing, it follows from assumption (17) that

|� | 6 Y;. �

We now state and prove a very different condition that also implies Proposition 2(b). Here we use the

notation and framework established on page 5.

Lemma 4. Let 1 6 B, C < ∞ and suppose the following hold:

(a) There is a constant 21 > 0 so that
(
4∗<,8

)dim(�<)

8=1
is 21-dominated by the unit vector basis of ℓB for

each < ∈ N. That is,


dim(�<)∑
8=1

084
∗
<,8

 6 21

(
dim(�<)∑
8=1

|08 |
B

)1/B

for all scalars (08)
dim(�<)

8=1
.
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(b) There is a constant 22 > 0 so that for all <, = ∈ N with < < = and all � ⊂ {1, 2, . . . , ;=} with

|�| 6 ;<, the sequence
(
G∗=, 9

)
9∈�

is 22-weak ℓB. That is,

©«
∑
9∈�

���G∗=, 9 (G)���Bª®¬
1/B

6 22‖G‖ for all G ∈ �=.

(c) There is a constant 23 > 0 so that if I= ∈ (�=
for all = ∈ N, then (I=)

∞
==1

23-dominates the unit

vector basis for ℓC . In other words,

(∑
=∈N

%-= GC
)1/C

6 23‖G‖ for all G ∈ -.

(d) lim<→∞

(
dim(�<)

)<0G (1,C/B)
;−1
< = 0.

Then for all X, Y > 0, there exists < ∈ N so that for all # ∈ [{= ∈ N : = > < + 1}]l and for all

� ∈ L(�<, -# ) with ‖�‖ 6 1, the set

� =
{
(=, 9) : = ∈ #, 1 6 9 6 ;=,

���G∗=, 9 (�G<,8)��� > X for some 1 6 8 6 ;<

}

has |� | 6 Y;<.

Proof. Set 0 < X, Y < 1, < ∈ N, # ∈ [{= ∈ N : = > < + 1}]l and � ∈ L(�<, -# ) with ‖�‖ 6 1. Let

� ⊂ � be such that |� | 6 ;<. Note that if we prove that |� | < Y;<, then we have |� | < Y;<. For each

= ∈ # denote �= =
{
9 ∈ {1, 2, . . . , ;=} : (=, 9) ∈ �}. We have

XB |�= | 6
∑
9∈�=

�∗G∗=, 9

B

=
∑
9∈�=


dim(�<)∑
8=1

(
�∗G∗=, 9 (4<,8)

)
4∗<,8


B

6 2B1

∑
9∈�=

dim(�<)∑
8=1

����∗G∗=, 9 (4<,8)

���B by (a),

= 2B1

dim(�<)∑
8=1

∑
9∈�=

���G∗=, 9 (%-= �4<,8)���B

6 2B12
B
2

dim(�<)∑
8=1

%-= �4<,8B by (b).

For the case where C 6 B, we may use the fact that
%-= �4<,8 6 1 to obtain

XB |�= | 6 2
B
12
B
2

dim(�<)∑
8=1

%-= �4<,8B 6 2B12B2
dim(�<)∑
8=1

%-= �4<,8C . (19)

For the case that B < C, Hölder’s inequality gives

XB |�= | 6 2
B
12
B
2

dim(�<)∑
8=1

%-= �4<,8B 6 2B12B2 ( dim(�<)
) C−B

C

(
dim(�<)∑
8=1

%=�4<,8C
)B/C

.
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By raising this inequality to the power C/B, we have, for B < C,

XC |�= | 6 X
C |�= |

C/B
6 2C12

C
2

(
dim(�<)

) C−B
B

dim(�<)∑
8=1

%-= �4<,8C . (20)

We now finish the proof for the case where C 6 B; we will consider the remaining case later. Summing

formula (19) over = ∈ # gives

|� | =
∑
=∈#

|�= |

6 X−B2B12
B
2

dim(�<)∑
8=1

∑
=∈#

%-= �4<,8C�=

6 X−B2B12
B
2

dim(�<)∑
8=1

2C3

�4<,8C by (c),

6 X−B2B12
B
22
C
3 dim(�<).

As C 6 B, we have by (d) that lim<→∞ dim(�<);
−1
< = 0. Hence, if< ∈ N is large enough, then |� | < Y;<,

and thus |� | < Y;< as well.

