RESEARCH ARTICLE

Banach spaces for which the space of operators has $\mathbf{2}^{\text {c }}$ closed ideals

Daniel Freeman ${ }^{1}$, Thomas Schlumprecht ${ }^{(1) 2,3}$ and András Zsák ${ }^{4}$
${ }^{1}$ Department of Mathematics and Statistics, St. Louis University, St. Louis, MO 63103, USA; E-mail: daniel.freeman @slu.edu.
${ }^{2}$ Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA; E-mail: t-schlumprecht @tamu.edu.
${ }^{3}$ Faculty of Electrical Engineering, Czech Technical University in Prague, Zikova 4, 166 27, Prague, Czech Republic.
${ }^{4}$ Peterhouse, University of Cambridge, Cambridge, CB2 1RD, United Kingdom; E-mail: a.zsak @dpmms.cam.ac.uk.

Received: 25 August 2020; Revised: 18 February 2021; Accepted: 1 March 2021
2020 Mathematics Subject Classification: Primary - 47L20; Secondary - 47B10

Abstract

We formulate general conditions which imply that $\mathcal{L}(X, Y)$, the space of operators from a Banach space X to a Banach space Y, has 2^{c} closed ideals, where c is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is exactly 2^{c} for all $1<p<q<\infty$.

1. Introduction

Given Banach spaces X and Y, we call a subspace \mathcal{J} of the space $\mathcal{L}(X, Y)$ of bounded operators an ideal if $A T B \in \mathcal{J}$ for all $A \in \mathcal{L}(Y), T \in \mathcal{J}$ and $B \in \mathcal{L}(X)$. In the case that $X=Y$, this coincides with the standard algebraic definition of \mathcal{J} being an ideal in the algebra of bounded operators $\mathcal{L}(X)$. In this paper we will only be considering closed ideals. For example, if X and Y are any Banach spaces, then the space of compact operators from X to Y and the space of strictly singular operators from X to Y are both closed ideals in $\mathcal{L}(X, Y)$. In the case of $X=Y=\ell_{p}$, the compact and strictly singular operators coincide and they are the only closed ideal in $\mathcal{L}\left(\ell_{p}\right)$ other than the trivial cases of $\{0\}$ and the entire space $\mathcal{L}\left(\ell_{p}\right)$. For $p \neq 2$, the situation for L_{p} is very different from that for ℓ_{p}. If X contains a complemented subspace Z such that Z is isomorphic to $Z \oplus Z$, then the closure of the set of operators in $\mathcal{L}(X)$ which factor through Z is a closed ideal, and moreover the map that associates this closed ideal with the isomorphism class of Z is injective. In the case $1<p<\infty$ with $p \neq 2$, there are infinitely many (even uncountably many) distinct complemented subspaces of L_{p} which are isomorphic to their square [3], and thus there are infinitely many distinct closed ideals in $\mathcal{L}\left(L_{p}\right)$.

Obviously, constructing infinitely many closed ideals for $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ or $\mathcal{L}\left(\ell_{p} \oplus \mathrm{c}_{0}\right)$ with $1 \leqslant p<$ $q<\infty$ requires different techniques than just considering complemented subspaces, and it was a long outstanding question from Pietsch's book [21] whether these spaces have infinitely many distinct closed ideals. For the cases $1 \leqslant p<q<\infty$, the closures of the set of operators which factor through ℓ_{p} and the operators which factor through ℓ_{q} are distinct closed ideals (indeed, the only maximal ideals) in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$, and all other proper closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ correspond to closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. Progress on constructing new ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ proceeded through building finitely many ideals at a time (see [23] and [25]) until it was shown using finite-dimensional versions of Rosenthal's $X_{p, w}$ spaces that there is chain of a continuum of distinct closed ideals in $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ for all $1<p<q<\infty$ [27]. For
$1<p<\infty, p \neq 2, \ell_{p} \oplus \ell_{2}$ is isomorphic to a complemented subspace of L_{p}, and thus there are at least a continuum of closed ideals in $\mathcal{L}\left(L_{p}\right)$. Other new constructions for building infinitely many closed ideals soon followed. Wallis observed [31] that the techniques of [27] extend to prove the existence of a chain of a continuum of closed ideals for $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$ in the range $1<p<2$, and for $\mathcal{L}\left(\ell_{1}, \ell_{q}\right)$ in the range $2<q<\infty$. Then, using ordinal indices, Sirotkin and Wallis proved that there is an ω_{1}-chain of closed ideals in $\mathcal{L}\left(\ell_{1}, \ell_{q}\right)$ for $1<q \leqslant \infty$ as well as in $\mathcal{L}\left(\ell_{1}, \mathrm{c}_{0}\right)$ and in $\mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ for $1 \leqslant p<\infty$ [28]. Using matrices with the restricted isometry property, both chains and anti-chains of a continuum of distinct closed ideals were constructed in $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right), \mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ and $\mathcal{L}\left(\ell_{1}, \ell_{p}\right)$ for all $1<p<\infty$ [6].

Recently, using the infinite-dimensional $X_{p, w}$ spaces of Rosenthal and almost disjoint sequences of integers, Johnson and Schechtman proved that there are 2^{c} distinct closed ideals in $\mathcal{L}\left(L_{p}\right)$ for $1<p<\infty$ with $p \neq 2$ [11]. In particular, the cardinality of the set of closed ideals in $\mathcal{L}\left(L_{p}\right)$ is exactly 2^{c}.

The goal for this paper is to present a general method for proving when $\mathcal{L}(X, Y)$ contains $2^{\mathfrak{c}}$ distinct closed ideals for some Banach spaces X and Y with unconditional finite-dimensional decompositions. Given a collection of operators $\left(T_{N}\right)_{N \in[\mathbb{N}]^{\omega}}$ from X to Y indexed by the set of all infinite subsets of the natural numbers, we give sufficient conditions for there to exist an infinite subset L of \mathbb{N} so that if $\mathcal{S} \subset[L]^{\omega}$ is a set of pairwise almost disjoint subsets of L, then for all $\mathcal{A}, \mathcal{B} \subset S$, if $M \in \mathcal{A} \backslash \mathcal{B}$, the operator T_{M} is not contained in the smallest closed ideal containing $\left\{T_{N}: N \in \mathcal{B}\right\}$. Thus, $\mathcal{L}(X, Y)$ contains 2^{c} closed ideals. We are able to apply this method to prove in particular that the cardinality of the set of closed ideals in $\mathcal{L}\left(\ell_{p} \oplus \ell_{q}\right)$ is exactly 2^{c} for all $1<p<q<\infty$. It follows at once that $\mathcal{L}\left(L_{p}\right)$ contains exactly 2^{c} closed ideals for $1<p \neq 2<\infty$, and thus we have another proof of the aforementioned result of Johnson and Schechtman [11]. It is worth pointing out that they construct closed ideals using operators that are not even strictly singular (and on the other hand, their ideals do not contain projections onto non-Hilbertian subspaces). By contrast, our 2^{c} closed ideals are small in the sense that they consist of finitely strictly singular operators.

In [7] it was shown that there are 2^{c} distinct closed ideals in $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right), \mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ and $\mathcal{L}\left(\ell_{1}, \ell_{p}\right)$ for all $1<p<\infty$. In this article, we will show that this result can also be obtained by our general construction.

Although our initial goals were to construct closed ideals between classical Banach spaces, the generality of our approach allows us to construct 2^{c} closed ideals in $\mathcal{L}(X, Y)$ when X and Y are exotic Banach spaces such as, for example, p-convexified Tsirelson spaces. In [2] it was shown that the projection operators in Tsirelson and Schreier spaces generate a continuum of distinct closed ideals. So again, an interesting distinction between these two methods is that the operators we use to generate ideals are finitely strictly singular, whereas the projections used in [2] are clearly not even strictly singular.

The paper is organised as follows. In the next section we give general conditions on Banach spaces X and Y that ensure that $\mathcal{L}(X, Y)$ contains 2^{c} closed ideals. We also prove two further results giving criteria that help with verifying those general conditions. Each one of these two results has applications that we present in the following two sections. In the final section we give further remarks and state some open problems.

2. General conditions for having $2^{\boldsymbol{c}}$ closed ideals in $\mathcal{L}(\mathbf{X}, \mathbf{Y})$

Let X and Y be Banach spaces and let \mathcal{T} be a subset of $\mathcal{L}(X, Y)$, the space of all bounded linear operators from X to Y. The closed ideal generated by \mathcal{T} is the smallest closed ideal in $\mathcal{L}(X, Y)$ containing \mathcal{T} and is denoted by $\mathcal{J}^{\mathcal{T}}(X, Y)$. That is, $\mathcal{J}^{\mathcal{T}}(X, Y)$ is the closure in $\mathcal{L}(X, Y)$ of the set

$$
\left\{\sum_{j=1}^{n} A_{j} T_{j} B_{j}: n \in \mathbb{N},\left(A_{j}\right)_{j=1}^{n} \subset \mathcal{L}(Y),\left(T_{j}\right)_{j=1}^{n} \subset \mathcal{T},\left(B_{j}\right)_{j=1}^{n} \subset \mathcal{L}(X)\right\}
$$

consisting of finite sums of operators factoring through members of \mathcal{T}. When \mathcal{T} consists of a single operator $T \in \mathcal{L}(X, Y)$, then we write $\mathcal{J}^{T}(X, Y)$ instead of $\mathcal{J}^{\{T\}}(X, Y)$.

In [6], for each $1<p<\infty$, a collection $\left(T_{N}\right)_{N \subset \mathbb{N}} \subset \mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$ of operators was constructed such that $\mathcal{J}^{T_{M}}\left(\ell_{p}, \mathrm{c}_{0}\right) \neq \mathcal{J}^{T_{N}}\left(\ell_{p}, \mathrm{c}_{0}\right)$ whenever $M \triangle N$ is infinite. For a nonempty family \mathcal{A} of subsets of \mathbb{N}, let $\mathcal{J}_{\mathcal{A}}$
be the closed ideal in $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$ generated by $\left\{T_{N}: N \in \mathcal{A}\right\}$. There are at most a continuum of closed ideals in $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$ that are generated by a single operator. However, it was observed in [7] that if \mathcal{S} is an almost disjoint family of cardinality \mathfrak{c} consisting of infinite subsets of \mathbb{N}, then $\left\{\mathcal{J}_{\mathcal{A}}: \mathcal{A} \subset \mathcal{S}, \mathcal{A} \neq \emptyset\right\}$ is a lattice of 2^{c} distinct closed ideals in $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$.

In this section, we will present a general condition which implies that $\mathcal{L}(X, Y)$ has 2^{c} closed ideals in the following framework, in which the example already given also sits.

We are given two Banach spaces X and Y which are assumed to have unconditional finite-dimensional decompositions (UFDDs) $\left(E_{n}\right)$ and $\left(F_{n}\right)$, respectively. By this we mean that E_{n} is a finite-dimensional subspace of X for each $n \in \mathbb{N}$, that each element of x can be written in a unique way as $x=\sum_{n \in \mathbb{N}} x_{n}$ with $x_{n} \in E_{n}$ for each $n \in \mathbb{N}$ and that $\sum_{n \in \mathbb{N}} x_{n}$ converges unconditionally. We can therefore think of the elements $x \in X$ as sequences $\left(x_{n}\right)$ with $x_{n} \in E_{n}$, which we call the n-component of x, for each $n \in \mathbb{N}$.

