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INCLUSION RELATIONS FOR GENERAL RIESZ 
TYPICAL MEANS 

BY 

A. JAKIMOVSKI AND J. TZIMBALARIO 

Let a be a non-negative real number, 2.={2,n}(n>0) a strictly increasing un
bounded sequence with A0>0 and let 2w=o am be an arbitrary series with partial 
sums s={sn}. Write 

ds(t) 
/•eo 

A%co) = Aa(?i,co) = A%?i,2am;co) = Aa(?i9sico)= 2 ( c o - A J X = O0" ' )" 
An<« Jo 

where s(t)=sn for Aw<f <AW+1, s(t)=Q for 0<t<A0. The series 2 an
 o r t r i e sequence 

of partial sums s={sn} is summable to i by the Riesz method (R, A, a) if 

(R, A, a, co) = CR, A, a, 2 m̂> w) = (R> K a> s, Q>) = co^AXœ) -> i 
as co->co. 

For a given non-negative integer/? and a strictly increasing unbounded sequence 
X={Xn}(n>G) with A0>0, denote by T{p) and T(3,) the (C, A, /?) series-to-sequence 
and sequence-to-sequence matrices, respectively; thus for/?>0 

f i»> = (1 -2V/An+1) • • • (1 -AVM„+*) (0 < f ^ n), f £> = 0(v > n) 

1 nv *-*y-L nv — A nv -1 n,\+l 

and 

T^ = l (0<v<n), fn
(
v
0) = 0 (v>n) 

T r = 0 ( v ^ n ) , Tn
(
v
0) = l (* = n). 

The (C, A,/?) mean of a series 2 #m with partial sums s is 

#> ES #>(s) EE # > £ O EE I f <fX = f T{:X EE C?^)/^^! • • • Xn+»\ 
v=0 v=0 

The series 2 #m o r t r i e sequence of partial sums {sm} is summable (C, A,/?) to s 
if t^-^s as fl->oo. The inverse matrices 

r (»> EE ( T J Ï ) r ( p ) EE ( T ^ ) (n, m = 0, 1, 2 , . . . ) 

of T(p) and T(2,), respectively, are given (see [21] p. 297-298) by 

(r™ = (-ir+1(V,+i-4)Vi • • • W/ft? (o < k < r < k+p+i) 
(1) { fc+P+1 

T&9) = 0 otherwise, where #*> = I T ( ^ - ^ ) 

(2) r;£p) = 2 r ; ^ ) (0 < fc < r < k+p), rr^ = O otherwise; 
v=fc 

H' in (1) indicates that the zero factor corresponding to j=r is to be omitted. 
51 
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52 A. JAKIMOVSKI AND J. TZIMBALARIO [March 

For an arbitrary B=(bpv) (p may be a continuous or discrete parameter) we 
denote by cB and c°B, respectively, the linear space of all iMimitable and iMimitable 
to zero sequences. It was proved by Peyerimhoff [12, §8] that the linear spaces 
c°{RtXta) and c(Rikia) with the norm M ^ s u p ^ o \(R, X, a, x, co)\ are .Bif-spaces. 
Denote these two BK-spaces, respectively, by RÀa(c°) and RÀ(X(c) and the norm by 
||-||Aa. Given two matrices A and B, we say that B is stronger than A or includes A 
if cA ç cB. Limits of summation are assumed throughout 0, oo unless otherwise 
specified, and Axn=xn—xn+1; An=Xn+1l(Xn+1 —Xn). Sums 2J=m where n<m are 
defined as equal to zero. 

