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§0. Introduction

In Selberg [11], he introduced the trace formula and applied it to
computations of traces of Hecke operators acting on the space of cusp
forms of weight greater than or equal to two. But for the case of weight
one, the similar method is not effective. It only gives us a certain ex-
pression of the dimension of the space of cusp forms by the residue of the
Selberg type zeta function. Here the Selberg type zeta function appears
in the contribution from the hyperbolic conjugacy classes when we write
the trace formula with a certain kernel function ([3], [4], [7], [8], [9], [12D).

The starting point of the present work is [2], where we treated the
trace formula of weight one for modular correspondences with the same
kernel function and expressed the trace of the Hecke operator by the
residue of the corresponding Selberg type zeta function. Now we note
that the above Selberg type zeta function does not have a functional
equation. This is because the poles of the Selberg transform h,(r) are
not placed symmetrically.

In this paper, we take up our problem again and consider the trace
formula for modular correspondences with a general kernel function. It
was already done in Hejhal [5] Chapter 5, when I" has a compact funda-
mental domain. We only assume here that I' is a Fuchsian group of the
first kind. There may exist, in a double coset of I", hyperbolic conjugacy
classes whose fixed points are cusps and parabolic conjugacy classes. The
contributions from these terms are new points of this paper. In §1, we
introduce the necessary notation for the Selberg trace formula. In §2-§6,
we calculate the contribution from each conjugacy class. In the last
section, we restrict ourselves to the case [' = I'(p) and calculate the
terms in §4-§ 6 as explicitly as possible. We also define the Selberg type
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zeta function for a double coset by taking the classical Selberg kernel as
the kernel function and prove the functional equation (cf. [1]).

§1. Preliminary

Let I' be a Fuchsian group of the first kind of G = SL,(R) which does
not contain — 1, and /" be the commensurator of /" in G. Take an ele-
ment « from I'\{— 1}.I". Let H be the complex upper half plane and X be
a unitary representation of degree v of the group generated by I’ and a.
If I is not cocompact then we assume that the values of X at the stabilizer
of each cusp are the roots of the unit matrix. Let f be a holomorphic
mapping from H to C* satisfying

(0) fIll7ln = X(Df
(1) f vanishes at each cusp of I'

cd
by S.(I, %) the space of these mappings. Hecke operator which acts on
Sn(I", X) is defined by

where (f|[1].)(2) = j(r, 2)-"f(r-2), j(t, 2) = (cz + d) and T = (“ b) e I'. Denote

TI'al)-f(2) = 2. Xa)f [0z ]m

where I'al’ = U ,a,[" (disjoint). The trace of T'(I'al’) is calculated by the
Selberg trace formula in various cases and used in the arithmetical
problems.

Let us review our situation. PutG=GX T, ['=I'X Tand H=H
X T, where T = R/2zZ. Then G acts transitively on H by

(8 0) (2 ¢) = (g2 ¢ + Arg(i(g,2) — 0).
The algebra of G-invariant differential operators is generated by
0 0 9 0 0
4 = 2<_ _) — —, and —.
Y ox? + oy’ + yax op 06
TIdentify I" with I' X {0}, G with G X {0}. Let L:(I"\H) be the space of
mappings from H to C” satisfying three conditions:

(2) F(z, ¢) = “(fi, f»» -+, f.) is a column vector and each f; is a
measurable function on H,

(3) F(@-(z ¢) = UNF(z, ¢) for all rel,
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(4) j o F@ DFG P dzds < oo

The Selberg eigenspace L,(m, 2) is the subspace of LXI\H) with two ad-
ditional conditions:

(5) 9 p— _yTimF,

(6) AF = iF .

The eigenvalues A1 are numbered as

%(l%l_l)zzlzzzz

For the convenience, we put 1= s(s — 1) = —1/4 — r’. Let &,(,X) be
the space of holomorphic mappings from H to C* which satisfy (0) and

(7) L\H‘f(z) f(@)y"dz < oo

If m>1 then &, ([, ¥) = S,(I", X), and if m <0 then &%,(/, X) = {0}. Note
the fact that S(I’,id) is the space of constant functions. The relation
between &,(I', X) and L,(m, 2) is given by the next lemma.