As in the case of unconditional bases, this implies that for $N \subset \mathbb{N}$, the map

$$
P_{N}^{X}: X \rightarrow X, \quad\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(x_{n}\right)_{n \in N}
$$

where $\left(x_{n}\right)_{n \in N}$ is identified with the element in X whose m-component vanishes for $m \in \mathbb{N} \backslash N$, is well defined and uniformly bounded. It follows that for some $C>0$ we have $\left\|\sum_{n \in \mathbb{N}} \sigma_{n} x_{n}\right\| \leqslant C\left\|\sum_{n \in \mathbb{N}} x_{n}\right\|$ for all $\left(x_{n}\right) \in X$ and all $\left(\sigma_{n}\right) \in\{ \pm 1\}^{\mathbb{N}}$. In this case we say that $\left(E_{n}\right)$ is a C-unconditional finitedimensional decomposition (or C-unconditional FDD) of X. After renorming X, we can (and will) assume that $\left\|P_{N}^{X}\right\|=1$ for a nonempty $N \subset \mathbb{N}$ and that moreover

$$
\begin{equation*}
\left\|\sum_{n \in \mathbb{N}} x_{n}\right\|=\left\|\sum_{n \in \mathbb{N}} \sigma_{n} x_{n}\right\| \tag{1}
\end{equation*}
$$

for all $\left(x_{n}\right) \in X$ and all $\left(\sigma_{n}\right) \in\{ \pm 1\}^{\mathbb{N}}$. We denote for $N \subset \mathbb{N}$ the image of X under P_{N}^{X} by X_{N}. Thus $X_{N}=P_{N}^{X}(X)=\overline{\operatorname{span}} \bigcup_{n \in N} E_{n}$ is 1-complemented in X and $\left(E_{n}: n \in N\right)$ is a 1-unconditional FDD of X_{N}. Similarly, for the space Y with $\operatorname{UFDD}\left(F_{n}\right)$, we define P_{N}^{Y} and Y_{N} for every $N \subset \mathbb{N}$. We further assume that $\left\|P_{N}^{Y}\right\|=1$ for every nonempty $N \subset \mathbb{N}$ and that $\left(F_{n}\right)$ is a 1 -unconditional FDD of Y.

For each $n \in \mathbb{N}$ we are given a linear operator $T_{n}: E_{n} \rightarrow F_{n}$ and we assume that the linear operator

$$
T: \operatorname{span} \cup_{n \in \mathbb{N}} E_{n} \rightarrow \operatorname{span} \bigcup_{n \in \mathbb{N}} F_{n}, \quad\left(x_{n}\right) \mapsto\left(T_{n}\left(x_{n}\right)\right)
$$

extends to a bounded operator $T: X \rightarrow Y$. We then define for $N \subset \mathbb{N}$ the diagonal operator $T_{N}: X_{N} \rightarrow$ Y_{N} by $T_{N}=T \circ P_{N}^{X}=P_{N}^{Y} \circ T$. Note that $\left\|T_{N}\right\| \leqslant\|T\|$.

Our goal is to formulate conditions which imply that the following holds for some $\Delta>0$:

$$
\begin{equation*}
\forall M, N \in[\mathbb{N}]^{\omega} \text {, if } M \backslash N \in[\mathbb{N}]^{\omega} \text {, then } \operatorname{dist}\left(T_{M}, \mathcal{f}^{T_{N}}\right) \geqslant \Delta \tag{2}
\end{equation*}
$$

Using an observation in [11], we can conclude that $\mathcal{L}(X, Y)$ has 2^{c} closed ideals when formula (2) holds.
Proposition 1. Let X, Y and $\left(T_{n}\right)$ be as before, and assume that condition (2) holds for some $\Delta>0$. Let $\mathcal{S} \subset[\mathbb{N}]^{\omega}$ be an almost disjoint family of cardinality c . For $\mathcal{A} \subset \mathcal{S}$, let $\mathcal{J}_{\mathcal{A}}$ be the closed ideal in $\mathcal{L}(X, Y)$ generated by $\left\{T_{N}: N \in \mathcal{A}\right\}$. Then if $\mathcal{A}, \mathcal{B} \subset \mathcal{S}$ with $\mathcal{A} \neq \mathcal{B}$, then $\mathcal{J}_{\mathcal{A}} \neq \mathcal{J}_{\mathcal{B}}$. In particular, the cardinality of the set of closed ideals in $\mathcal{L}(X, Y)$ is $2^{\text {c }}$.
Proof. Let \mathcal{A} and \mathcal{B} be two different subsets of \mathcal{S}. Without loss of generality, we assume that there is an $M \in \mathcal{A} \backslash \mathcal{B}$. We claim that $T_{M} \notin \mathcal{J}_{\mathcal{B}}$, and that actually $\operatorname{dist}\left(T_{M}, \mathcal{J}_{\mathcal{B}}\right) \geqslant \Delta$.

Indeed, set $n \in \mathbb{N},\left(A_{j}\right)_{j=1}^{n} \subset \mathcal{L}(Y),\left(B_{j}\right)_{j=1}^{n} \subset \mathcal{L}(X)$ and $\left(N_{j}\right)_{j=1}^{n} \subset \mathcal{B}$. Put $N=\bigcup_{j=1}^{n} N_{j}$. It follows that

$$
\sum_{\substack{j=1 \\ j}} A_{j} \circ T_{N_{j}} \circ B_{j}=\sum_{\substack{j=1 \\ n}} A_{j} \circ P_{N_{j}}^{Y} \circ T_{N} \circ B_{j} \in \mathcal{J}^{T_{N}}
$$

Since $M \backslash N$ is infinite, it follows from formula (2) that

$$
\left\|\sum_{j=1}^{n} A_{j} \circ T_{N_{j}} \circ B_{j}-T_{M}\right\| \geqslant \Delta
$$

Since $\mathcal{J}_{\mathcal{B}}$ is the closure of the set of operators of the form $\sum_{j=1}^{n} A_{j} \circ T_{N_{j}} \circ B_{j}$ with $n \in \mathbb{N},\left(A_{j}\right)_{j=1}^{n} \subset \mathcal{L}(Y)$, $\left(B_{j}\right)_{j=1}^{n} \subset \mathcal{L}(X)$ and $\left(N_{j}\right)_{j=1}^{n} \subset \mathcal{B}$, we deduce our claim.

In order to separate T_{M} from $\mathcal{J}^{T_{N}}$ if $M \backslash N$ is infinite, the following condition is sufficient:
For each $n \in \mathbb{N}$ there exist $l_{n} \in \mathbb{N}$ and vectors $\left(x_{n, j}\right)_{j=1}^{l_{n}} \subset S_{E_{n}}$,

$$
\begin{align*}
& \left(y_{n, j}^{*}\right)_{j=1}^{l_{n}} \subset S_{F_{n}^{*}} \text { so that } \\
& \quad y_{n, j}^{*}\left(T_{n}\left(x_{n, j}\right)\right) \geqslant 1 \quad \text { for } n \in \mathbb{N} \text { and } j=1,2, \ldots, l_{n} \tag{3a}\\
& \quad \lim _{\substack{m \rightarrow \infty \\
m \in M \backslash N}} \frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N} \circ B\left(x_{m, i}\right)\right\|=0 \tag{3b}
\end{align*}
$$

whenever $M, N \in[\mathbb{N}]^{\omega}$ satisfy $M \backslash N \in[\mathbb{N}]^{\omega}$, and $B \in \mathcal{L}(X)$.
Indeed, for $n \in \mathbb{N}$ we define the functional $\Psi_{n} \in \mathcal{L}(X, Y)^{*}$ by

$$
\Psi_{n}(S)=\frac{1}{l_{n}} \sum_{j=1}^{l_{n}} y_{n, j}^{*}\left(S\left(x_{n, j}\right)\right), \quad \text { for } S \in \mathcal{L}(X, Y)
$$

Given $M, N \in[\mathbb{N}]^{\omega}$ with $M \backslash N \in[\mathbb{N}]^{\omega}$, we let Ψ be a w^{*}-accumulation point of $\left(\Psi_{m}: m \in M \backslash N\right)$. It follows from formula (3a) that

$$
\Psi\left(T_{M}\right) \geqslant \liminf _{m \in M \backslash N} \Psi_{m}\left(T_{M}\right) \geqslant 1
$$

and for any $A \in \mathcal{L}(Y)$ and $B \in \mathcal{L}(X)$ it follows from equation (3b) that

$$
\begin{aligned}
\left|\Psi\left(A T_{N} B\right)\right| & \leqslant \limsup _{m \in M \backslash N}\left|\frac{1}{l_{m}} \sum_{i=1}^{l_{m}} y_{m, i}^{*}\left(A T_{N} B\left(x_{m, i}\right)\right)\right| \\
& =\limsup _{m \in M \backslash N}\left|\frac{1}{l_{m}} \sum_{i=1}^{l_{m}} A^{*} y_{m, i}^{*}\left(T_{N} B\left(x_{m, i}\right)\right)\right| \\
& \leqslant\|A\| \limsup _{m \in M \backslash N} \frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N} B\left(x_{m, i}\right)\right\|=0 .
\end{aligned}
$$

Since $\left\|\Psi_{n}\right\| \leqslant 1$ for all $n \in \mathbb{N}$, it follows that $\|\Psi\| \leqslant 1$, which in turn implies condition (2) with $\Delta=1$.
Remark. Some extension of this result is possible. Assume for example that formula (3) holds and that U is an isomorphism of Y into another Banach space Z. Then $\mathcal{L}(X, Z)$ also has at least 2^{c} distinct closed ideals. Indeed, by Hahn-Banach, there are functionals $z_{n, j}^{*} \in Z^{*}$ such that $U^{*}\left(z_{n, j}^{*}\right)=y_{n, j}^{*}$ for all $n \in \mathbb{N}$ and $j=1,2, \ldots, l_{n}$, and moreover, $C=\sup _{n, j}\left\|z_{n, j}^{*}\right\|<\infty$. If we now define $\Psi_{n} \in \mathcal{L}(X, Z)^{*}$ as before but replace $y_{n, j}^{*}$ with $z_{n, j}^{*}$, then the previous argument will show that condition (2) holds with $\Delta=1 / C$ if we replace T_{N} with $U \circ T_{N}$ for every $N \subset \mathbb{N}$.

We now want to formulate conditions on the spaces X and Y and the operators $T_{n}: E_{n} \rightarrow F_{n}, n \in \mathbb{N}$, which imply that condition (3) is satisfied. From now on we assume that for each $n \in \mathbb{N}$, the spaces E_{n} and F_{n} have 1-unconditional, normalised bases $\left(e_{n, j}\right)_{j=1}^{\operatorname{dim}\left(E_{n}\right)}$ and $\left(f_{n, j}\right)_{j=1}^{\operatorname{dim}\left(F_{n}\right)}$ with coordinate functionals $\left(e_{n, j}^{*}\right)_{j=1}^{\operatorname{dim}\left(E_{n}\right)}$ and $\left(f_{n, j}^{*}\right)_{j=1}^{\operatorname{dim}\left(F_{n}\right)}$, respectively.

We write for $n \in \mathbb{N}$ the operator $T_{n}: E_{n} \rightarrow F_{n}$ as

$$
T_{n}: E_{n} \rightarrow F_{n}, \quad T_{n}(x)=\sum_{j=1}^{\operatorname{dim}\left(F_{n}\right)} x_{n, j}^{*}(x) f_{n, j}
$$

where $x_{n, j}^{*} \in E_{n}^{*}$ for $n \in \mathbb{N}$ and $1 \leqslant j \leqslant \operatorname{dim}\left(F_{n}\right)$. In applications, we will define the T_{n} by choosing the $x_{n, j}^{*}$ so that

$$
\begin{equation*}
\text { the operator } T: X \rightarrow Y,\left(x_{n}\right) \mapsto\left(T\left(x_{n}\right)\right) \text {, is well defined and bounded. } \tag{4}
\end{equation*}
$$

We secondly demand that $\operatorname{dim}\left(F_{n}\right)=l_{n}$ and that $y_{n, j}^{*}=f_{n, j}^{*}$ for $n \in \mathbb{N}$ and $j=1,2, \ldots, l_{n}$. Thus, in order to obtain formula (3a), we require

$$
\begin{equation*}
x_{n, j}^{*}\left(x_{n, j}\right) \geqslant 1 \quad \text { for all } n \in \mathbb{N} \text { and } j=1,2, \ldots, l_{n} . \tag{5}
\end{equation*}
$$

Finally, in order to satisfy equation (3b), we will ensure that for $m \in \mathbb{N}$ and any operator $B \in$ $\mathcal{L}\left(E_{m}, X_{\mathbb{N} \backslash\{m\}}\right)$ with $\|B\| \leqslant 1$, it follows that

$$
\begin{equation*}
\frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N \backslash\{m\}} B\left(x_{m, i}\right)\right\| \leqslant \varepsilon_{m}, \tag{6}
\end{equation*}
$$

where $\left(\varepsilon_{m}\right)$ is a sequence in $(0,1)$ decreasing to 0 not depending on B. Now B can be written as the sum $B=B^{(1)}+B^{(2)}$, where $B^{(1)} \in \mathcal{L}\left(E_{m}, X_{\{1,2, \ldots, m-1\}}\right)$ and $B^{(2)} \in \mathcal{L}\left(E_{m}, X_{\mathbb{N} \backslash\{1,2, \ldots, m\}}\right)$.