A number of special results exist for summability methods B which include 
Riesz summability (R, X, cc)—see Kuttner [8], Russell [15], Rangachari [13], Meir 
[11] and Borwein and Russell [3]. The question of necessary and sufficient con
ditions to be satisfied by an arbitrary method in order that it will include (R, X, a) 
has received an answer for limited values of X and a. A complete solution was given 
when 0<oc<l by Russell [20], without any restrictions on X. Maddox [9] obtained 
necessary conditions for a series-to-sequence method to include (R, X, a) when 
oc>0 and X is suitably restricted. Maddox [9] conjectured that the necessary con
ditions are also sufficient. This conjecture was proved by Russell [20, Theorem 2] 
for 0 < a < l , by Jakimovski and Tzimbalario [6] for l < a < 2 and in Russell [21, 
page 300] for oc=2, 3 , 4 , . . . , with a weaker restriction on X. Here we give a 
complete solution for a sequence-to-sequence or series-to-sequence method B to 
be stronger than (R, X, a) if <x>2 too. Using this result we prove the conjecture by 
Maddox for oc>2 with the weaker restriction on X given by Russell. These results 
are obtained by showing that certain sequences are a Schauder-basis in RXoc(c°). 

The main results to be proved here are as follows : 

THEOREM 1. Let a > 0 and denote / ? < a < / ? + l , where p is an integer. In order 
that a sequence-to-sequence or sequence-to-function method B=(bpv) shall include 
(R, X, a) it is necessary that 

(3) 3 lim bpv = pv (v = 0, 1 ,2, . . .), 
p 

(4) 3 Jim 2 ^ = 18, 
P P 

and that a family of functions {gp} exists, defined in [X0, oo) such that 

(5) ( i )6 p v = A J (co-Xvydgp(co), (ii) co«\dgp(co)\=Mp<M< oo. 

7 / ' 0 < O C < 1 {without restrictions on X) then (3), (4) and (5) are also sufficient. If 
a > l it is also necessary that 

(6) Hm 2 ( 2 T'J£n+Jct
(:Ux))K,n+r = 0 

n-+oor=l \7c=l / 
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1974] RIESZ TYPICAL MEANS 53 

for each p and each x £c0
{RtX<x), and (without restrictions on X) (3), (4), (5) and 

(6) are also sufficient. If the method B is row-finite i.e. bpv=Ofor v>v(p)for each 
p(v(p)< + oc), then (3), (4) and (5) are necessary and sufficient for B to include 
(R, X, a) for a > 0 . 

THEOREM 2. Let a > l . A sequence-to-sequence or sequence-to-function method 
2?= (bpv) which satisfies 

(7) \bpv\ <, HpA~afor each p and each v = 0, 1, 2 , . . . 

includes (R, X, a) if, and only if, (3) (4) and (5) are satisfied. 

THEOREM 3. Let a > l and assume Aw_x=0(Aw). A sequence-to-sequence or 
sequence-to-function method B=(bpv) includes (R, X, a) //, and only if (3), (4), (5) 
and (7) are satisfied. 

THEOREM 4. Let a>0 , assume An7*0(1), and when a > l assume Aw_1=0(An). 
In order that a series-to-sequence or series-to-function method B=(bpv) shall in
clude (JR, A, a) it is necessary and sufficient that 

(8) 3 1im£pv = /?v for v = 0, 1, 2 , . . . , 
p 

(9) l^vl < :H P A-*> 

and that a family of functions {gp} exists, defined in [X0, co), such that: 

(10) bpv = f%-A v ) a dg p (œ) , J V|dgp(a>)\ =Mp£M<œ. 

If the method B is row-finite, it is not necessary to assume that An_1=0(Aw) when 
a > l and (8) and (10) are necessary and sufficient for B to include (R, X, a) when 
a > 0 . 

No real generality is lost by the assumption An5é0(l), since otherwise (R, X, a) 
will be equivalent to convergence for all a > 0 (Hardy and Riesz [5, Theorem 21]) 

THEOREM 5. For each oc>0, u.=p + ô where p is an integer and 0<<5<1, the 
sequence {d{9-%>0 defined by ôipJ) = T'{l>)ej, ej=(0, 0,.. . , 0, 1, 0 , . . . ) where 1 is 
the j-th coordinate, is a Schauder-basis in RÀa(c°) and we have x=2JLo t(?\x)à(p'3) 

for each x e RÀ0C(c°), where convergence is in the norm of RX(X(c°). 
In the proof of these theorems we use the following lemmas. 