We now consider the remaining case, where B < C. By formula (20) we have

|� | =
∑
=∈#

|�= |

6 X−C2C12
C
2

(
dim(�<)

) C−B
B

dim(�<)∑
8=1

∑
=∈#

%-= �4<,8C�=

= X−C2C12
C
22
C
3

(
dim(�<)

) C−B
B

dim(�<)∑
8=1

�4<,8C by (c),

6 X−C2C12
C
22
C
3

(
dim(�<)

) C−B
B dim(�<)

= X−C2C12
C
22
C
3

(
dim(�<)

) C
B .

As B < C, we have by (d) that lim<→∞

(
dim(�<)

) C
B ;−1
< = 0. Hence, if < ∈ N is large enough, then

|� | < Y;<, and thus |� | < Y;<. �

3. Applications I

In this section we apply the general process developed in Section 2 together with Lemma 3 to establish

a class of pairs (-,. ) of Banach spaces for which L(-,. ) contains 2c distinct closed ideals. We will

then give a list of examples including classical ℓ?-spaces and ?-convexified Tsirelson spaces.

Theorem 5. Let 1 < ? 6 A < 2 and 1 < A < @ < ∞. Let - be an unconditional sum of a sequence

(�=) of finite-dimensional Banach spaces satisfying a lower ℓA -estimate, and assume that the �=
contain uniformly complemented, uniformly isomorphic copies of ℓ<? . Let . be an unconditional sum

of a sequence (�=) of finite-dimensional Banach spaces satisfying an upper ℓ@-estimate. Then L(-,. )

contains 2c distinct closed ideals.

Let us first recall some of the terminology used here. To say that - is an unconditional sum of a

sequence (�=) of finite-dimensional Banach spaces means that - consists of all sequences (G=) with
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G= ∈ �= for all = ∈ N, and there is an unconditional basis (D=) of some Banach space such that the

norm of an element (G=) of - is given by

(G=) =

∑
=

‖G=‖D=

 .
If the (D=) is a �-unconditional basis, then we say that - is a �-unconditional sum of (�=). In this case

(�=) is a UFDD for - , but the converse is not true in general.

We say that - satisfies a lower ℓA -estimate if (D=) dominates the unit vector basis of ℓA – that is, if

for some 2 > 0 and for all (G=) ∈ - , the estimate


∑
=

G=

 > 2
(∑
=

‖G=‖
A

)1/A

holds. In this case we say that - satisfies a lower ℓA -estimate with constant 2. An upper ℓA -estimate is

defined analogously in the obvious way. To say that the �= contain uniformly complemented, uniformly

isomorphic copies of ℓ<? means that for some� > 0 and for all < ∈ N there exist = ∈ N and a projection

%= : �= → �= with ‖%=‖ 6 � whose image is �-isomorphic to ℓ<? .

The special case of - = ℓ? and . = ℓ@ was treated in [27], where the existence of a continuum

of distinct closed ideals was established. Here we shall make use of finite-dimensional versions of

Rosenthal’s -?,F spaces, which were also the main ingredient in [27]. We begin by recalling the

definition and relevant properties.

Given 2 < ? < ∞, 0 < F 6 1 and = ∈ N, we denote by �
(=)
?,F the Banach space

(
R
=, ‖·‖?,F

)
, where

(0 9 )=9=1


?,F

=
©«
=∑
9=1

��0 9 ��?ª®¬
1
?

∨ F
©«
=∑
9=1

��0 9 ��2ª®¬
1
2

.

We write
{
4
(=)
9

: 1 6 9 6 =
}

for the unit vector basis of �
(=)
?,F , and we denote by

{
4
(=)∗
9

: 1 6 9 6 =
}

the

unit vector basis of the dual space
(
�

(=)
?,F

)∗
, which is biorthogonal to the unit vector basis of �

(=)
?,F .