It is not very hard to force formula (6) to hold for $B^{(1)}$ with $\varepsilon_{m} / 2$ instead of ε_{m} : it will be enough to ensure that l_{m} is very large compared to $\operatorname{dim}\left(X_{\{1,2, \ldots, m-1\}}\right)$ and (see the proof of Proposition 2) that $\frac{1}{l_{m}} \sup _{ \pm}\left\|\sum_{i=1}^{l_{m}} \pm x_{m, i}\right\|$ decreases to 0 for increasing m. To also ensure the necessary estimates for $B^{(1)}$, we will assume the following slightly stronger condition:

$$
\begin{align*}
& \lim _{m \rightarrow \infty} l_{m}=\infty \text { and } \lim _{l \rightarrow \infty} \sup _{m \in \mathbb{N}, l_{m} \geqslant l} \frac{\varphi_{m}(l)}{l}=0, \text { where } \tag{7}\\
& \varphi_{m}(l)=\sup \left\{\left\|\sum_{i \in A} \sigma_{i} x_{m, i}\right\|: A \subset\left\{1, \ldots, \ell_{m}\right\},|A| \leqslant l,\left(\sigma_{i}\right)_{i \in A} \subset\{ \pm 1\}\right\} .
\end{align*}
$$

Ensuring that formula (6) holds for $B^{(2)}$ is more complicated and will be done in two steps. The second of these two steps is more straighforward: it will be enough to assume that $T_{\mathbb{N} \backslash\{1,2, \ldots m\}}$ maps vectors with small coordinates into vectors with small norm (see Proposition 2(a) for the precise statement). The first step is then to assume (see Proposition 2(b)) that the set

$$
\left\{(n, j): n>m, 1 \leqslant j \leqslant l_{n},\left|x_{n, j}^{*}\left(B^{(2)} x_{m, i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l_{m}\right\}
$$

has small cardinality compared to l_{m}. In many situations, guaranteeing that this set has small cardinality relative to l_{m} is the trickiest part, as $B^{(2)}$ is an arbitrary norm 1 operator. However, in Lemmas 3 and 4 we present conditions which imply this result and are stated in terms of only basic properties of the sequences $\left(x_{n, j}\right)$ and $\left(x_{n, j}^{*}\right)$, as well as the Banach spaces X and Y.

Of course, since for any $N \in[\mathbb{N}]^{\omega}, X_{N}$ and Y_{N} are complemented subspaces of X and Y, respectively, we can pass to subsequences $\left(E_{k_{n}}\right),\left(F_{k_{n}}\right)$ and $\left(T_{k_{n}}\right)$ for which we are able to verify condition (2), in order to conclude that the lattice of closed ideals in $\mathcal{L}(X, Y)$ is of cardinality $2^{\text {c }}$. This follows from the following observation, whose verification is routine. Suppose that V and W are complemented subspaces of X and Y, respectively. For a closed ideal \mathcal{J} in $\mathcal{L}(V, W)$, let $\widetilde{\mathcal{J}}$ be the closure in $\mathcal{L}(X, Y)$ of the set of operators of the form $\sum_{j=1}^{n} A_{j} S_{j} B_{j}$, where $n \in \mathbb{N},\left(A_{j}\right)_{j=1}^{n} \subset \mathcal{L}(W, Y)$, $\left(S_{j}\right)_{j=1}^{n} \subset \mathcal{J}$ and $\left(B_{j}\right)_{j=1}^{n} \subset \mathcal{L}(X, V)$. Then $\widetilde{\mathcal{J}}$ is a closed ideal in $\mathcal{L}(X, Y)$ and the map $\mathcal{J} \mapsto \widetilde{\mathcal{J}}$ is injective.

Proposition 2. Assume that the spaces X and Y, their 1-unconditional FDDs $\left(E_{n}\right)$ and $\left(F_{n}\right)$ and the operators $T_{n}: E_{n} \rightarrow F_{n}, n \in \mathbb{N}$, satisfy conditions (4), (5) and (7). Assume, moreover, that the following conditions hold:
(a) For all $\varepsilon>0$ and all $M \in[\mathbb{N}]^{\omega}$, there are a $\delta>0$ and $N \in[M]^{\omega}$ so that

$$
\forall x \in B_{X_{N}} \text {, if } \sup _{n \in N, 1 \leqslant j \leqslant l_{n}}\left|x_{n, j}^{*}(x)\right| \leqslant \delta \text {, then }\left\|T_{N}(x)\right\|<\varepsilon .
$$

(b) For all $\delta, \varepsilon>0$ and all $M \in[\mathbb{N}]^{\omega}$, there are $m \in M$ and $N \in[M]^{\omega}$ so that for every $B \in \mathcal{L}\left(E_{m}, X_{N}\right)$ with $\|B\| \leqslant 1$, we have

$$
\mid\left\{(n, j): n \in N, 1 \leqslant j \leqslant l_{n},\left|x_{n, j}^{*}\left(B x_{m, i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l_{m}\right\} \mid<\varepsilon l_{m} .
$$

Then there is a subsequence $\left(k_{n}\right)$ of \mathbb{N} so that for $\widetilde{E}_{n}=E_{k_{n}}, \widetilde{F}_{n}=F_{k_{n}}, \widetilde{T}_{n}=T_{k_{n}}, \tilde{l}_{n}=l_{k_{n}},\left(\tilde{x}_{n, j}\right)_{j=1}^{\tilde{l}_{n}}=$ $\left(x_{k_{n}, j}\right)_{j=1}^{l_{k_{n}}} \subset \widetilde{E}_{n}$ and $\left(\tilde{y}_{n, j}^{*}\right)_{j=1}^{\tilde{l}_{n}}=\left(f_{k_{n}, j}^{*}\right)_{j=1}^{l_{k_{n}}} \subset\left(\widetilde{F}_{n}\right)^{*}$, condition (3) is satisfied. Hence, $\mathcal{L}(X, Y)$ contains 2^{c} closed ideals.

Proof. Let $\left(\varepsilon_{r}\right)_{r=1}^{\infty} \subset(0,1)$ be a sequence which decreases to 0 . Put $k_{0}=0$ and $M_{0}=\mathbb{N}$. We will inductively choose $k_{r} \in \mathbb{N}$ and $M_{r} \in[\mathbb{N}]^{\omega}$ so that for all $r \in \mathbb{N}$

$$
\begin{align*}
& \min \left(M_{r}\right)>k_{r}, \tag{8}\\
& k_{r-1}<k_{r}, M_{r} \subset M_{r-1} \text { and } k_{r} \in M_{r-1}, \tag{9}\\
& \frac{1}{l_{k_{r}}} \sum_{i=1}^{l_{k_{r}}}\left\|B\left(x_{k_{r}, i}\right)\right\| \leqslant \varepsilon_{r} \text { for all } B \in \mathcal{L}\left(E_{k_{r}}, X_{\left\{k_{1}, k_{2}, \ldots, k_{r-1}\right\}}\right),\|B\| \leqslant 1, \tag{10}\\
& \frac{1}{l_{k_{r}}} \sum_{i=1}^{l_{k_{r}}}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\| \leqslant \varepsilon_{r} \text { for all } B \in \mathcal{L}\left(E_{k_{r}}, X_{M_{r}}\right),\|B\| \leqslant 1 . \tag{11}
\end{align*}
$$

Assume that for some $r \in \mathbb{N}$, we have already chosen suitable $k_{1}<k_{2}<\cdots<k_{r-1}$ and $\mathbb{N}=M_{0} \supset$ $M_{1} \supset \cdots \supset M_{r-1}$. Put $C=\|T\|$. By using (a), we choose $\delta>0$ and $M \in\left[M_{r-1}\right]^{\omega}$ so that

$$
\begin{equation*}
\left\|T_{M}(x)\right\| \leqslant \frac{\varepsilon_{r}}{2} \text { for all } x \in B_{X_{M}} \text {, with } \sup _{m \in M, 1 \leqslant i \leqslant l_{m}}\left|x_{m, i}^{*}(x)\right| \leqslant \delta \text {. } \tag{12}
\end{equation*}
$$

Note that condition (12) still holds if we replace M by any infinite subset of M.
We now let $p \in \mathbb{N}$ be large enough so that there exists a sequence $\left(z_{j}^{*}\right)_{j=1}^{p} \subset S_{X_{\left\{k_{1}, k_{2}, \ldots, k_{r-1}\right\}}}$ which normalises the elements of $X_{\left\{k_{1}, k_{2}, \ldots, k_{r-1}\right\}}$ up to the factor 2 - that is,

$$
\begin{equation*}
\|x\| \leqslant \max _{1 \leqslant j \leqslant p} 2\left|z_{j}^{*}(x)\right| \quad \text { for all } x \in X_{\left\{k_{1}, k_{2}, \ldots, k_{r-1}\right\}} \tag{13}
\end{equation*}
$$

We now apply equation (7) and choose $l \in \mathbb{N}$ and $m_{1}>k_{r-1}$ large enough so that for all $m \geqslant m_{1}$ we have $l_{m} \geqslant l$, and if $A \subset\left\{1,2, \ldots, l_{m}\right\}$ has $|A| \geqslant l$, then

$$
\begin{equation*}
\sup _{ \pm}\left\|\sum_{i \in A} \pm x_{m, i}\right\|<\min \left(\frac{\delta}{C}, \frac{\varepsilon_{r}}{2 p}\right)|A| . \tag{14}
\end{equation*}
$$

For any $m \geqslant m_{1}$ and any $B \in \mathcal{L}\left(E_{m}, X_{\left\{k_{1}, k_{2}, \ldots, k_{r-1}\right\}}\right)$ with $\|B\| \leqslant 1$, it follows that

$$
\begin{align*}
& \frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|B\left(x_{m, i}\right)\right\| \leqslant \frac{2}{l_{m}} \sum_{i=1}^{l_{m}} \sum_{j=1}^{p}\left|z_{j}^{*} B\left(x_{m, i}\right)\right| \tag{15}\\
&=\frac{2}{l_{m}} \sum_{j=1}^{p} z_{j}^{*} \circ B\left(\sum_{i=1}^{l_{m}} \sigma_{i, j} x_{m, i}\right) \\
&\left(\text { with } \sigma_{i, j}=\operatorname{sign}\left(z_{j}^{*} B\left(x_{m, i}\right)\right) \text { for } 1 \leqslant i \leqslant l_{m} \text { and } 1 \leqslant j \leqslant p\right) \\
& \leqslant \frac{2 p}{l_{m}} \sup _{ \pm}\left\|\sum_{i=1}^{l_{m}} \pm x_{m, i}\right\| \leqslant \varepsilon_{r} .
\end{align*}
$$

Thus formula (10) will hold for any $k_{r} \geqslant m_{1}$. We now apply assumption (b) and choose $k_{r} \in M$ and an infinite subset M_{r} of M with $m_{1} \leqslant k_{r}<\min \left(M_{r}\right)$ so that for every $B \in \mathcal{L}\left(E_{k_{r}}, X_{M_{r}}\right)$ with $\|B\| \leqslant 1$ we have

$$
\begin{align*}
& |J(B)|<\frac{\varepsilon_{r} l_{k_{r}}}{2 C l}, \quad \text { where } \\
& \qquad J(B)=\left\{(n, j): n \in M_{r}, 1 \leqslant j \leqslant l_{n},\left|x_{n, j}^{*}\left(B x_{k_{r}, i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l_{k_{r}}\right\} . \tag{16}
\end{align*}
$$