LEMMA 1. Suppose p is a non-negative integer and 0<cS<l. If£ an is summable 
(R, X,p+ô) to zero, then for /c=0, 1 , . . . ,p (R,X,k,^am, a>)=o(A"~*) for 
Xn<co<Xn+1. 

Proof. This is a limitation theorem for Riesz means in a form given by Borwein 
[1, Lemma 2 in o-form]. 
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LEMMA 2. I/OL>0 and/?>0, then 

(11) A (co) = Cco—uYLA"(u)du> 
K J K J r(oc+l)r(£)Jo V J W 

Proof. For this lemma see Hardy and Riesz [5, Lemma 6, p. 27]. 

LEMMA 3. Let oc>0; if OL>1 assume An_1=0(An). Then in order that ^bnan 

(£bnsn) should converge whenever ^an(s) is summable (R, A, a), it is necessary 
that bn=0(A-n"). 

Proof. For this lemma see Russell [16, Theorem 2]. 

Given a function / , defined in an interval [a9 b], and distinct points x5 in this 
interval, we define the divided differences by f[x]=f(x) and 

f[x0,.. . , xn] = {/[x0,. . . , x n_i]- / [xi , • • •, xn]}l(x0-xn) (n = 1, 2 , . . . ) . 

LEMMA 4. Let p be a given positive integer. For each n>\9 there exist real 
numbers c?'*\ co{P'v) (7=0, 1, . . . ,p) satisfying 2?-o*iw 'p)==l, \c\n'v)\<H{v)for 
7=0 , 1, . . . ,p, where H{v) depends on p but not on n, Aw(n)<w/*'p)<Am(n)+1/0r 
j = 0, 1, . . . ,p, where m=m(n) is defined by 

^m+i-^m= max (A i+1-A,) if K+vlK<(P+lY> 

and m=n+r where 0<r<p, An+r+1IXn+r>p+l and 

A n + m / A n + i < p + l for 0<j<r if Xn+JXn > ( p + l ) " ; 

and *„(X)=2f=o c\n,/ï>) (R, A,/?, x, œ{*tV)) for any sequence x. In particular 

I\c{P'p)\<(p+l)HM 

for ri>\. 

Proof. For this lemma see A. Meir [11, The Lemma and its proof], D. Borwein 
and D. C. Russell [3, The Lemma and its proof], D. Borwein [2, Proof of the 
Theorem], and D. C. Russell [17, Lemma 2']. 

LEMMA 5. Let p be a positive integer. Then for any infinite sequence x, we have: 

A\X, x,io)= 2 niotffXx) (An <co< 1„+1) 
V=n—V 

where 

and 
10 if t > co. 
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We have also for An<co<An+1 andn—p<v<n p? (co)>0 and 

co-• oo CO v=n—v 

Proof. For this lemma see D. C. Russell [17, (33) and pp. 426-7; and 18]. 

LEMMA 6. Let a > l . Suppose xec\Rka) and OL=P+{JL where p is a positive 
integer and 0 < fx < 1. Then 

t{nXx) = °( m i n K) as n->oo for fc = l , 2 , . . . , p. 

Proof. Suppose &=/?. By Lemma 4, we get 

(PVYM ^_ ITOI 
j = 0 

^ ( i l ^ l l sup \(R,l,p,x,œ)\ 

<,(p+l)HM
 <Sup |(K,A,/>,x,a>)| 

(and by Lemma 1) 

= °(KM) (n -> oo). 