Given 1 < ? < 2, 0 < F 6 1 and = ∈ N, we fix once and for all a sequence 5
(=)
9

= 5
(=)
?,F, 9

,

1 6 9 6 =, of independent symmetric, 3-valued random variables with

 5 (=)9


!?

= 1 and

 5 (=)9


!2

= 1
F

for 1 6 9 6 = (these two equalities determine the distribution of a 3-valued symmetric random variable).

We then define �
(=)
?,F to be the subspace span

{
5
(=)
9

: 1 6 9 6 =
}

of !? . It follows from the work of

Rosenthal [22] that there exists a constant  ? > 0 dependent only on ? so that for all scalars
(
0 9

)=
9=1

we have

1

 ?


=∑
9=1

0 94
(=)∗
9

 6

=∑
9=1

0 9 5
(=)
9


!?

6


=∑
9=1

0 94
(=)∗
9

 , (21)

where
{
4
(=)∗
9

: 1 6 9 6 =
}

is the unit vector basis of the dual space
(
�

(=)
?′,F

)∗
as already defined and ?′

is the conjugate index of ?. Since the random variables 5
(=)
9

are 3-valued, �
(=)
?,F is a subspace of the span

of indicator functions of 3= pairwise disjoint sets. Thus, we can and will think of �
(=)
?,F as a subspace of

ℓ3=

? . The following result follows directly from Rosenthal’s work [22]:

Proposition 6 ([27, Proposition 1]). Set 1 < ? < 2, 0 < F 6 1 and = ∈ N. Then the following are

true:
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(i)
{
5
(=)
9

: 1 6 9 6 =
}

is a normalised, 1-unconditional basis of �
(=)
?,F .

(ii) There exists a projection %
(=)
?,F : ℓ3=

? → ℓ3=

? onto �
(=)
?,F with

% (=)
?,F

 6  ? .

(iii) For each 1 6 : 6 = and for every � ⊂ {1, . . . , =} with |�| = : , we have

1

 ?
·
(
:

1
? ∧ 1

F
:

1
2

)
6


∑
9∈�

5
(=)
9

 6 :
1
? ∧ 1

F
:

1
2 .

The lower estimate of the lower fundamental function in the following lemma follows easily from [27,

Lemma 3] and its proof:

Lemma 7. Given an increasing sequence (:=) in N and a decreasing sequence (F=) in (0, 1], let

1 < ? 6 A < 2 and let / be a 1-unconditional sum of
(
�

(:=)
?,F=

)
satisfying a lower ℓA -estimate with

constant 1. Then with respect to the unconditional basis
(
5
(:=)
9

: = ∈ N, 1 6 9 6 :=

)
of / , for all

< ∈ N we have

_/ (<) >
1

 ?

©«
(<

2

)1/A

∧
©«
B−1∑
9=1

: 9

F2
9

+
C

F2
B

ª®¬
1/2ª®®¬

,

where B = B(<) ∈ N is maximal so that
∑B−1
9=1 : 9 6 </2 and C = </2−

∑B−1
9=1 : 9 . In particular, if< 6 :1,

then

_/ (<) >
1

2 ?

(
<1/A ∧

<1/2

F1

)
.

Let us denote by
(
4
(=)

2, 9

)=
9=1

the unit vector basis of ℓ=
2
. We will need the following lemma from [27].

Recall that ?′ is the conjugate index of ?.

Lemma 8 ([27, Lemma 5]). Given 1 < ? < 2 and ? < @ < ∞, set = ∈ N, F ∈ (0, 1] and � = �
(=)
?,F .

Set H =
∑=
9=1 H 9 5

(=)
9

∈ � with ‖H‖� 6 1 and H̃ =
∑=
9=1 H 94

(=)

2, 9
∈ ℓ=

2
. If ‖H‖∞ = max 9

��H 9 �� 6 f 6 1 and

F 6 f
1
2
− 1

?′ = f
1
?
− 1

2 , then

‖ H̃‖
@

ℓ=
2

6 �fB · ‖H‖
?

�
,

where � depends only on ? and @, and B = min
{
@

2
−
?

2
,
@

2
−

@

?′

}
.