We now verify condition (11) and complete the inductive construction. Set $B \in \mathcal{L}\left(E_{k_{r}}, X_{M_{r}}\right)$ with $\|B\| \leqslant 1$ and set $J=J(B)$. For each $(n, j) \in J$ we denote

$$
I_{n, j}=\left\{i \in\left\{1,2, \ldots, l_{k_{r}}\right\}:\left|x_{n, j}^{*}\left(B x_{k_{r}, i}\right)\right|>\delta\right\} .
$$

We now have for each $(n, j) \in J$ that

$$
\begin{aligned}
C \sup _{ \pm}\left\|\sum_{i \in I_{n, j}} \pm x_{k_{r}, i}\right\| & \geqslant \sup _{ \pm}\left\|\sum_{i \in I_{n, j}} \pm T_{M_{r}} B x_{k_{r}, i}\right\| \\
& \geqslant \sup _{ \pm} \sum_{i \in I_{n, j}} \pm f_{n, j}^{*}\left(T_{M_{r}} B x_{k_{r}, i}\right) \\
& \geqslant\left|I_{n, j}\right| \delta,
\end{aligned}
$$

where we used the fact that $f_{n, j}^{*} \circ T_{M_{r}}=x_{n, j}^{*}$. On the other hand, we have by formula (14) that if $\left|I_{n, j}\right| \geqslant l$, then

$$
\sup _{ \pm}^{ \pm}\left\|\sum_{\substack{\text { bridge U Univej,j} \\ \\ u_{k_{r}, i}}}\right\|<\delta\left|I_{n, j}\right| / C .
$$

Thus, $\left|I_{n, j}\right|<l$ for all $(n, j) \in J$. We now set $I=\bigcup_{(n, j) \in J} I_{n, j}$ and calculate

$$
\begin{array}{rlr}
\sum_{i=1}^{l_{k_{r}}}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\| & \leqslant \sum_{i \in I}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\|+\sum_{i \notin I}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\| \\
& \leqslant \sum_{i \in I}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\|+\varepsilon_{r} l_{k_{r}} / 2, & \text { by formula (12), } \\
& \leqslant \sum_{(n, j) \in J} \sum_{i \in I_{n, j}}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\|+\varepsilon_{r} l_{k_{r}} / 2 & \\
& \leqslant C l|J|+\varepsilon_{r} l_{k_{r}} / 2, & \text { as }\left|I_{n, j}\right|<l \text { for all }(n, j) \in J, \\
& \leqslant \varepsilon_{r} l_{k_{r}}, & \text { by condition }(16) .
\end{array}
$$

Thus we have proven formula (11) and our induction is complete.
We now prove that condition (3) holds. Assumption (5) and the definition of T_{n} imply that formula (3a) holds with $y_{n, j}^{*}=f_{n, j}^{*}$. To verify equation (3b), we consider infinite subsets M and N of $\left\{k_{r}: r \in \mathbb{N}\right\}$ with $M \backslash N \in[\mathbb{N}]^{\omega}$. Set $B \in \mathcal{L}(X)$ and $m \in M \backslash N$. Define r by $m=k_{r}$. Let $N_{<m}=\{n \in N: n<m\}$ and $N_{>m}=\{n \in N: n>m\}$. We then have

$$
\begin{aligned}
\frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N} B\left(x_{m, i}\right)\right\| & \leqslant \frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N_{<m}} B\left(x_{m, i}\right)\right\|+\frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N_{>m}} B\left(x_{m, i}\right)\right\| \\
& \leqslant \frac{1}{l_{k_{r}}} \sum_{i=1}^{l_{k r}} C\left\|P_{\left\{k_{1}, \ldots, k_{r-1}\right\}} B\left(x_{k_{r}, i}\right)\right\|+\frac{1}{l_{k_{r}}} \sum_{i=1}^{l_{k_{r}}}\left\|T_{M_{r}} B\left(x_{k_{r}, i}\right)\right\| \\
& \leqslant \varepsilon_{r} C\|B\|+\varepsilon_{r}\|B\|, \quad \text { by formulas (10) and (11). }
\end{aligned}
$$

Hence we have

$$
\lim _{m \rightarrow \infty} \frac{1}{l_{m}} \sum_{i=1}^{l_{m}}\left\|T_{N} B\left(x_{m, i}\right)\right\|=0
$$

and equation (3b) is satisfied.
As mentioned before, the key assumption in Proposition 2 is (b). We will now present conditions (Lemmas 3 and 4) which imply this assumption. We will later give applications in Sections 3 and 4.

For a Banach space Z with an unconditional basis $\left(f_{j}\right)$, we define the lower fundamental function $\lambda_{Z}: \mathbb{N} \rightarrow \mathbb{R}$ of Z by

$$
\lambda_{Z}(n)=\inf \left\{\left\|\sum_{j \in A} f_{j}\right\|: A \subset \mathbb{N},|A| \geqslant n\right\} \quad(n \in \mathbb{N})
$$

Lemma 3. We are given $\delta, \varepsilon \in(0,1), l \in \mathbb{N}$ with $\varepsilon l \geqslant 1$, Banach spaces G and Z and a 1 -unconditional basis $\left(f_{j}\right)_{j=1}^{\infty}$ for Z with biorthogonal functionals $\left(f_{j}^{*}\right)_{j=1}^{\infty}$. Assume that for some sequence $\left(x_{i}\right)_{i=1}^{l} \subset S_{G}$ we have

$$
\begin{equation*}
\varphi(l) / \lambda_{Z}(\lfloor\varepsilon l\rfloor)<\delta, \tag{17}
\end{equation*}
$$

where $\varphi(l)=\sup \left\{\left\|\sum_{i \in I} \sigma_{i} x_{i}\right\|: I \subset\{1,2, \ldots, l\},\left(\sigma_{i}\right)_{i \in I} \subset\{ \pm 1\}\right\}$. Then for any $B: G \rightarrow Z$ with $\|B\| \leqslant 1$, we have

$$
\mid\left\{j \in \mathbb{N}:\left|f_{j}^{*}\left(B x_{i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l\right\} \mid \leqslant \varepsilon l .
$$

Proof. Fix an operator $B: G \rightarrow Z$ with $\|B\| \leqslant 1$ and set

$$
\begin{aligned}
& I=\left\{i \in\{1,2, \ldots, l\}:\left|f_{j}^{*}\left(B x_{i}\right)\right|>\delta \text { for some } j \in \mathbb{N}\right\}, \\
& J=\left\{j \in \mathbb{N}:\left|f_{j}^{*}\left(B x_{i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l\right\} .
\end{aligned}
$$

We next fix independent Rademacher random variables $\left(r_{i}\right)_{i \in I}$ and establish the estimate

$$
\begin{equation*}
\mathbb{E}\left|\sum_{i \in I} r_{i} f_{j}^{*}\left(B\left(x_{i}\right)\right)\right|>\delta \quad \text { for all } j \in J \tag{18}
\end{equation*}
$$

To see this, fix $j \in J$ and set $y_{i}=f_{j}^{*}\left(B\left(x_{i}\right)\right)$ for $i \in I$. By the definition of J, there is an $i_{0} \in I$ such that $\left|y_{i_{0}}\right|>\delta$. Thus, by Jensen's inequality we have

$$
\begin{aligned}
\mathbb{E}\left|\sum_{i \in I} r_{i} y_{i}\right| & =\mathbb{E}\left|\sum_{i \in I} r_{i_{0}} r_{i} y_{i}\right|=\mathbb{E}\left|y_{i_{0}}+\sum_{i \in I, i \neq i_{0}} r_{i_{0}} r_{i} y_{i}\right| \\
& \geqslant\left|y_{i_{0}}+\sum_{i \in I, i \neq i_{0}} \mathbb{E}\left(r_{i_{0}} r_{i}\right) y_{i}\right|=\left|y_{i_{0}}\right|>\delta .
\end{aligned}
$$

We then calculate

$$
\begin{aligned}
\varphi(l) & \geqslant \mathbb{E}\left\|\sum_{i \in I} r_{i} B\left(x_{i}\right)\right\|_{Z}, \\
& =\mathbb{E}\left\|\sum_{j}\left|\sum_{i \in I} r_{i} f_{j}^{*}\left(B\left(x_{i}\right)\right)\right| f_{j}\right\|_{Z}, \quad \text { as }\|B\| \leqslant 1, \\
& \geqslant\left\|\sum_{j} \mathbb{E}\left|\sum_{i \in I} r_{i} f_{j}^{*}\left(B\left(x_{i}\right)\right)\right| f_{j}\right\|_{Z}, \quad \text { as }\left(f_{j}\right) \text { is 1-unconditional, } \\
& \geqslant \delta\left\|\sum_{j \in J} f_{j}\right\|_{Z}, \quad \text { by Jensen's inequality, } \\
& \geqslant \delta \lambda_{Z}(|J|) .
\end{aligned}
$$

Since the lower fundamental function λ_{Z} is clearly increasing, it follows from assumption (17) that $|J| \leqslant \varepsilon l$.

We now state and prove a very different condition that also implies Proposition 2(b). Here we use the notation and framework established on page 5.

Lemma 4. Let $1 \leqslant s, t<\infty$ and suppose the following hold:
(a) There is a constant $c_{1}>0$ so that $\left(e_{m, i}^{*}\right)_{i=1}^{\operatorname{dim}\left(E_{m}\right)}$ is c_{1}-dominated by the unit vector basis of ℓ_{s} for each $m \in \mathbb{N}$. That is,

$$
\left\|\sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)} a_{i} e_{m, i}^{*}\right\| \leqslant c_{1}\left(\sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left|a_{i}\right|^{s}\right)^{1 / s} \quad \text { for all scalars }\left(a_{i}\right)_{i=1}^{\operatorname{dim}\left(E_{m}\right)} .
$$

(b) There is a constant $c_{2}>0$ so that for all $m, n \in \mathbb{N}$ with $m<n$ and all $A \subset\left\{1,2, \ldots, l_{n}\right\}$ with $|A| \leqslant l_{m}$, the sequence $\left(x_{n, j}^{*}\right)_{j \in A}$ is c_{2}-weak ℓ_{s}. That is,

$$
\left(\sum_{j \in A}\left|x_{n, j}^{*}(x)\right|^{s}\right)^{1 / s} \leqslant c_{2}\|x\| \quad \text { for all } x \in E_{n}
$$

(c) There is a constant $c_{3}>0$ so that if $z_{n} \in S_{E_{n}}$ for all $n \in \mathbb{N}$, then $\left(z_{n}\right)_{n=1}^{\infty} c_{3}$-dominates the unit vector basis for ℓ_{t}. In other words,

$$
\left(\sum_{n \in \mathbb{N}}\left\|P_{n}^{X} x\right\|^{t}\right)^{1 / t} \leqslant c_{3}\|x\| \quad \text { for all } x \in X
$$

(d) $\lim _{m \rightarrow \infty}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\max (1, t / s)} l_{m}^{-1}=0$.