Now for each q, 0<q<p, we have 

Am(w)/An+ff — 

^n+g+l~~""n+q # KnVnM 

I ^n+ff+1 "n+Q 1 

(and by Lemma 4) 

< 

^m(n)+lMn+ff+l ^ K+pl^n < CP+1) 

if U^XP+I)* 

(1—^m(n)Mm(n)+l) if K+JK > (P + ̂ Y 

(K+JK<(P+1Y if W,<(P+D' 

= (p+l) 

= 0(1), n -> oo. 

i('--r= 
Hence, for An+Q= min Ar 

n<r<«+ï> 

|#>(x)| = o(A^(n)) = o((Am(n)/An+î)'A£+a) 

= o(A*+(7) = o( min A?). 
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Suppose now the lemma is true for some k, 1 <k<p. By Russell [17, (28)] we have 

Since An+kl(An+k-K) and KKK+n-k) are not larger than min Ar, we get 
n<r<n+k—1 

\t{t°(x)\^l min A^dt^i+ieiWI) 
\ n < r < n + f c - l / 

= o( min Al-{k-1]) as n->oo. 
\ n < r < w + f c - l / 

Hence Lemma 6 is true for A:—1 too; and by induction Lemma 6 is true for 
l<k<p. 

LEMMA 7. Let p be a positive integer if p>l suppose An_1=0(An). Then we have 
for\<k<r<p 

IT/(p) I < G Kv 
\L n+r,n+k\ - ^ ^ r^ -w+r* 

Proof. This lemma is (29) in Russell [22]. 

Proof of Theorem 5. For any sequence {yj}3->0 we have, since ô{p,j)=T'{p)ej 

n n n n+î> 

5=0 j=0 3=0 5=0 

where fJn) = (r / ( 3 , )^ for 0<j<n, since r(3J> is a normal matrix and only the 
elements T'^ (n—p<k<n, n=0, 1,2,...) may be different from zero. Since in 
the space Rj,a(c°) the coordinates are continuous (see Peyerimhoff [12, §8]) x= 
2?=oy^{p,J) implies (T'^—Xj for;>0, or T,{p)y=x. Hence y=T<p)x or y~ 
t^ix) fory>0. We get in particular for any sequence x 

(12) 2 < ? ' W « M = 2 V - 2 lT%L+kt%Ux))en+r> 
3=0 j=o r=i \fc=l / 

since T'{v) is a normal matrix and only the elements T'^] with n—p<k<n, n— 
0 , 1 , 2 , . . . may be different from zero. To complete the proof we have to show that 
for each x e R^a(c

0) the norm of the sequence nx defined by 

nx = x-Zt{»Xx)ô{pJ) 

3=0 

tends to zero as n-+co. We have 

(13) nx = x-ftf(x)à{*>» 
3=0 

= r{v\T{v)x)-^t\?\x)d{v'j) 
3=0 

= T'{»XT{2))x-2t{?Xxy) 
3=0 

= T^^Xx) 
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where iin)(x)=0 for 0<Ar<n and iin)(x)=tiv)(x) for k>n. By Lemma 5 we get 
now 

'0 for O^m^K+i 

n+r 

( 1 4 ) AV(A, nX, CO) = \ v=n+l 

<A*(X, x, Û>) 

By (11) and (14) we get for x e RÀX(c°) 

l<,r<p 

for co > An+3)+1. 

(15) 
p\ r ( a - p ) ! r(a-p) r » 

— - (£, À, a, nx, co) = oT* A\K nx, w)(a)-w)a-2,-1 du = 
r ( a+ l ) Jo 

(16) = 

co 
(Q-l fXn+r+i n+r 

i . r=lt /An + r v=n+l 

for 0 <Ç co < An+1 

f*(o n+a 

2 frXuWXxKa-uy-*-1 du s Jn,v(x, to) 
JXn+gv=n+ n+1 

= { for Xn+Q <co< Àn+Q+1 

p pÀn+r+i n+r 1 

2 2 Wutf'XxXa-ur*-1 du\ 
r=l JAn+l V=w+1 / 

+<o-"\ A^x.uXa-uf-^du for co > Xn+P+1 
^ «/An+Î)+1 

For ^n+Q<a)<K+Q+u ^<q<P and n+\<v<n+q, we have 

I f*to I 

co"" iSJ(«)4J,,(x)(ft) -u)*-»-1 du 

^ l ^ ' W l t sup |/9Ktt)tt-*|L- t o-p>r ( m - t t ) - » " 1 ^ 

(and by Lemma 5, since /?Jp)(f/)^0) 