Proof of Theorem 5. Choose [ ∈ (0, 1) so that [ < 1
A
− 1

2
, and for each = ∈ N, let F= = =−[ . After

passing to a complemented subspace of - using Proposition 6 and passing to an equivalent norm, we

may assume that - is a 1-unconditional sum of (�=) satisfying a lower ℓA -estimate with constant 1,

where �= = �
(=)
?,F=

for all = ∈ N. Also, using Dvoretzky’s theorem, after passing to a subspace of .

with suitable renorming we may assume that . is a 1-unconditional sum of (�=) satisfying an upper

ℓ@-estimate with constant 1, where �= = ℓ
=
2

for all = ∈ N (compare the Remark following condition (3)).

We will now follow the scheme developed in Section 2. For each< ∈ Nwe let ;< = <, G<,8 = 5
(<)
8

∈

�< and 5<,8 = 4
(<)

2,8
∈ �< for 1 6 8 6 <, and define )< : �< → �< by )< (G) =

∑<
8=1 G

∗
<,8 (G) 5<,8 ,

where G∗<,8 are the biorthogonal functionals to the 1-unconditional basis
(
G<,8

)<
8=1

of �<. We are thus in

the situation described in Proposition 2. It remains to verify assumptions (a) and (b) of the proposition

as well as the general assumptions (4), (5) and (7).

Assumption (5) is clear. Next, it follows from Proposition 6(i) that sup=‖)=‖ is bounded by the cotype-

2 constant of !? . Since A < @, it follows from the upper ℓ@-estimate on . and the lower ℓA -estimates of

- that condition (4) holds.
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Using Proposition 6 again, we note that

i<(;) 6 ;
1
? ∧ 1

F<
;

1
2

for all ; 6 < in N, and condition (7) follows.

We next turn to Proposition 2(a). Fix Y > 0 and " ∈ [N]l . Choose X ∈ (0, 1) so that
(
�XB

) A
? < Y@ ,

where � and B are given by Lemma 8 with @ replaced by
?@

A
. Then choose # ∈ ["]l so thatF= 6 X

1
?
− 1

2

for all = ∈ # . Now fix G ∈ �-#
with sup=∈# ,16 96=

���G∗=, 9 (G)
��� 6 X. Writing G =

∑
=∈#

∑=
9=1 0=, 9G=, 9 , we

have
��0=, 9 �� 6 X for all = ∈ # and 1 6 9 6 =. It follows from Lemma 8 that

©«
=∑
9=1

��0=, 9 ��2ª®¬
?@
2A

6 �XB


=∑
9=1

0=, 9GG, 9


?

�=

,

and hence

©«
=∑
9=1

|0=, 9 |
2ª®¬

@
2

6
(
�XB

) A
?


=∑
9=1

0=, 9GG, 9


A

�=

for every = ∈ # . Summing over = ∈ # and using the lower ℓA -estimate of - and the upper ℓ@-estimate

of . , we obtain

‖)# (G)‖
@

.
6

(
�XB

) A
? ‖G‖A-#

< Y@ ,

which completes the proof of Proposition 2(a).

To verify Proposition 2(b), we fix X, Y ∈ (0, 1) and " ∈ [N]l . We first choose < ∈ " so that

<Y > 1 and

2 ?<
[+ 1

2

<̃
1
A

< X where <̃ = ⌊Y<⌋ .

We then choose # ∈ ["]l so that = = min(#) satisfies <̃
1
A 6 <̃

1
2 /F=. We now apply Lemma 3 with

� = �<, ; = < and / = -# . First note that by Proposition 6(iii), we have

i< (<) 6 <
1
? ∧

<
1
2

F<
= <[+

1
2 .

On the other hand, it follows from Lemma 7 that

_-#
(<̃) >

1

2 ?

(
<̃1/A ∧

<̃1/2

F=

)
=
<̃1/A

2 ?

by the choice of # . Hence, i<(<)/_-#
(⌊Y<⌋) 6

2 ?<
[+ 1

2

<̃
1
A

< X by the choice of <. An application of

Lemma 3 shows that for any � ∈ L(�<, -# ) with ‖�‖ 6 1, we have���{(=, 9) : = ∈ #, 1 6 9 6 =,

���G∗=, 9 (�G<,8)��� > X for some 1 6 8 6 <
}��� < Y<.