Then for all $\delta, \varepsilon>0$, there exists $m \in \mathbb{N}$ so that for all $N \in[\{n \in \mathbb{N}: n \geqslant m+1\}]^{\omega}$ and for all $B \in \mathcal{L}\left(E_{m}, X_{N}\right)$ with $\|B\| \leqslant 1$, the set

$$
J=\left\{(n, j): n \in N, 1 \leqslant j \leqslant l_{n},\left|x_{n, j}^{*}\left(B x_{m, i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant l_{m}\right\}
$$

has $|J| \leqslant \varepsilon l_{m}$.
Proof. Set $0<\delta, \varepsilon<1, m \in \mathbb{N}, N \in[\{n \in \mathbb{N}: n \geqslant m+1\}]^{\omega}$ and $B \in \mathcal{L}\left(E_{m}, X_{N}\right)$ with $\|B\| \leqslant 1$. Let $H \subset J$ be such that $|H| \leqslant l_{m}$. Note that if we prove that $|H|<\varepsilon l_{m}$, then we have $|J|<\varepsilon l_{m}$. For each $n \in N$ denote $H_{n}=\left\{j \in\left\{1,2, \ldots, l_{n}\right\}:(n, j) \in H\right\}$. We have

$$
\begin{align*}
\delta^{s}\left|H_{n}\right| & \leqslant \sum_{j \in H_{n}}\left\|B^{*} x_{n, j}^{*}\right\|^{s} \\
& =\sum_{j \in H_{n}}\left\|\sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left(B^{*} x_{n, j}^{*}\left(e_{m, i}\right)\right) e_{m, i}^{*}\right\|^{s} \\
& \leqslant c_{1}^{s} \sum_{j \in H_{n}} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left|B^{*} x_{n, j}^{*}\left(e_{m, i}\right)\right|^{s} \tag{a}\\
& =c_{1}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)} \sum_{j \in H_{n}}\left|x_{n, j}^{*}\left(P_{n}^{X} B e_{m, i}\right)\right|^{s} \\
& \leqslant c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n}^{X} B e_{m, i}\right\|^{s} \tag{b}
\end{align*}
$$

For the case where $t \leqslant s$, we may use the fact that $\left\|P_{n}^{X} B e_{m, i}\right\| \leqslant 1$ to obtain

$$
\begin{equation*}
\delta^{s}\left|H_{n}\right| \leqslant c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n}^{X} B e_{m, i}\right\|^{s} \leqslant c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n}^{X} B e_{m, i}\right\|^{t} \tag{19}
\end{equation*}
$$

For the case that $s<t$, Hölder's inequality gives

$$
\delta^{s}\left|H_{n}\right| \leqslant c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n}^{X} B e_{m, i}\right\|^{s} \leqslant c_{1}^{s} c_{2}^{s}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t-s}{t}}\left(\sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n} B e_{m, i}\right\|^{t}\right)^{s / t} .
$$

By raising this inequality to the power t / s, we have, for $s<t$,

$$
\begin{equation*}
\delta^{t}\left|H_{n}\right| \leqslant \delta^{t}\left|H_{n}\right|^{t / s} \leqslant c_{1}^{t} c_{2}^{t}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t-s}{s}} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|P_{n}^{X} B e_{m, i}\right\|^{t} \tag{20}
\end{equation*}
$$

We now finish the proof for the case where $t \leqslant s$; we will consider the remaining case later. Summing formula (19) over $n \in N$ gives

$$
\begin{aligned}
|H| & =\sum_{n \in N}\left|H_{n}\right| \\
& \leqslant \delta^{-s} c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)} \sum_{n \in N}\left\|P_{n}^{X} B e_{m, i}\right\|_{E_{n}}^{t} \\
& \leqslant \delta^{-s} c_{1}^{s} c_{2}^{s} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)} c_{3}^{t}\left\|B e_{m, i}\right\|^{t} \\
& \leqslant \delta^{-s} c_{1}^{s} c_{2}^{s} c_{3}^{t} \operatorname{dim}\left(E_{m}\right)
\end{aligned}
$$

by (c),

As $t \leqslant s$, we have by (d) that $\lim _{m \rightarrow \infty} \operatorname{dim}\left(E_{m}\right) l_{m}^{-1}=0$. Hence, if $m \in \mathbb{N}$ is large enough, then $|H|<\varepsilon l_{m}$, and thus $|J|<\varepsilon l_{m}$ as well.

We now consider the remaining case, where $s<t$. By formula (20) we have

$$
\begin{align*}
|H| & =\sum_{n \in N}\left|H_{n}\right| \\
& \leqslant \delta^{-t} c_{1}^{t} c_{2}^{t}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t-s}{s}} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)} \sum_{n \in N}\left\|P_{n}^{X} B e_{m, i}\right\|_{E_{n}}^{t} \\
& =\delta^{-t} c_{1}^{t} c_{2}^{t} c_{3}^{t}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t-s}{s}} \sum_{i=1}^{\operatorname{dim}\left(E_{m}\right)}\left\|B e_{m, i}\right\|^{t} \tag{c}\\
& \leqslant \delta^{-t} c_{1}^{t} c_{2}^{t} c_{3}^{t}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t-s}{s}} \operatorname{dim}\left(E_{m}\right) \\
& =\delta^{-t} c_{1}^{t} c_{2}^{t} c_{3}^{t}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t}{s}}
\end{align*}
$$

As $s<t$, we have by (d) that $\lim _{m \rightarrow \infty}\left(\operatorname{dim}\left(E_{m}\right)\right)^{\frac{t}{s}} l_{m}^{-1}=0$. Hence, if $m \in \mathbb{N}$ is large enough, then $|H|<\varepsilon l_{m}$, and thus $|J|<\varepsilon l_{m}$.

3. Applications I

In this section we apply the general process developed in Section 2 together with Lemma 3 to establish a class of pairs (X, Y) of Banach spaces for which $\mathcal{L}(X, Y)$ contains 2^{c} distinct closed ideals. We will then give a list of examples including classical ℓ_{p}-spaces and p-convexified Tsirelson spaces.

Theorem 5. Let $1<p \leqslant r<2$ and $1<r<q<\infty$. Let X be an unconditional sum of a sequence $\left(E_{n}\right)$ of finite-dimensional Banach spaces satisfying a lower ℓ_{r}-estimate, and assume that the E_{n} contain uniformly complemented, uniformly isomorphic copies of ℓ_{p}^{m}. Let Y be an unconditional sum of a sequence $\left(F_{n}\right)$ of finite-dimensional Banach spaces satisfying an upper ℓ_{q}-estimate. Then $\mathcal{L}(X, Y)$ contains 2^{c} distinct closed ideals.

Let us first recall some of the terminology used here. To say that X is an unconditional sum of a sequence (E_{n}) of finite-dimensional Banach spaces means that X consists of all sequences (x_{n}) with
$x_{n} \in E_{n}$ for all $n \in \mathbb{N}$, and there is an unconditional basis $\left(u_{n}\right)$ of some Banach space such that the norm of an element $\left(x_{n}\right)$ of X is given by

$$
\left\|\left(x_{n}\right)\right\|=\left\|\sum_{n}\right\| x_{n}\left\|u_{n}\right\|
$$

If the $\left(u_{n}\right)$ is a C-unconditional basis, then we say that X is a C-unconditional sum of $\left(E_{n}\right)$. In this case $\left(E_{n}\right)$ is a UFDD for X, but the converse is not true in general.

We say that X satisfies a lower ℓ_{r}-estimate if $\left(u_{n}\right)$ dominates the unit vector basis of $\ell_{r}-$ that is, if for some $c>0$ and for all $\left(x_{n}\right) \in X$, the estimate

$$
\left\|\sum_{n} x_{n}\right\| \geqslant c\left(\sum_{n}\left\|x_{n}\right\|^{r}\right)^{1 / r}
$$

holds. In this case we say that X satisfies a lower ℓ_{r}-estimate with constant c. An upper ℓ_{r}-estimate is defined analogously in the obvious way. To say that the E_{n} contain uniformly complemented, uniformly isomorphic copies of ℓ_{p}^{m} means that for some $C>0$ and for all $m \in \mathbb{N}$ there exist $n \in \mathbb{N}$ and a projection $P_{n}: E_{n} \rightarrow E_{n}$ with $\left\|P_{n}\right\| \leqslant C$ whose image is C-isomorphic to ℓ_{p}^{m}.

The special case of $X=\ell_{p}$ and $Y=\ell_{q}$ was treated in [27], where the existence of a continuum of distinct closed ideals was established. Here we shall make use of finite-dimensional versions of Rosenthal's $X_{p, w}$ spaces, which were also the main ingredient in [27]. We begin by recalling the definition and relevant properties.

Given $2<p<\infty, 0<w \leqslant 1$ and $n \in \mathbb{N}$, we denote by $E_{p, w}^{(n)}$ the Banach space $\left(\mathbb{R}^{n},\|\cdot\|_{p, w}\right)$, where

$$
\left\|\left(a_{j}\right)_{j=1}^{n}\right\|_{p, w}=\left(\sum_{j=1}^{n}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \vee w\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}
$$

We write $\left\{e_{j}^{(n)}: 1 \leqslant j \leqslant n\right\}$ for the unit vector basis of $E_{p, w}^{(n)}$, and we denote by $\left\{e_{j}^{(n) *}: 1 \leqslant j \leqslant n\right\}$ the unit vector basis of the dual space $\left(E_{p, w}^{(n)}\right)^{*}$, which is biorthogonal to the unit vector basis of $E_{p, w}^{(n)}$.

Given $1<p<2,0<w \leqslant 1$ and $n \in \mathbb{N}$, we fix once and for all a sequence $f_{j}^{(n)}=f_{p, w, j}^{(n)}$, $1 \leqslant j \leqslant n$, of independent symmetric, 3 -valued random variables with $\left\|f_{j}^{(n)}\right\|_{L_{p}}=1$ and $\left\|f_{j}^{(n)}\right\|_{L_{2}}=\frac{1}{w}$ for $1 \leqslant j \leqslant n$ (these two equalities determine the distribution of a 3 -valued symmetric random variable). We then define $F_{p, w}^{(n)}$ to be the subspace span $\left\{f_{j}^{(n)}: 1 \leqslant j \leqslant n\right\}$ of L_{p}. It follows from the work of Rosenthal [22] that there exists a constant $K_{p}>0$ dependent only on p so that for all scalars $\left(a_{j}\right)_{j=1}^{n}$ we have

$$
\begin{equation*}
\frac{1}{K_{p}}\left\|\sum_{j=1}^{n} a_{j} e_{j}^{(n) *}\right\| \leqslant\left\|\sum_{j=1}^{n} a_{j} f_{j}^{(n)}\right\|_{L_{p}} \leqslant\left\|\sum_{j=1}^{n} a_{j} e_{j}^{(n) *}\right\|, \tag{21}
\end{equation*}
$$

where $\left\{e_{j}^{(n) *}: 1 \leqslant j \leqslant n\right\}$ is the unit vector basis of the dual space $\left(E_{p^{\prime}, w}^{(n)}\right)^{*}$ as already defined and p^{\prime} is the conjugate index of p. Since the random variables $f_{j}^{(n)}$ are 3 -valued, $F_{p, w}^{(n)}$ is a subspace of the span of indicator functions of 3^{n} pairwise disjoint sets. Thus, we can and will think of $F_{p, w}^{(n)}$ as a subspace of $\ell_{p}^{3^{n}}$. The following result follows directly from Rosenthal's work [22]:
Proposition 6 ([27, Proposition 1]). Set $1<p<2,0<w \leqslant 1$ and $n \in \mathbb{N}$. Then the following are true:
(i) $\left\{f_{j}^{(n)}: 1 \leqslant j \leqslant n\right\}$ is a normalised, 1-unconditional basis of $F_{p, w}^{(n)}$.
(ii) There exists a projection $P_{p, w}^{(n)}: \ell_{p}^{3^{n}} \rightarrow \ell_{p}^{3^{n}}$ onto $F_{p, w}^{(n)}$ with $\left\|P_{p, w}^{(n)}\right\| \leqslant K_{p}$.
(iii) For each $1 \leqslant k \leqslant n$ and for every $A \subset\{1, \ldots, n\}$ with $|A|=k$, we have

$$
\frac{1}{K_{p}} \cdot\left(k^{\frac{1}{P}} \wedge \frac{1}{w} k^{\frac{1}{2}}\right) \leqslant\left\|\sum_{j \in A} f_{j}^{(n)}\right\| \leqslant k^{\frac{1}{P}} \wedge \frac{1}{w} k^{\frac{1}{2}}
$$

The lower estimate of the lower fundamental function in the following lemma follows easily from [27, Lemma 3] and its proof:

Lemma 7. Given an increasing sequence (k_{n}) in \mathbb{N} and a decreasing sequence (w_{n}) in (0,1$]$, let $1<p \leqslant r<2$ and let Z be a 1-unconditional sum of $\left(F_{p, w_{n}}^{\left(k_{n}\right)}\right)$ satisfying a lower ℓ_{r}-estimate with constant 1 . Then with respect to the unconditional basis $\left(f_{j}^{\left(k_{n}\right)}: n \in \mathbb{N}, 1 \leqslant j \leqslant k_{n}\right)$ of Z, for all $m \in \mathbb{N}$ we have

$$
\lambda_{Z}(m) \geqslant \frac{1}{K_{p}}\left(\left(\frac{m}{2}\right)^{1 / r} \wedge\left(\sum_{j=1}^{s-1} \frac{k_{j}}{w_{j}^{2}}+\frac{t}{w_{s}^{2}}\right)^{1 / 2}\right)
$$

where $s=s(m) \in \mathbb{N}$ is maximal so that $\sum_{j=1}^{s-1} k_{j} \leqslant m / 2$ and $t=m / 2-\sum_{j=1}^{s-1} k_{j}$. In particular, if $m \leqslant k_{1}$, then

$$
\lambda_{Z}(m) \geqslant \frac{1}{2 K_{p}}\left(m^{1 / r} \wedge \frac{m^{1 / 2}}{w_{1}}\right)
$$