LEmMmA 1. We have
Lo(m o+ 2, (14 1)) =y exp (= VZT0m + DO o7, 1)

L. (m, g(l + %)) = y ™ exp(—v/ = Im@F (1 %) .

For the proof of this lemma, see Hejhal [6] p. 383. The Hecke operator
on LX(I'\H) is defined by

T('al)F(z, ¢) = }; e, ) (e (2, ) -

This definition is compatible with the former one. Denote by tr (T'(I'al"); 1,)
the trace of T(I'al’) acting on L,(m, 2,). Put

(8) k(z,¢,z’,¢’)=@(’iy_—y72,—|z)exp( Fm(Arg(2F)+¢ ¢))

where ¥y = Im(2), ¥’ = Im (2’), and @ is the C*-class function from (0, )
to (0, o) such that
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0@ < Al + 1)=*

where ¢ > max{|m/2|, 1}, £=0,1,2,8,4, and A is a positive constant.
This integral kernel is a point pair invariant, i.e.

k(g'(z9 ¢)’ g.(zl’ ¢l)) = k(z, ¢’ 219 ¢/)

for all ge G. The eigenvalue of the integral operator
Fa §)—> [ M 6,2, $)FE, $)dzdy
T

is independent of the choice of elements in L,(m, 1). (For the consistency
with the notation of the work of Hejhal [6], the constant factor 1/2z is
multiplied.) The above integral vanishes when Fe L,(m’, ) and m #* m/.
We denote this eigenvalue by A(s(s — 1)) = A(r). Then the correspondence

between @ and 4 is given by the following equations (9)~(14) (See [6],
p. 386).

(9) A(s(s — 1)) exp (— v —Img)
-1 f KW =1, 6,2, §)y* exp(—v—=1Img)dzdg’ .
2r J B

o A — m/2
(10) Q) = [ 0w+ v (VL) e
oo v AL £ — m/2
where @’ is the derivative of @ and
(12) gu) = Q" + e —2)
(13) A(s(s — 1)) = h(r) = J‘O: g(w) exp (W —1ru)du .

So g(u) is represented by A(r):
(14) g(u) = 1 r hr) exp (—v —1ru)dr.
2 J-o

Now we describe the Selberg trace formula for modular correspondences
in the cocompact case. Let F(z, ¢) be an element of L,(m, 2), then

As(s — D)F(z, ) = Elf? j @ 6,2, IFE, $)d2dy .
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Thus
AT (Lol )F (2, ¢) = 2ln Jﬁ ; X(ozp)k(oz;l(z, o), 2, §HF(2, ¢’)dz’d¢'
___ 1 7 /7 / / / U4
- jw K(z, ¢, 2, §)F(, §)dz'dg

where K(z, ¢, 2, ¢) = X serar 2&(z, 6, 8, 4')).
Taking traces of both sides, we see that

S/ =T = 2 tr (T al); 2) = - j tr K (2, 4, 2, §)dzdg
7 27 Jma

=L suue) | ke e o)dedy
2r @& re\g

where [ ] is the conjugacy class of I'al’ with respect to I', and I'(g) is
the centralizer of g in I'. In the case that I" is not cocompact, the integral
of the right hand side diverges by the effect of continuous spectra. Hence
we must subtract this effect. For this purpose, we define the Eisenstein
series for each cusp of /'\H. Let &, #, ---, £, be the complete represen-
tatives of I'-inequivalent cusps of I'\H. We denote I', the stabilizer of
ky, and I = I', N kerX. Take o¢,¢ G such that ¢, 0 = g, satisfying the
following condition.

If &, is regular then I',, = 671,60, is generated by ((1) i) ’

If &, is irregular then I'., = ¢;' [0, is generated by (—(1) ___i) .
Define the Eisenstein series for #, i =1, ---, w) by

Efz, ¢;9) = o Im(o02)" exp (— my =1 (¢ + Argja;’e, 2))X(0)P;

= 3 Y exp(— mV/=1($ + Arg(cz + A (:0)P;.

sefa\erir ez + dff*

where ¢ = (‘cz 3) P, is defined by
21 S~ 1) if m is odd and r, is irregular,
r, =1

;=

A > AUg) otherwise,

r; ecTury
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where r; = [I";: I'?] and nel’; is chosen so that pmod (I"%)* should be a
generator of I',/(I"Y)* (c.f. Ishikawa [9]). Each Eisenstein series is mero-
morphically continued to the whole s-plane and satisfies a certain func-
tional equation. Put

H(z 6,2, §) =Zl— pIPITEH f W) Ee(z, 8), $)' B, &, 9)dr,
where the sum over «, is taken over all representatives of conjugacy
classes of I'al’ which fix cusps of I', and s = 1/2 + +/—1r.

LEMMA 2. The function K(z, ¢,2,¢) — H(z, ¢, 2, ¢') is bounded in
(2, 4,2, ¢)e I'\H x I'\H.