This shows that Proposition 2(b) holds, and the proof of the theorem is thus complete. �

Remark. It is not difficult to prove (compare [27, Proposition 8]) that the 2c closed ideals constructed

in the proof of Theorem 5 are all contained in the ideal in the space of finitely strictly singular operators.
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Corollary 9. Let 1 < ? < @ < ∞ and let ?′ and @′ denote the conjugate indices of ? and @, respectively.

Let - be one of the spaces ℓ? , )? or )∗
?′ . Let . be one of the spaces ℓ@ , )@ or )∗

@′ . Then L(-,. ) has

exactly 2c closed ideals. It follows that L(- ⊕ . ) also has exactly 2c closed ideals.

Proof. We recall the following properties of the ?-convexified Tsirelson space )? , which can be found

in [4]. Its unit vector basis (C=) is normalised, 1-unconditional and dominated by the unit vector basis

of ℓ?, and dominates the unit vector basis of ℓA whenever ? < A < ∞. Moreover, given a sequence (�=)

of consecutive intervals of positive integers with 1 ∈ �1, if we let �= = span{C8 : 8 ∈ �=} and pick any

:= ∈ �= for every = ∈ N, then )? is isomorphic to the unconditional sum of (�=) with respect to the

unconditional basis
(
C:=

)
. It follows from Theorem 5 that L(-,. ) has exactly 2c closed ideals when

1 < ? < 2, and the same then holds by duality when 2 6 ? < ∞.

It follows by standard basis techniques that every operator from . to - is compact. Hence nontrivial

closed ideals in L(-,. ) correspond to nontrivial closed ideals in L(- ⊕ . ) as follows. We think of

operators on - ⊕ . as 2 × 2 matrices in the obvious way. Given a nontrivial closed ideal J in L(-,. ),

it is easy to see that

J̃ =

{(
� �

� �

)
: � ∈ K(-), � ∈ L(., -), � ∈ J, � ∈ K(. )

}

is a closed ideal in L(- ⊕ . ), and moreover, the map J ↦→ J̃ is injective. It follows that L(- ⊕ . ) also

has 2c closed ideals, and this completes the proof of the theorem. �

As mentioned in the introduction, this result implies the recent result of Johnson and Schechtman [11]

that L
(
!?

)
contains 2c closed ideals for 1 < ? ≠ 2 < ∞.

Corollary 10. Let 1 < ? ≠ 2 < ∞. The algebra L
(
!?

)
of operators on !? contains exactly 2c closed

ideals.

4. Applications II

As in the previous section, we will apply the general process developed in Section 2 to establish a class

of pairs (-,. ) of Banach spaces for which L(-,. ) contains 2c distinct closed ideals. However, we will

be using Lemma 4 in this section as opposed to Lemma 3.

Let 1 6 ? < @ 6 ∞. Suppose that
(
ℓ=
2

)∞
==1

is a UFDD for a Banach space - with a lower ℓ?-estimate

and that
(
ℓ=∞

)∞
==1

is a UFDD for a Banach space. with an upper ℓ@-estimate. We will prove that L(-,. )

contains 2c distinct closed ideals. As
(⊕∞

==1 ℓ
=
2

)
ℓ?

is complemented in ℓ? for all 1 < ? < ∞, we obtain

that L
(
ℓ? , c0

)
contains 2c distinct closed ideals for all 1 < ? < ∞, which proves that our general

setup incorporates the results presented in [7]. By duality, we obtain that L
(
ℓ1, ℓ?

)
and L

(
ℓ? , ℓ∞

)
each contain 2c distinct closed ideals. Hence, the cardinality of the set of closed ideals is exactly 2c

for each of L
(
ℓ? ⊕ c0

)
, L

(
ℓ? ⊕ ℓ∞

)
and L

(
ℓ1 ⊕ ℓ?

)
for all 1 < ? < ∞. Note that we also obtain that

the cardinality of the set of closed ideals in L

( (⊕∞
==1 ℓ

=
2

)
ℓ1
⊕ c0

)
is 2c; however, we are not able to

conclude anything aboutL(ℓ1⊕c0), as the finite-dimensional spaces ℓ=
2

are not uniformly complemented

in ℓ1.