Let us denote by $\left(e_{2, j}^{(n)}\right)_{j=1}^{n}$ the unit vector basis of ℓ_{2}^{n}. We will need the following lemma from [27]. Recall that p^{\prime} is the conjugate index of p.
Lemma 8 ([27, Lemma 5]). Given $1<p<2$ and $p<q<\infty$, set $n \in \mathbb{N}, w \in(0,1]$ and $F=F_{p, w}^{(n)}$. Set $y=\sum_{j=1}^{n} y_{j} f_{j}^{(n)} \in F$ with $\|y\|_{F} \leqslant 1$ and $\tilde{y}=\sum_{j=1}^{n} y_{j} e_{2, j}^{(n)} \in \ell_{2}^{n}$. If $\|y\|_{\infty}=\max _{j}\left|y_{j}\right| \leqslant \sigma \leqslant 1$ and $w \leqslant \sigma^{\frac{1}{2}-\frac{1}{p^{\prime}}}=\sigma^{\frac{1}{p}-\frac{1}{2}}$, then

$$
\|\tilde{y}\|_{\ell_{2}^{n}}^{q} \leqslant D \sigma^{s} \cdot\|y\|_{F}^{p}
$$

where D depends only on p and q, and $s=\min \left\{\frac{q}{2}-\frac{p}{2}, \frac{q}{2}-\frac{q}{p^{\prime}}\right\}$.
Proof of Theorem 5. Choose $\eta \in(0,1)$ so that $\eta<\frac{1}{r}-\frac{1}{2}$, and for each $n \in \mathbb{N}$, let $w_{n}=n^{-\eta}$. After passing to a complemented subspace of X using Proposition 6 and passing to an equivalent norm, we may assume that X is a 1 -unconditional sum of $\left(E_{n}\right)$ satisfying a lower ℓ_{r}-estimate with constant 1 , where $E_{n}=F_{p, w_{n}}^{(n)}$ for all $n \in \mathbb{N}$. Also, using Dvoretzky's theorem, after passing to a subspace of Y with suitable renorming we may assume that Y is a 1 -unconditional sum of $\left(F_{n}\right)$ satisfying an upper ℓ_{q}-estimate with constant 1 , where $F_{n}=\ell_{2}^{n}$ for all $n \in \mathbb{N}$ (compare the Remark following condition (3)).

We will now follow the scheme developed in Section 2. For each $m \in \mathbb{N}$ we let $l_{m}=m, x_{m, i}=f_{i}^{(m)} \in$ E_{m} and $f_{m, i}=e_{2, i}^{(m)} \in F_{m}$ for $1 \leqslant i \leqslant m$, and define $T_{m}: E_{m} \rightarrow F_{m}$ by $T_{m}(x)=\sum_{i=1}^{m} x_{m, i}^{*}(x) f_{m, i}$, where $x_{m, i}^{*}$ are the biorthogonal functionals to the 1-unconditional basis $\left(x_{m, i}\right)_{i=1}^{m}$ of E_{m}. We are thus in the situation described in Proposition 2. It remains to verify assumptions (a) and (b) of the proposition as well as the general assumptions (4), (5) and (7).

Assumption (5) is clear. Next, it follows from Proposition 6(i) that $\sup _{n}\left\|T_{n}\right\|$ is bounded by the cotype2 constant of L_{p}. Since $r<q$, it follows from the upper ℓ_{q}-estimate on Y and the lower ℓ_{r}-estimates of X that condition (4) holds.

Using Proposition 6 again, we note that

$$
\varphi_{m}(l) \leqslant l^{\frac{1}{p}} \wedge \frac{1}{w_{m}} l^{\frac{1}{2}}
$$

for all $l \leqslant m$ in \mathbb{N}, and condition (7) follows.
We next turn to Proposition 2(a). Fix $\varepsilon>0$ and $M \in[\mathbb{N}]^{\omega}$. Choose $\delta \in(0,1)$ so that $\left(D \delta^{s}\right)^{\frac{r}{p}}<\varepsilon^{q}$, where D and s are given by Lemma 8 with q replaced by $\frac{p q}{r}$. Then choose $N \in[M]^{\omega}$ so that $w_{n} \leqslant \delta^{\frac{1}{p}-\frac{1}{2}}$ for all $n \in N$. Now fix $x \in B_{X_{N}}$ with $\sup _{n \in N, 1 \leqslant j \leqslant n}\left|x_{n, j}^{*}(x)\right| \leqslant \delta$. Writing $x=\sum_{n \in N} \sum_{j=1}^{n} a_{n, j} x_{n, j}$, we have $\left|a_{n, j}\right| \leqslant \delta$ for all $n \in N$ and $1 \leqslant j \leqslant n$. It follows from Lemma 8 that

$$
\left(\sum_{j=1}^{n}\left|a_{n, j}\right|^{2}\right)^{\frac{p q}{2 r}} \leqslant D \delta^{s}\left\|\sum_{j=1}^{n} a_{n, j} x_{x, j}\right\|_{E_{n}}^{p}
$$

and hence

$$
\left(\sum_{j=1}^{n}\left|a_{n, j}\right|^{2}\right)^{\frac{q}{2}} \leqslant\left(D \delta^{s}\right)^{\frac{r}{p}}\left\|\sum_{j=1}^{n} a_{n, j} x_{x, j}\right\|_{E_{n}}^{r}
$$

for every $n \in N$. Summing over $n \in N$ and using the lower ℓ_{r}-estimate of X and the upper ℓ_{q}-estimate of Y, we obtain

$$
\left\|T_{N}(x)\right\|_{Y}^{q} \leqslant\left(D \delta^{s}\right)^{\frac{r}{p}}\|x\|_{X_{N}}^{r}<\varepsilon^{q}
$$

which completes the proof of Proposition 2(a).
To verify Proposition 2(b), we fix $\delta, \varepsilon \in(0,1)$ and $M \in[\mathbb{N}]^{\omega}$. We first choose $m \in M$ so that $m \varepsilon \geqslant 1$ and

$$
\frac{2 K_{p} m^{\eta+\frac{1}{2}}}{\widetilde{m}^{\frac{1}{r}}}<\delta \quad \text { where } \widetilde{m}=\lfloor\varepsilon m\rfloor
$$

We then choose $N \in[M]^{\omega}$ so that $n=\min (N)$ satisfies $\widetilde{m}^{\frac{1}{r}} \leqslant \widetilde{m}^{\frac{1}{2}} / w_{n}$. We now apply Lemma 3 with $G=E_{m}, l=m$ and $Z=X_{N}$. First note that by Proposition 6(iii), we have

$$
\varphi_{m}(m) \leqslant m^{\frac{1}{p}} \wedge \frac{m^{\frac{1}{2}}}{w_{m}}=m^{\eta+\frac{1}{2}}
$$

On the other hand, it follows from Lemma 7 that

$$
\lambda_{X_{N}}(\widetilde{m}) \geqslant \frac{1}{2 K_{p}}\left(\widetilde{m}^{1 / r} \wedge \frac{\widetilde{m}^{1 / 2}}{w_{n}}\right)=\frac{\widetilde{m}^{1 / r}}{2 K_{p}}
$$

by the choice of N. Hence, $\varphi_{m}(m) / \lambda_{X_{N}}(\lfloor\varepsilon m\rfloor) \leqslant \frac{2 K_{p} m^{\eta+\frac{1}{2}}}{\widetilde{m}^{\frac{1}{r}}}<\delta$ by the choice of m. An application of Lemma 3 shows that for any $B \in \mathcal{L}\left(E_{m}, X_{N}\right)$ with $\|B\| \leqslant 1$, we have

$$
\mid\left\{(n, j): n \in N, 1 \leqslant j \leqslant n,\left|x_{n, j}^{*}\left(B x_{m, i}\right)\right|>\delta \text { for some } 1 \leqslant i \leqslant m\right\} \mid<\varepsilon m
$$

This shows that Proposition 2(b) holds, and the proof of the theorem is thus complete.
Remark. It is not difficult to prove (compare [27, Proposition 8]) that the 2^{c} closed ideals constructed in the proof of Theorem 5 are all contained in the ideal in the space of finitely strictly singular operators.

Corollary 9. Let $1<p<q<\infty$ and let p^{\prime} and q^{\prime} denote the conjugate indices of p and q, respectively. Let X be one of the spaces ℓ_{p}, T_{p} or $T_{p^{\prime}}^{*}$. Let Y be one of the spaces ℓ_{q}, T_{q} or $T_{q^{\prime}}^{*}$. Then $\mathcal{L}(X, Y)$ has exactly 2^{c} closed ideals. It follows that $\mathcal{L}(X \oplus Y)$ also has exactly 2^{c} closed ideals.

Proof. We recall the following properties of the p-convexified Tsirelson space T_{p}, which can be found in [4]. Its unit vector basis $\left(t_{n}\right)$ is normalised, 1 -unconditional and dominated by the unit vector basis of ℓ_{p}, and dominates the unit vector basis of ℓ_{r} whenever $p<r<\infty$. Moreover, given a sequence (I_{n}) of consecutive intervals of positive integers with $1 \in I_{1}$, if we let $E_{n}=\operatorname{span}\left\{t_{i}: i \in I_{n}\right\}$ and pick any $k_{n} \in I_{n}$ for every $n \in \mathbb{N}$, then T_{p} is isomorphic to the unconditional sum of $\left(E_{n}\right)$ with respect to the unconditional basis $\left(t_{k_{n}}\right)$. It follows from Theorem 5 that $\mathcal{L}(X, Y)$ has exactly $2^{\mathfrak{c}}$ closed ideals when $1<p<2$, and the same then holds by duality when $2 \leqslant p<\infty$.

It follows by standard basis techniques that every operator from Y to X is compact. Hence nontrivial closed ideals in $\mathcal{L}(X, Y)$ correspond to nontrivial closed ideals in $\mathcal{L}(X \oplus Y)$ as follows. We think of operators on $X \oplus Y$ as 2×2 matrices in the obvious way. Given a nontrivial closed ideal \mathcal{J} in $\mathcal{L}(X, Y)$, it is easy to see that

$$
\tilde{\mathcal{J}}=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): A \in \mathcal{K}(X), B \in \mathcal{L}(Y, X), C \in \mathcal{J}, D \in \mathcal{K}(Y)\right\}
$$

is a closed ideal in $\mathcal{L}(X \oplus Y)$, and moreover, the map $\mathcal{J} \mapsto \widetilde{\mathcal{J}}$ is injective. It follows that $\mathcal{L}(X \oplus Y)$ also has 2^{c} closed ideals, and this completes the proof of the theorem.

As mentioned in the introduction, this result implies the recent result of Johnson and Schechtman [11] that $\mathcal{L}\left(L_{p}\right)$ contains 2^{c} closed ideals for $1<p \neq 2<\infty$.

Corollary 10. Let $1<p \neq 2<\infty$. The algebra $\mathcal{L}\left(L_{p}\right)$ of operators on L_{p} contains exactly $2^{\text {c }}$ closed ideals.

4. Applications II

As in the previous section, we will apply the general process developed in Section 2 to establish a class of pairs (X, Y) of Banach spaces for which $\mathcal{L}(X, Y)$ contains 2^{c} distinct closed ideals. However, we will be using Lemma 4 in this section as opposed to Lemma 3.