Proof. We must consider when both z and 2z’ approach to a I'-equiv-
alent cusp of I'\H. For simplicity, we assume that x, = oo is the regular
cusp of I', and 2, 2’ are in the neighborhood of k. Using Maass-Selberg
relation, we have

H(z 4,2, 8) = 5 X9 [" ) (5 Biaye, ;5 i . s)dr

= exp (—mv =16 — ) 2 K8 [ hr) (5 500 Py + 370u(o)

X {y,ﬁ“ tP1 + y7F &¢11(§})dr + O(l)
— oxp (= my =1, — ) 5 KV ode
I T

X P, 7 RO+ (ul) Ty + 01)

= exp (— mv—=1(¢; — ¢) 22 WV, 5, g logy, — log y)P, + O(1),
V]
where a;'z = x, + v =1y, ¢, = ¢ + argj(a;', 2), 2 = % + vV ~1¥, OQ) is
the Landau large O-symbol with respect to y,, y, — o0, and ¢,,(s) appears
in the constant term of the Fourier-Bessel expansion of the Eisenstein
series which will be defined and calculated in §6, Lemma 6. About
Kz, ¢,2,¢), we get
K(Z, ¢a 2/, ¢/)
= 2 Ugk(z, ¢, 8, ¢))
g&lall

= 2 rw) 51 ((§ 1)) S 9.2 + b+ it ) + 0.
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Using Euler-Maclaurin summation formula, we have
Sz ), 7 kv )

- %f: (W =1y, ¢), t + v =1y, ¢)dt + OQ1)

I N (‘Ly—yi)i) exp(m v =T (Arg (v, + 3 -+ ¥ =18) + ¢, — $))dt + O(1)

ri -

= rlmy—z exp (— my—1(g, — ¢))g (log 3, — logyy) + O(1).

Thus the lemma is proved.

Now we can write down the Selberg trace formula

(15) SRV =14 = 2) tr (T(Fal); 2,)
J
=1 (& 29 — HG ¢ 2 ¢)dzds.
2z I
So far, the validity of (15) is restricted by the condition on @. But we
can relax the corresponding condition on A(r) as:

(i) A(r) is analytic in the region |[Im(r)] < max((m|— 1)/2, 1/2))

(ii) A(r) = k(—T1)

(1) A(r) < AQ A+ |r)te
where A is some positive constant and ¢ is an arbitrary positive number.
This is because that T'(I'al’) is a bounded operator by the commensura-
bility of I" and al'a™* and hence the eigenvalues of T(I'al’) on L,(m, %)
are uniformly bounded with respect to 2.

The right hand side of (15) is evaluated by the method of the trun-
cated fundamental domain (see Kubota [10]). We shall give the brief
sketch of this classical method. Let V, be the neighborhood of k; such
that 7'V, ={ze HIm(2) > Y}, H* = H — U; U,cr0V,, and H* = H* X
T. First we study two integrals

(16) o | g 0 K 6 2, Pdzdy
1
= = Sue)| ke b8 $)dzdy
and
1
amn o ) e tr H(z, ¢, 2, ¢)dzd¢ .
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Cancelling log Y term and letting Y — oo, we can get the right hand side
of (15). To evaluate (16), we classify the conjugacy classes of I'al’ in
five types:
(1) Identity
(IT) Elliptic conjugacy classes
(IIT) Hyperbolic conjugacy classes which fix hyperbolic points of I
(V) Hyperbolic conjugacy classes which fix cusps of I'
(V) Parabolic conjugacy classes
The explicit evaluations of these classes will be given in §2-§86.

§2. Contributions from identity and elliptic conjugacy classes

These parts were calculated by Hejhal in the case of trace formula
for « = 1. See Hejhal [6], p. 389~p. 397. There is no change when we
treat our case.

(I) Identity

The contribution from the identity exists only when « € I" and is given
by

(18) J (1d) = vvol (I'\ H)D(0)
_ _vvol(I'\H) (~ g'(u) exp (—mu/2)

2r -« exp (u/2) — exp(—u/2)
__vvol(I'\H) (* sinh (2zr)
- 4 I - rh(r) cosh (2zr) + cos (zm) dr

L R R e T (L

4r 1ioad
1<i<|ml

(IL) Elliptic conjugacy classes
Let R be a representative of an elliptic conjugacy class of I'al.
Then
R~ (cosﬁ — sinﬁ)
sin 6 cosd
where ~ is the conjugation in SL.(R). In the case that I' contains —1,
we may assume that 0 <@ <z. But in our case, we can’t assume this.
First of all, we treat the case that 0 <4 <z. Then the contribution is