In the previous section, for each = ∈ N, the operator )= : �= → ℓ=
2

was the formal identity

between two =-dimensional Banach spaces. Now we will choose sequences :1 < ;1 < :2 < ;2 < · · ·

and operators )= : ℓ
:=
2

→ ℓ
;=
∞ . When considered as a matrix, each )= will be much taller than it is

wide.

Set 1 6 ? < ∞. The probabilistic proofs for the existence of restricted isometry property ma-

trices from compressed sensing [5] show that there exist sequences :1 < ;1 < :2 < ;2 < · · ·

with lim=→∞ :
max(1, ?/2)
= ;−1

= = 0 such that if unit vectors
(
G=, 9

) ;=
9=1

are randomly chosen with uniform
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distribution in ℓ
:=
2

, then with high probability we have, for all � ⊂ {1, 2, . . . , ;=} with |� | 6 ;=−1,

1

2

∑
9∈�

��0 9 ��2 6

∑
9∈�

0 9G=, 9


2

6 2
∑
9∈�

��0 9 ��2 for all
(
0 9

)
9∈�

⊂ R, (22)

∑
9∈�

��〈G, G=, 9 〉��2 6 2‖G‖2 for all G ∈ ℓ
:=
2
. (23)

We now show how this construction satisfies the conditions of Proposition 2 and Lemma 4.

Theorem 11. Set 1 6 ? < @ 6 ∞. Suppose that
(
ℓ=
2

)∞
==1

is a UFDD for - with a lower ℓ?-estimate and

that
(
ℓ=∞

)∞
==1

is a UFDD for. with an upper ℓ@-estimate. ThenL(-,. ) contains 2c distinct closed ideals.

Proof. Choose :1 < ;1 < :2 < ;2 < · · · in N with lim=→∞ :
max(1, ?/2)
= ;−1

= = 0 and unit vectors(
G=, 9

) ;=
9=1

⊂ ℓ
:=
2

for all = ∈ N to satisfy formulas (22) and (23). Let �= = ℓ
:=
2

and �= = ℓ
;=
∞ for all = ∈ N.

As �= is a Hilbert space, we may take
(
G∗=, 9

) ;=
9=1

=
(
G=, 9

) ;=
9=1

⊂ (�∗
=
. Suppose that�1, �2 > 0 are such that

if (G=)
∞
==1

∈ - , then (
∑
‖G=‖

?)1/?
6 �1‖(G=)‖- , and if (H=)

∞
==1

∈ . , then ‖(H=)‖. 6 �2 (
∑
‖H=‖

@)1/@ .

For each = ∈ N, we define the operator )= : ℓ
:=
2

→ ℓ
;=
∞ by G ↦→

(〈
G, G=, 9

〉) ;=
9=1

. We now show that the

conditions of Proposition 2 are satisfied.

We have that condition (4) is satisfied, as if (G=) ∈ - , then) (
(G=)

)
.
6 �2

(∑
‖)=G=‖

@
∞

)1/@

= �2

(∑
sup

16 96;=

��〈G=, G=, 9 〉��@
)1/@

6 �2

(∑
‖G=‖

@
)1/@

6 �2

(∑
‖G=‖

?
)1/?

6 �2�1‖(G=)‖- .

Thus, the map (G=) ↦→ )
(
(G=)

)
is well defined and bounded. Condition (5) is trivially satisfied, as(

G∗<,8

) ;<
8=1

=
(
G<,8

) ;<
8=1

for all < ∈ N.

To prove condition (7), fix = ∈ N and let ; ∈ N be such that ; > ;= > :=. Given < ∈ N with ;< > ;

and � ⊂ {1, 2, . . . , ;<} with |�| = ;, set C= = ⌈;/:=⌉. Partition � into
(
� 9

) C=
9=1

such that
��� 9 �� 6 := for

all 1 6 9 6 C=. By formula (22), we have, for all 1 6 9 6 C=,
∑
8∈� 9

f8G<,8


2

6 2
��� 9 �� for all (f8)8∈� 9

⊂ {±1}.