^i^'wi ( sup (^(«)«-)l—(?=*a*y 
Un+q<u<a> ) K — p \ CO 1 

<L \t(:\x)\ f sup «- "f / « ) — (^M"-" 
lAn + 3<w<An + f l + 1 v=n+<z-3? ) CL — p \ CO J 

n+Q 

(and by Lemma 5, since limiT3* 2 i^(M) = *> ^n+* < w <̂  ̂ n+a+i) 

(and by Lemma 6) 

W-*oo V=W+<Z—2> 

^XIA^V'^'WI 
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as n—>co uniformly in Xn+q<Cco<ÇAn_|_c+1 and in l ^ ^ ^ p a n d n-{-l<Çiv^Ç.n-\-q. Hence 

f*(o n+q 

(17) co"" j j8iJ,)(M)t|?,)(x)(tt)-M)*-1,-1du-vO 

as 72->oo uniformly in An+a<a><An+(H:1 and 1 <q<p. Similarly we get for 1 <r<m, 
l<m<p, and co>Xm+1, since &T(a_:p)(co—w)*-25-1 is a decreasing function of co, 
that 

(17a) 
"'•n+r 

£K\t<?\x)\A£?>)-»0 1 ^(u^'CxXco-uy-*-1 du I 
«/2n + r v=n+l I 

as rc->oo uniformly in co>Xm+1. By (16), (17) and (17a) we see that 

(18) /„.«(*, Û > ) - 0 

as 7i->oo uniformly in Xn+Q<co<Xn+Q+1, l<q<p; and that 

{ P /•An+r+i W+r 1 

2 2 /SftOtf'OeXûj-K)-*-1 d« ^ 0 
as »-^oo uniformly in co>Aw+p+1. We have for co>^^+39+1 

(20) co~v 4*( A, x, u)(co - uf'p-1 du 

= «>""{ ~ UXK *> uXco-uf-*-1 du 

(and by [23, Lemma 1.42 for l=a.—p, k=p and ?>(x)=xa] we get) 

as rc-^oo uniformly in to>Xn+II+1. By (16), (18), (19) and (20) we see that 

x-2t^\x)ô^4 ->0 

as n-^oo, which completes the proof. 

Proof of Theorem 1. Necessity Since for oc>0 (R, X, a) is regular, (4) is necessary 
and we may assume x e RÀa(c°). By the argument in Peyerimhoff [12, §8] and 
Maddox [9, p. 166] with minor modifications, the general continuous linear 
functional on R^ic0), oc>0, is of the form 

f{x) = A\l, x, co)dg(co), co" \dg(co)\ < oo, 
JAO %/Ao 

and | | / | | = J* <*>" \dg(co)\. The proof that for oc>0 (3) and (5) are necessary, is due 
to Peyerimhoff [12], Maddox [9] and Russell [20]. Briefly if ^vbPvxv converges 
for each p whenever x e jRAa(c°), t h e n / , (x)=^>,vbpvxv is a continuous linear 
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functional on i^a(
c°) a n d hence 

(21) fp(x) = 2 bpvxv = f V ( A , x, co) d g » , ||/p|| = f V |dgp(co)\ < oo. 

Choosing x=e n («>0) in (21) we get (5)(i) in the form 

(22) bpv = ("(R, K a, e\ to) dgp(co). 