(19) V=1 tr Y(R) exp (W=1(m — 1)6)
44I'(R) sin 0

X j " g exp (<L—2.1_>u_) expu—exp2/—10 ;-

cosh u — cos 26
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Using (14) to write this integral in terms of A(r), we get; if m = 2N + 2

then
tr X(R) °° cosh 2r(z — ) + cosh 2ré
IRy = —=-~~ h
B = 13T (®) sind (J ") 1 + cosh 2zr ar+
S oV =T exp(W=1(m — 1 — 2DO)h [«/_—1 (’_’tﬂ)]) ,
1=0 2
if m = 2N + 1 then
_ truR) cosh 2r(x — 6) — cosh 2ré
I(R h dr
®) = 44T'(R)sin g ( ) cosh2zr — 1 +

— VZIRO) + ;;0 2/ =T exp 2V =1(N — o)h[v—=T(N — 1)]) .

We can remove the assumption of the range of 6, because the point pair
invariant function

— Rz
24/ —

changes its sign when we replace R with R~ in (8).

Arg( ) + 6 — (¢ + Argi(R, 2)

§3. Contribution from hyperbolic conjugacy classes which fix
hyperbolic points of I”

Let T be a hyperbolic element of I'al” which fix hyperbolic points of
I, such that

T~(’1 2_,) and [2]>1.

Let T, be the generator of I'(T) and 2, is the eigenvalﬁe of T, such that
[ > 1. Then the contribution of the hyperbolic conjugacy class repre-
sented by T is

— IZ _ lzzl im 92
I(T) = me < o )«/_— exp(—v —1m Arg (z — 23)) 2~ |1 ll
_ /T qm n B (1) VA —=D)x+ 1+ 29V =1 dady

V1" sgn f—wfx @< 2 <1+ 2)/{(1—22)x+(1+22)y«/jT}"‘ ¥

Substituting x by (4|y/(2* — 1))x and letting v = (2 — 1)}/#, we get

— son ™ log 22 [~ @(x2 Wo+14+ xv/—1" |4
sgn logloj‘_wd)(x +w){x/a)+4+x —p 22_1dx
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2
= sgn 4™ log 2} —Vllfz(logl) .

—1

§ 4. Contributions from hyperbolic conjugacy classes which fix
cusps of I”

Let T be a representative of a hyperbolic conjugacy class of I'al’
which fixes a cusp of I'. If one of the fixed points of T is a cusp of I,
then the other one is also a cusp of I'. In this case, we can see that
rry ={1}.

For simplicity, we assume that cusps, say &, and &k, are the fixed
points of 7. Let ¢ be an element of G such that ¢(k,) = o, ¢(k;) = 0 and

SDTSD_l = <2 Z—i) ’
where |A] > 1. Then the contribution is

—m m -1y PN\IA=Pxr+ 1+ 2yy =1 dxdy
V=17 sgn2 J ¢<m>@ < e <1+ y?)){(l —BDx+ A+ =1 2

where H* is defined in §1. We can neglect the integral over ooV,
(i #+ 1, 2), because it converges to zero when Y approaches to infinity. So
we can change the domain of integral o(H*) with H, = H — (A U B),
where A (resp. B) is the neighborhood of oo (resp. 0). We may choose ¢
so that the above properties hold and

A=¢V,={zeH|Im(z) > Y},
B=¢V,=1{zc HIm(z) > Y},

where ¢, = ((1) :), ze€ (@G, and z(c0) = 0, because we can replace ¢ by

(a a_l)go, where a € R.

Let B be the circle which passes 0 and is tangent to the real axis.
Denote by c(z) the (2, 1) element of r, which depends only on & and &,
The radius of B is 1/(2¢(r)*Y), which we denote by p. According to these
notations, the contribution is

—m - (X—1y A\ 1= BDx+ A+ 2y —1|™ dxdy
V=1 sgn 2 Jm@( pe <1+y2)/{(1—22)x+(1+22)y4/ji}”‘ 3 o

where o is the Landau symbol when Y— . From now on in this sec-
tion, we neglect o(1). Changing variables, we get
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s [0 (F= 0+ o)

2p8in 6
5 (A — ) cotfd + (1 + BV -1 rdrds
{@ — A)cotd + (1 + W —1}" r*sin’d

Y e L (2 — 1y PNV R 9 s Ui
V=1 Sg“f ( A SILE) T oy (g oW (T

X (21log Y|c(z)| + log (1 + t9))dt.
Let o = (1 — 2/, and replace ¢ by (|2]/(2* — 1))¢. Then

= sgn ™ (2log Y|c(z)| — lo co) O(o + tz),*/“’ +4+tv-1" 4
| ¢ 1f Wotd+ /1)
|4] sgn 2™ = 2 n Vo + 4 + t/— 1™
+ e log (0 + tHP(w + &) dt
-1 f~°° Vo +4+ /1)

_ 2|2|sgn 2”” Y|e(z)A|
2—-1 ( i — )Q< )

|2 sgn 2™ (= | ™ o Wo +4+ o/=1]" 4,
R I o8l + D+ D T

For the last integral, we need more calculation.