Thus, for all (f8)
;
8=1

⊂ {±1}, we have
∑
8∈�

f8G<,8

 6
C=∑
9=1


∑
8∈� 9

f8G<,8


6

C=∑
9=1

21/2
��� 9 ��1/2

6 C=2
1/2:

1/2
=

< (2;/:=)2
1/2:

1/2
= < 4;:

−1/2
= .
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Thus, for

i<(;) = sup

{
∑
8∈�

f8G<,8

 : � ⊂ {1, 2, . . . , ;<}, |�| 6 ;, (f8)8∈� ⊂ {±1}

}
,

we have
i< (;)

;
< 4:

−1/2
= . Hence, lim

;→∞
sup

<∈N, ;<>;

i<(;)

;
= 0, and we have condition (7).

We next verify Proposition 2(a). Fix Y > 0. There exists X > 0 such that if
(
0 9

)
∈ ℓ? with(0 9 )ℓ? 6 �1 and

��0 9 �� 6 X for all 9 ∈ N, then
(0 9 )ℓ@ < �−1

2
Y. Let G = (G=) ∈ (- such that

sup16 96;=

��〈G=, G=, 9 〉�� 6 X for all = ∈ N. Thus, we have

(
∞∑
==1

sup
16 96;=

��〈G=, G=, 9 〉��?
)1/?

6

(
∞∑
==1

‖G=‖
?

)1/?

6 �1 (24)

and

) (
(G=)

)
.
6 �2

(∑
‖)=G=‖

@
∞

)1/@

= �2

(∑
sup

16 96;=

��〈G=, G=, 9 〉��@
)1/@

< Y, by formula (24) and our assumption on X.

Finally, it follows from formulas (22) and (23) that the conditions of Lemma 4 are satisfied for B = 2

and C = ?. This in turn implies Proposition 2(b), and thus the proof is complete. �

Remark. The remark following the proof of Theorem 5 applies here, too. The closed ideals constructed

are all contained in the ideal in the space of finitely strictly singular operators.

Theorem 11 gives the following immediate corollary:

Corollary 12. Set 1 < ? < ∞. Then L
(
ℓ?, c0

)
, L

(
ℓ1, ℓ?

)
and L

(
ℓ? , ℓ∞

)
each contain 2c distinct closed

ideals.

Proof. We have by Theorem 11 that L

( (⊕∞
==1 ℓ

=
2

)
ℓ?
, c0

)
contains 2c distinct closed ideals, and(⊕∞

==1 ℓ
=
2

)
ℓ?

is isomorphic to ℓ? for 1 < ? < ∞. By duality, we have that L
(
ℓ1, ℓ?

)
and L

(
ℓ? , ℓ∞

)
each contain 2c distinct closed ideals. �

In the previous section we deduced from our results that the cardinality of the lattice of closed ideals

in L
(
!?

)
, 1 < ? ≠ 2 < ∞, is 2c . Note that the Hardy space �1 and its predual VMO can be seen as

the ‘well-behaved’ limit cases of the !?-spaces. For example, ℓ2 is complemented in both spaces, and

�1 contains a complemented copy of ℓ1 and VMO a complemented copy of c0 (compare [19] and [20,

page 125]). Thus, we deduce the following corollary:

Corollary 13. The cardinality of the lattice of closed ideals in L(VMO) and L(�1) is 2c .

5. Final remarks and open problems

If one considers only Banach spaces - with a countable unconditional basis or, more generally, with

a UFDD, then the cardinalities ^ for which we know examples of Banach spaces - with a UFDD for

which the number of nontrivial proper closed ideals in L(-) is ^ are only the following three:
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^ = 1: For - = ℓ?, 1 6 ? < ∞, or - = 20, the closed ideal in the space of compact operators is the

only nontrivial proper closed ideal [8].

^ = 2: For the spaces - =
(⊕

ℓ=
2

)
20

and its dual -∗ =
(⊕

ℓ=
2

)
ℓ1

, there are exactly two nontrivial

proper closed ideals – the compacts and the closure of operators which factor through 20 or ℓ1,

respectively [13, 14].