Let $1 \leqslant p<q \leqslant \infty$. Suppose that $\left(\ell_{2}^{n}\right)_{n=1}^{\infty}$ is a UFDD for a Banach space X with a lower ℓ_{p}-estimate and that $\left(\ell_{\infty}^{n}\right)_{n=1}^{\infty}$ is a UFDD for a Banach space Y with an upper ℓ_{q}-estimate. We will prove that $\mathcal{L}(X, Y)$ contains 2^{c} distinct closed ideals. As $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{\ell_{p}}$ is complemented in ℓ_{p} for all $1<p<\infty$, we obtain that $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right)$ contains $2^{\text {c }}$ distinct closed ideals for all $1<p<\infty$, which proves that our general setup incorporates the results presented in [7]. By duality, we obtain that $\mathcal{L}\left(\ell_{1}, \ell_{p}\right)$ and $\mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ each contain $2^{\text {c }}$ distinct closed ideals. Hence, the cardinality of the set of closed ideals is exactly 2^{c} for each of $\mathcal{L}\left(\ell_{p} \oplus \mathrm{c}_{0}\right), \mathcal{L}\left(\ell_{p} \oplus \ell_{\infty}\right)$ and $\mathcal{L}\left(\ell_{1} \oplus \ell_{p}\right)$ for all $1<p<\infty$. Note that we also obtain that the cardinality of the set of closed ideals in $\mathcal{L}\left(\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{\ell_{1}} \oplus c_{0}\right)$ is 2^{c}; however, we are not able to conclude anything about $\mathcal{L}\left(\ell_{1} \oplus \mathrm{c}_{0}\right)$, as the finite-dimensional spaces ℓ_{2}^{n} are not uniformly complemented in ℓ_{1}.

In the previous section, for each $n \in \mathbb{N}$, the operator $T_{n}: E_{n} \rightarrow \ell_{2}^{n}$ was the formal identity between two n-dimensional Banach spaces. Now we will choose sequences $k_{1}<l_{1}<k_{2}<l_{2}<\ldots$ and operators $T_{n}: \ell_{2}^{k_{n}} \rightarrow \ell_{\infty}^{l_{n}}$. When considered as a matrix, each T_{n} will be much taller than it is wide.

Set $1 \leqslant p<\infty$. The probabilistic proofs for the existence of restricted isometry property matrices from compressed sensing [5] show that there exist sequences $k_{1}<l_{1}<k_{2}<l_{2}<\cdots$ with $\lim _{n \rightarrow \infty} k_{n}^{\max (1, p / 2)} l_{n}^{-1}=0$ such that if unit vectors $\left(x_{n, j}\right)_{j=1}^{l_{n}}$ are randomly chosen with uniform
distribution in $\ell_{2}^{k_{n}}$, then with high probability we have, for all $J \subset\left\{1,2, \ldots, l_{n}\right\}$ with $|J| \leqslant l_{n-1}$,

$$
\begin{align*}
& \frac{1}{2} \sum_{j \in J}\left|a_{j}\right|^{2} \leqslant\left\|\sum_{j \in J} a_{j} x_{n, j}\right\|^{2} \leqslant 2 \sum_{j \in J}\left|a_{j}\right|^{2} \text { for all }\left(a_{j}\right)_{j \in J} \subset \mathbb{R}, \tag{22}\\
& \sum_{j \in J}\left|\left\langle x, x_{n, j}\right\rangle\right|^{2} \leqslant 2\|x\|^{2} \text { for all } x \in \ell_{2}^{k_{n}} . \tag{23}
\end{align*}
$$

We now show how this construction satisfies the conditions of Proposition 2 and Lemma 4.
Theorem 11. Set $1 \leqslant p<q \leqslant \infty$. Suppose that $\left(\ell_{2}^{n}\right)_{n=1}^{\infty}$ is a UFDD for X with a lower ℓ_{p}-estimate and that $\left(\ell_{\infty}^{n}\right)_{n=1}^{\infty}$ is a UFDD for Y with an upper ℓ_{q}-estimate. Then $\mathcal{L}(X, Y)$ contains 2^{c} distinct closed ideals.
Proof. Choose $k_{1}<l_{1}<k_{2}<l_{2}<\cdots$ in \mathbb{N} with $\lim _{n \rightarrow \infty} k_{n}^{\max (1, p / 2)} l_{n}^{-1}=0$ and unit vectors $\left(x_{n, j}\right)_{j=1}^{l_{n}} \subset \ell_{2}^{k_{n}}$ for all $n \in \mathbb{N}$ to satisfy formulas (22) and (23). Let $E_{n}=\ell_{2}^{k_{n}}$ and $F_{n}=\ell_{\infty}^{l_{n}}$ for all $n \in \mathbb{N}$. As E_{n} is a Hilbert space, we may take $\left(x_{n, j}^{*}\right)_{j=1}^{l_{n}}=\left(x_{n, j}\right)_{j=1}^{l_{n}} \subset S_{E_{n}^{*}}$. Suppose that $C_{1}, C_{2}>0$ are such that if $\left(x_{n}\right)_{n=1}^{\infty} \in X$, then $\left(\sum\left\|x_{n}\right\|^{p}\right)^{1 / p} \leqslant C_{1}\left\|\left(x_{n}\right)\right\|_{X}$, and if $\left(y_{n}\right)_{n=1}^{\infty} \in Y$, then $\left\|\left(y_{n}\right)\right\|_{Y} \leqslant C_{2}\left(\sum\left\|y_{n}\right\|^{q}\right)^{1 / q}$.

For each $n \in \mathbb{N}$, we define the operator $T_{n}: \ell_{2}^{k_{n}} \rightarrow \ell_{\infty}^{l_{n}}$ by $x \mapsto\left(\left\langle x, x_{n, j}\right\rangle\right)_{j=1}^{l_{n}}$. We now show that the conditions of Proposition 2 are satisfied.

We have that condition (4) is satisfied, as if $\left(x_{n}\right) \in X$, then

$$
\begin{aligned}
\left\|T\left(\left(x_{n}\right)\right)\right\|_{Y} & \leqslant C_{2}\left(\sum\left\|T_{n} x_{n}\right\|_{\infty}^{q}\right)^{1 / q} \\
& =C_{2}\left(\sum \sup _{1 \leqslant j \leqslant l_{n}}\left|\left\langle x_{n}, x_{n, j}\right\rangle\right|^{q}\right)^{1 / q} \\
& \leqslant C_{2}\left(\sum\left\|x_{n}\right\|^{q}\right)^{1 / q} \\
& \leqslant C_{2}\left(\sum\left\|x_{n}\right\|^{p}\right)^{1 / p} \leqslant C_{2} C_{1}\left\|\left(x_{n}\right)\right\|_{X} .
\end{aligned}
$$

Thus, the map $\left(x_{n}\right) \mapsto T\left(\left(x_{n}\right)\right)$ is well defined and bounded. Condition (5) is trivially satisfied, as $\left(x_{m, i}^{*}\right)_{i=1}^{l_{m}}=\left(x_{m, i}\right)_{i=1}^{l_{m}}$ for all $m \in \mathbb{N}$.

To prove condition (7), fix $n \in \mathbb{N}$ and let $l \in \mathbb{N}$ be such that $l \geqslant l_{n}>k_{n}$. Given $m \in \mathbb{N}$ with $l_{m} \geqslant l$ and $A \subset\left\{1,2, \ldots, l_{m}\right\}$ with $|A|=l$, set $t_{n}=\left\lceil l / k_{n}\right\rceil$. Partition A into $\left(A_{j}\right)_{j=1}^{t_{n}}$ such that $\left|A_{j}\right| \leqslant k_{n}$ for all $1 \leqslant j \leqslant t_{n}$. By formula (22), we have, for all $1 \leqslant j \leqslant t_{n}$,

$$
\left\|\sum_{i \in A_{j}} \sigma_{i} x_{m, i}\right\|^{2} \leqslant 2\left|A_{j}\right| \quad \text { for all }\left(\sigma_{i}\right)_{i \in A_{j}} \subset\{ \pm 1\}
$$

Thus, for all $\left(\sigma_{i}\right)_{i=1}^{l} \subset\{ \pm 1\}$, we have

$$
\begin{aligned}
\left\|\sum_{i \in A} \sigma_{i} x_{m, i}\right\| & \leqslant \sum_{j=1}^{t_{n}}\left\|\sum_{i \in A_{j}} \sigma_{i} x_{m, i}\right\| \\
& \leqslant \sum_{j=1}^{t_{n}} 2^{1 / 2}\left|A_{j}\right|^{1 / 2} \\
& \leqslant t_{n} 2^{1 / 2} k_{n}^{1 / 2} \\
& <\left(2 l / k_{n}\right) 2^{1 / 2} k_{n}^{1 / 2}<4 l k_{n}^{-1 / 2} .
\end{aligned}
$$

Thus, for

$$
\varphi_{m}(l)=\sup \left\{\left\|\sum_{i \in A} \sigma_{i} x_{m, i}\right\|: A \subset\left\{1,2, \ldots, l_{m}\right\},|A| \leqslant l,\left(\sigma_{i}\right)_{i \in A} \subset\{ \pm 1\}\right\}
$$

we have $\frac{\varphi_{m}(l)}{l}<4 k_{n}^{-1 / 2}$. Hence, $\lim _{l \rightarrow \infty} \sup _{m \in \mathbb{N},} l_{m} \geqslant l$.
We next verify Proposition 2(a). Fix $\varepsilon>0$. There exists $\delta>0$ such that if $\left(a_{j}\right) \in \ell_{p}$ with $\left\|\left(a_{j}\right)\right\|_{\ell_{p}} \leqslant C_{1}$ and $\left|a_{j}\right| \leqslant \delta$ for all $j \in \mathbb{N}$, then $\left\|\left(a_{j}\right)\right\|_{\ell_{q}}<C_{2}^{-1} \varepsilon$. Let $x=\left(x_{n}\right) \in S_{X}$ such that $\sup _{1 \leqslant j \leqslant l_{n}}\left|\left\langle x_{n}, x_{n, j}\right\rangle\right| \leqslant \delta$ for all $n \in \mathbb{N}$. Thus, we have

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} \sup _{1 \leqslant j \leqslant l_{n}}\left|\left\langle x_{n}, x_{n, j}\right\rangle\right|^{p}\right)^{1 / p} \leqslant\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p} \leqslant C_{1} \tag{24}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|T\left(\left(x_{n}\right)\right)\right\|_{Y} & \leqslant C_{2}\left(\sum\left\|T_{n} x_{n}\right\|_{\infty}^{q}\right)^{1 / q} \\
& =C_{2}\left(\sum \sup _{1 \leqslant j \leqslant l_{n}}\left|\left\langle x_{n}, x_{n, j}\right\rangle\right|^{q}\right)^{1 / q} \\
& <\varepsilon, \quad \text { by formula (24) and our assumption on } \delta .
\end{aligned}
$$

Finally, it follows from formulas (22) and (23) that the conditions of Lemma 4 are satisfied for $s=2$ and $t=p$. This in turn implies Proposition 2(b), and thus the proof is complete.

Remark. The remark following the proof of Theorem 5 applies here, too. The closed ideals constructed are all contained in the ideal in the space of finitely strictly singular operators.

Theorem 11 gives the following immediate corollary:
Corollary 12. Set $1<p<\infty$. Then $\mathcal{L}\left(\ell_{p}, \mathrm{c}_{0}\right), \mathcal{L}\left(\ell_{1}, \ell_{p}\right)$ and $\mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ each contain 2^{c} distinct closed ideals.
Proof. We have by Theorem 11 that $\mathcal{L}\left(\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{\ell_{p}}, \mathrm{c}_{0}\right)$ contains 2^{c} distinct closed ideals, and $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{\ell_{p}}$ is isomorphic to ℓ_{p} for $1<p<\infty$. By duality, we have that $\mathcal{L}\left(\ell_{1}, \ell_{p}\right)$ and $\mathcal{L}\left(\ell_{p}, \ell_{\infty}\right)$ each contain $2^{\text {c }}$ distinct closed ideals.