Since l i m ^ (x) exists for each x e Rxa(c°) it follows by the uniform boundedness 
principle that (5)(ii) is necessary. Now if p<a<p+l we get by (12), (22) and 
Theorem 5 for each p and each x e R^(c°) 

(23) Ux)=Umff(2^\x)ô('A 
n~* oo \j=0 J 

( /n+v \ v / r \ \ 

fp( 2 V - 2 M,U + *<Ï Ï* (* ) /p(«n+r) 
\ i = 0 / r = l \k=l / / 

(n+2) 2> / r \ \ 

j=0 r=l \k=l / ; 

Since ̂  bpjXj is assumed convergent for each p and each x e R^a(c°) it follows by 
the definition^ (*)=2* ^PÔXJ that (6) is necessary. 

Sufficiency. The sufficiency of (3), (4) and (5) if 0 < a < l is due to Russell [20, 
Theorem 1]. We assumep<a<p+l and prove that (3), (4), (5) and (6) are suffi
cient. The functions gp existing by (5) define continuous linear functionals 

/•oo 

= A\X9x9 
JAO 

/„(*)= A%l9x9a>)dgp(œ) 
JAO 

on Rxa(c°). The norms of these continuous linear functionals are uniformly bounded 
by (5)(ii), and by (3) limp/p (#*•'>) exists for eachy>0 (since {d<*'%>0 is a finite 
linear combination of e\ . . . , ej+2>) where, by Theorem 5, {<5(2M)},->0 is a Schauder-
basis for RÀa(c°). Hence limp/p (x) exists for each x G RÀa(c°). Now by (23) and (6) 
we have 

( n+p V [ r \ \ 

2 hp,*,- 2 lT'^.n+/:Ux))bp.n+r\ = 2 *„*„ 
3=0 r = l \Jc=l / ) j 

for each p and each x G R^a(c°). The existence of l i m ^ (x) for each x G Rxa(c°) 
implies that limp ̂  bpjx5 exists for each x e i^a(c0) which completes the proof. 

Proof of Theorem 2. Define the integer/? by /?<a< /?+ l . By (7), Lemma 6 and 
Lemma 7, we have for each x e c0

{RXa) and each k, \<k<p: 

®p,n+r\ 2* *• n+r,n+k^n+k\X) I ^ 2*\bp,n+r\ ' I •* w+r,n+fcl * Uw+fcWl 
\fc=l /1 k=l 

<i(HpA;+r)(GpA»n+r)-o( min A T " ) 
k=l \ n+k<Q < n+k+p J 

• 0 as n -> oo (since n+fc < n + p <n+/c+p) uniformly in 1 < r <i p. 
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Hence (6) is satisfied; the proof follows now by Theorem 1. 

Proof of Theorem 3. The proof follows by Theorem 2 and Lemma 3. 

Proof of Theorem 4. For the necessity of (8), (9) and (10), if a > 0 and for the 
sufficiency of (8), (9) and (10) if 0<oc<l see Russell [20, Theorem 2]. For the 
sufficiency of (8), (9) and (10) if oc=2, 3 , 4 , . . . see Russell [21, p. 300]. Assume 
p<u<p+l and that (8), (9) and (10) are satisfied. Define bpv=bpv—bpv+1. Then 
(3) holds with £v=/?v-/?v+1. By (10), (5) holds and Z?pv->0 as *>->oo for each />. 
Hence ^vbpv=bp0 and (4) holds with /?=/?0. The assumption Aw_!=0(An) and 
(9) imply (7). Thus, the conditions of Theorem 2 hold for the method B and B 
includes (R, A, a). Now given any series ]?v cv with partial sums sv, we have 

N _ N-l 

(24) J,bpycv = 2 bpvsv+bpNsN. 
v=0 v=0 

If 2 cv *s summable (R, A, a) to s, then we may assume without loss of generality 
that s=0 (since (R, A, a) is regular and limp 2 bpv exists) and then, by the limita
tion theorem for Riesz means [5, Theorem 21], sN=o(Ax

N). Hence by (9) and (24) 
we get 2v bpvcv=

y£v bpvsv whenever either side exists. Since B includes (R, A, a), 
also E include (R, A, a). 
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