^ = 2c: L(-) has 2c closed ideals for the spaces listed in the previous two sections. In addition to these

spaces, it was recently observed by Johnson [11] that L()) and L
(
) (?)

)
, where ) is a Tsirelson

space and ) (?) its ?-convexification for 1 < ? < ∞, also have 2c closed ideals.1

This raises the following questions:

Problem 14. Are there Banach spaces - with a countable unconditional basis or unconditional UFDD

for which the cardinality of the nontrivial proper closed ideals in L(-) is strictly between 2 and 2c?

Can this cardinality be any natural number, countably infinite or c?

An interesting space in the context of this question is 20 ⊕ ℓ1. According to [28], L(20 ⊕ ℓ1) contains

an l1-chain of closed ideals.

Problem 15. What is the cardinality of the lattice of the closed ideals in the space of the operators on

20 ⊕ ℓ1?

Another space of interest for Problem 14 is the Schreier space. In [2] it was shown that the space of

operators on this space has continuum many maximal ideals.

Problem 16. What is the cardinality of the lattice of closed ideals in the space of operators on Schreier

spaces?

Among the class of general separable Banach spaces, there are more examples for which the lattice

of closed ideals in their space of operators, or at least its cardinality, is determined. Such a list can be

found in [12]. For example, Mankiewicz [15] constructed a separable, superreflexive space - , with an

FDD, for which there are 2c multiplicative functional on L(-). Then, of course, the nullspaces of these

functionals are closed ideals in L(-)

Based on the construction by Argyros and Haydon [1] of a space on which all operators are compact

perturbations of multiples of the identity, Tarbard [29] constructed for each = ∈ N a space -= for which

L(-=) has exactly = nontrivial proper closed ideals. There are also Banach spaces - for which the

cardinality of the lattice of closed ideals in L(-) is exactly c. Indeed, suppose that � is a separable

Banach algebra isomorphic to the Calkin algebra L(-)/K(-) for a Banach space - which has the

approximation property (to ensure that K(-) is the smallest nontrivial closed ideal). Then, as observed

in [12], the closed ideals in L(-) arise from preimages of closed ideals in �. Examples of separable

Banach spaces - for which L(-)/K(-) has exactly continuum many closed ideals were constructed,

for instance, in [30], [18] and [17], as explained in [9]. An example of a space - for which the number

of closed ideals is infinite but countable seems to be missing.

Problem 17. Are there separable Banach spaces - for whichL(-) has countably infinitely many closed

ideals?

A candidate for such a space is � [0, U], where U is a large enough countable ordinal. But already

for U = ll (the first ordinal U for which � [0, U] is not isomorphic to 20), the answer to the following

question is not known:

Problem 18. For a countable ordinalU, what are the closed ideals inL
(
� [0, U]

)
? What is the cardinality

of the lattice of these ideals?

1Moreover, during Kevin Beanland’s talk at the Banach Space Webinar on 3 April 2020, Johnson noted that the case ? = 2
was already covered using methods developed in [11].
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Another space of interest is !1 [0, 1]. It was shown by Johnson, Pisier and Schechtman [10] that

L(!1 [0, 1]) has at least c closed ideals.

Problem 19. How many closed ideals does L(!1 [0, 1]) have?

As alluded to by our terminology, the closed ideals in L(-,. ) for Banach spaces - and . form a

lattice with respect to inclusion and with lattice operations given by I ∧ J = I ∩ J and I ∨ J = I + J for

closed ideals I and J. In the foregoing problems, we have only asked about the cardinality of this lattice.

As a future ambitious target, one could study the lattice structure.

After the submission of this paper, additional examples of spaces - were discovered for which L(-)

has 2c closed ideals:

◦ Manoussakis and Pelczar-Barwacz [16] showed that if - is a Schreier space of finite order or - is

the arbitrarily distortable space constructed by the second author [24], then L(-) has 2c closed

ideals. Thus Problem 16 is only open for Schreier spaces of infinite order.

◦ The second author recently proved [26] that modified Schreier families of any order coincide with

the usual Schreier families. It follows from this that the arguments of [11] extend to all higher-order

Tsirelson spaces and their convexifications.
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