In the previous section we deduced from our results that the cardinality of the lattice of closed ideals in $\mathcal{L}\left(L_{p}\right), 1<p \neq 2<\infty$, is $2^{\text {c }}$. Note that the Hardy space H_{1} and its predual VMO can be seen as the 'well-behaved' limit cases of the L_{p}-spaces. For example, ℓ_{2} is complemented in both spaces, and H_{1} contains a complemented copy of ℓ_{1} and VMO a complemented copy of c_{0} (compare [19] and [20, page 125]). Thus, we deduce the following corollary:
Corollary 13. The cardinality of the lattice of closed ideals in $\mathcal{L}(V M O)$ and $\mathcal{L}\left(H_{1}\right)$ is 2^{c}.

5. Final remarks and open problems

If one considers only Banach spaces X with a countable unconditional basis or, more generally, with a UFDD, then the cardinalities κ for which we know examples of Banach spaces X with a UFDD for which the number of nontrivial proper closed ideals in $\mathcal{L}(X)$ is κ are only the following three:
$\kappa=1$: For $X=\ell_{p}, 1 \leqslant p<\infty$, or $X=c_{0}$, the closed ideal in the space of compact operators is the only nontrivial proper closed ideal [8].
$\kappa=2$: For the spaces $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and its dual $X^{*}=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$, there are exactly two nontrivial proper closed ideals - the compacts and the closure of operators which factor through c_{0} or ℓ_{1}, respectively $[13,14]$.
$\kappa=2^{\text {c }}: \mathcal{L}(X)$ has $2^{\text {c }}$ closed ideals for the spaces listed in the previous two sections. In addition to these spaces, it was recently observed by Johnson [11] that $\mathcal{L}(T)$ and $\mathcal{L}\left(T^{(p)}\right)$, where T is a Tsirelson space and $T^{(p)}$ its p-convexification for $1<p<\infty$, also have 2^{c} closed ideals. ${ }^{1}$

This raises the following questions:
Problem 14. Are there Banach spaces X with a countable unconditional basis or unconditional UFDD for which the cardinality of the nontrivial proper closed ideals in $\mathcal{L}(X)$ is strictly between 2 and 2^{c} ? Can this cardinality be any natural number, countably infinite or \mathfrak{c} ?

An interesting space in the context of this question is $c_{0} \oplus \ell_{1}$. According to [28], $\mathcal{L}\left(c_{0} \oplus \ell_{1}\right)$ contains an ω_{1}-chain of closed ideals.
Problem 15. What is the cardinality of the lattice of the closed ideals in the space of the operators on $c_{0} \oplus \ell_{1}$?

Another space of interest for Problem 14 is the Schreier space. In [2] it was shown that the space of operators on this space has continuum many maximal ideals.

Problem 16. What is the cardinality of the lattice of closed ideals in the space of operators on Schreier

 spaces?Among the class of general separable Banach spaces, there are more examples for which the lattice of closed ideals in their space of operators, or at least its cardinality, is determined. Such a list can be found in [12]. For example, Mankiewicz [15] constructed a separable, superreflexive space X, with an FDD, for which there are 2^{c} multiplicative functional on $\mathcal{L}(X)$. Then, of course, the nullspaces of these functionals are closed ideals in $\mathcal{L}(X)$

Based on the construction by Argyros and Haydon [1] of a space on which all operators are compact perturbations of multiples of the identity, Tarbard [29] constructed for each $n \in \mathbb{N}$ a space X_{n} for which $\mathcal{L}\left(X_{n}\right)$ has exactly n nontrivial proper closed ideals. There are also Banach spaces X for which the cardinality of the lattice of closed ideals in $\mathcal{L}(X)$ is exactly \mathfrak{c}. Indeed, suppose that A is a separable Banach algebra isomorphic to the Calkin algebra $\mathcal{L}(X) / \mathcal{K}(X)$ for a Banach space X which has the approximation property (to ensure that $\mathcal{K}(X)$ is the smallest nontrivial closed ideal). Then, as observed in [12], the closed ideals in $\mathcal{L}(X)$ arise from preimages of closed ideals in A. Examples of separable Banach spaces X for which $\mathcal{L}(X) / \mathcal{K}(X)$ has exactly continuum many closed ideals were constructed, for instance, in [30], [18] and [17], as explained in [9]. An example of a space X for which the number of closed ideals is infinite but countable seems to be missing.

Problem 17. Are there separable Banach spaces X for which $\mathcal{L}(X)$ has countably infinitely many closed ideals?

A candidate for such a space is $C[0, \alpha]$, where α is a large enough countable ordinal. But already for $\alpha=\omega^{\omega}$ (the first ordinal α for which $C[0, \alpha]$ is not isomorphic to c_{0}), the answer to the following question is not known:

Problem 18. For a countable ordinal α, what are the closed ideals in $\mathcal{L}(C[0, \alpha])$? What is the cardinality of the lattice of these ideals?

[^0]Another space of interest is $L_{1}[0,1]$. It was shown by Johnson, Pisier and Schechtman [10] that $\mathcal{L}\left(L_{1}[0,1]\right)$ has at least \mathfrak{c} closed ideals.

Problem 19. How many closed ideals does $\mathcal{L}\left(L_{1}[0,1]\right)$ have?
As alluded to by our terminology, the closed ideals in $\mathcal{L}(X, Y)$ for Banach spaces X and Y form a lattice with respect to inclusion and with lattice operations given by $\mathcal{J} \wedge \mathcal{J}=\mathcal{J} \cap \mathcal{J}$ and $\mathcal{J} \vee \mathcal{J}=\overline{\mathcal{J}}+\mathfrak{J}$ for closed ideals \mathcal{J} and \mathcal{J}. In the foregoing problems, we have only asked about the cardinality of this lattice. As a future ambitious target, one could study the lattice structure.

After the submission of this paper, additional examples of spaces X were discovered for which $\mathcal{L}(X)$ has 2^{c} closed ideals:

- Manoussakis and Pelczar-Barwacz [16] showed that if X is a Schreier space of finite order or X is the arbitrarily distortable space constructed by the second author [24], then $\mathcal{L}(X)$ has 2^{c} closed ideals. Thus Problem 16 is only open for Schreier spaces of infinite order.
- The second author recently proved [26] that modified Schreier families of any order coincide with the usual Schreier families. It follows from this that the arguments of [11] extend to all higher-order Tsirelson spaces and their convexifications.

Acknowledgements. The first author was supported by grant 353293 from the Simons Foundation, and the second author's research was supported by NSF grant DMS-1764343. We want to thank the referee for improving our paper and for pointing out to us the relevant references [15], [17] and [9].

Conflict of Interest: The authors have no conflicts of interest to declare.

References

[1] S. A. Argyros and R. G. Haydon, 'A hereditarily indecomposable L_{∞}-space that solves the scalar-plus-compact problem', Acta Math. 206(1) (2011), 1-54.
[2] K. Beanland, T. Kania and N. J. Laustsen, 'Closed ideals of operators on the Tsirelson and Schreier spaces', J. Funct. Anal. 279(8) (2020), 108668, 28.
[3] J. Bourgain, H. P. Rosenthal and G. Schechtman, 'An ordinal L^{p}-index for Banach spaces, with application to complemented subspaces of L^{p}, Ann. of Math. (2) 114(2) (1981), 193-228.
[4] P. G. Casazza and T. J. Shura, Tsirel'son's Space, Lecture Notes in Mathematics, vol. 1363 (Springer-Verlag, Berlin, 1989). With an appendix by J. Baker, O. Slotterbeck and R. Aron.
[5] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2013).
[6] D. Freeman, T. Schlumprecht and A. Zsák, ‘Closed ideals of operators between the classical sequence spaces', Bull. Lond. Math. Soc. 49(5) (2017), 859-876.
[7] D. Freeman, T. Schlumprecht and A. Zsák, 'The cardinality of the sublattice of closed ideals of operators between certain classical sequence spaces', Preprint, 2020, arXiv:2006.02421.
[8] I. C. Gohberg, A. S. Markus and I. Fel'dman, 'Normally solvable operators and ideals associated with them', Bul. Acad. Ştiinţe Repub. Mold. Mat. 10(76) (1960), 51-70.
[9] B. Horváth and T. Kania, 'Unital Banach algebras not isomorphic to Calkin algebras of separable Banach spaces', Preprint, YYYY, arxiv.org/abs/2101.09950.
[10] W. B. Johnson, G. Pisier and G. Schechtman, 'Ideals in $L\left(L_{1}\right)$ ', Math. Ann. 376(1-2) (2020), 693-705.
[11] W. B. Johnson and G. Schechtman, 'The number of closed Ideals in $L\left(L_{p}\right)$ ', Preprint, YYYY, arXiv:2003.11414.
[12] T. Kania and N. J. Laustsen, 'Ideal structure of the algebra of bounded operators acting on a Banach space', Indiana Univ. Math. J. 66(3) (2017), 1019-1043.
[13] N. J. Laustsen, R. J. Loy and C. J. Read, 'The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces', J. Funct. Anal. 214(1) (2004), 106-131.
[14] N. J. Laustsen, T. Schlumprecht and A. Zsák, 'The lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space', J. Operator Theory 56(2) (2006), 391-402.
[15] P. Mankiewicz, 'A superreflexive Banach space X with $L(X)$ admitting a homomorphism onto the Banach algebra $C(\beta \mathrm{~N})$ ', Israel J. Math. 65(1) (1989), 1-16.
[16] A. Manoussakis and A. Pelczar-Barwacz, 'Small operator ideals on the Schlumprecht and Schreier spaces', v2, Preprint, 2020, arXiv:2008.12362.
[17] P. Motakis, D. Puglisi and A. Tolias, 'Algebras of diagonal operators of the form scalar-plus-compact are Calkin algebras', Michigan Math. J. 69(1) (2020), 97-152.
[18] P. Motakis, D. Puglisi and D. Zisimopoulou, A hierarchy of Banach spaces with $C(K)$ Calkin algebras', Indiana Univ. Math. J. 65(1) (2016), 39-67.
[19] P. F. X. Müller, 'A family of complemented subspaces in VMO and its isomorphic classification', Israel J. Math. 134 (2003), 289-306.
[20] P. F. X. Müller, Isomorphisms between H^{1} Spaces, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 66 (Birkhäuser Verlag, Basel, 2005).
[21] A. Pietsch, Operator Ideals, North-Holland Mathematical Library, vol. 20 (North-Holland Publishing Co., Amsterdam, 1980).
[22] H. P. Rosenthal, 'On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables', Israel J. Math. 8 (1970), 273-303.
[23] B. Sari, T. Schlumprecht, N. Tomczak-Jaegermann and V. G. Troitsky, 'On norm closed ideals in $L\left(l_{p}, l_{q}\right)$ ', Studia Math. 179(3) (2007), 239-262.
[24] T. Schlumprecht, 'An arbitrarily distortable Banach space', Israel J. Math. 76 (1991), 81-95.
[25] T. Schlumprecht, 'On the closed subideals of $L\left(\ell_{p} \oplus \ell_{q}\right)$ ', Oper. Matrices 6(2) (2012), 311-326.
[26] T. Schlumprecht, In preparation.
[27] T. Schlumprecht and A. Zsák, 'The algebra of bounded linear operators on $\ell_{p} \oplus \ell_{q}$ has infinitely many closed ideals', J. Reine Angew. Math. 735 (2018), 225-247.
[28] G. Sirotkin and B. Wallis, 'Sequence-singular operators', J. Math. Anal. Appl. 443(2) (2016), 1208-1219.
[29] M. Tarbard, 'Hereditarily indecomposable, separable L_{∞} Banach spaces with ℓ_{1} dual having few but not very few operators', J. Lond. Math. Soc. (2) 85(3) (2012), 737-764.
[30] M. Tarbard, Operators on Banach Spaces of Bourgain-Delbaen Type, D.Phil. thesis, 2013, University of Oxford (United Kingdom).
[31] B. Wallis, 'Closed ideals in $\mathcal{L}(X)$ and $\mathcal{L}\left(X^{*}\right)$ when X contains certain copies of ℓ_{p} and c_{0} ', Oper. Matrices 10 (2) (2016), 285-318.

[^0]: ${ }^{1}$ Moreover, during Kevin Beanland's talk at the Banach Space Webinar on 3 April 2020, Johnson noted that the case $p=2$ was already covered using methods developed in [11].