°°]_ AV z|«/(0+4+t\/._lmd
j— cglo+ D) (w+t){«/w+4+t«/‘“}’" :

i = N K

= LQLW jzg(u — &) Q)

U————%l e

-1 f Q@ + w)J(w)du

where

J(u) = Rejw2 log (w + ucosze)(*/w +4+ /- uwcosl?)’"dﬁ'
e Yu+o+4+ vucosé

Then

sinh? ++v -1 cosﬁ)"‘d0
cosh7 + sin ’

J(u) = Re r_/j/z log (w + ucos® 0)(

where 7 is the value which satisfies
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sinh7 — «/3;4’ coshy = YU j_co—i—zl

Let C, be the semicircular path from —+/—1 to ¥/ —1 which encircles the
origin anticlockwisely. C,, C,, C, C, is the line segment from —+/—1 to
—@+vV—1, —(@a—evV—1 to —ev/—1, e/—1 to (@ —e)¥/—1, and
(@ + ¢V =1 to ¥—1, where a = VoJu + 1 — VoJu, and ¢ is a sufficiently
small positive number. C; (resp. C;) is the anticlockwise semicircular path
from — (@ + vV —1 to —(a — )/ —1 (resp. (@ — )v—1 to (a + &)v/ —1)
whose center is — av'—1 (resp. av/—1). C, is the anticlockwise semicir-
cular path from —ev/—1 to e/ —1. We see that

sinh7 + v —1cosf _ v—1¢ — e/-1e
cosh7? + sin @ NV —1e +e'1e’

Thus

s = e [, 108 o+ u( 257V [P0 1 2

The integrals of the same function over C,, C, tend to 0, when ¢— 0.
Hence by Cauchy’s theorem, we get

Jotos o - () e 2 o5

s g g A A

[eelo e ([T

-1 2 W —1e" — z]™ dz
togfo +u(H7) |+ =) 52 S
+ [, (g0 + u(27 o+ V=17
—1e" — z]™ dz
toefo +u(*47) | + 1) [f57
+J‘0‘(og~w—{-u tr —1e + 2 -1z
) z+z ‘>2W _ /——> v—le’——z]"‘ dz
+jas(log_w+u( 2 | vV —1e" + 21 V/—1z
\? e —z dz
togfo + (5 | [7=5 2] 5 o,
+LBng+u le" + 2z —1z+0()
where o(1) is the Landau symbol when ¢— 0. In the above formula, the
branch of the logarithm in the region enclosed by C, (i =1,2, .-, 8) is

taken so that the value on C, is real. Considering real parts of both
sides, we see
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o =eref e

+ Rej (1og [a) + u(zjiz,z,ll )2] + m/ti) [%i:_;z]m N/_&iig
— 7 Re ICB [;e;z] dzz + 0(1)

v—1e + z
On the path C;, we have
v-—le’—z]"‘
Yo TA =14
[v—le’—i—z o),

as ¢e— 0. Thus we can deduce that

J(u) = nReJ_e [E’:_y_]”ﬂ _ nRej“[i“_y]“gly.

—ale’ 4yl oy cle+yl y
N[V —1e — z|™ dz
Re [, tog o+ (=) | |75 2] 5L o
e Csogw—l-u 2 —1e + 2 —lz+o()

From the estimation

Y_=1 —-1,- 47,
log[a) + U(Ee Y +2E e 10)2] =logu — logd — 2loge — 2/ —16 + o(¢?),

we get

J(w) = -nReﬁK—e: +y)"‘ — 1]& _ nRefKe:;y)“ — 1]311
e —y y ol\e" +y y

+ a(logu — log4 — 2loga).

By the straight forward calculation, we get

(20) J'(u) = o + 4 ] .
Vu+ o+ 4vu + oWu + o + Vo)

The contribution from this conjugacy class is given by,

E%ﬂ}lﬁ <ch(r)21)Q() Mign_l, I Qo + wJwdu .

We will see that the log Y terms cancel out with those of (17) in §86.
Using (20), we have the result.

TueorEM 1. Let T be a hyperbolic element of I'al’ which fixes cusps
of I', and 2, 7' be its eigen values where |2] > 1. Then the contribution
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from the conjugacy class of T is given by

2|4 i

21715802 Jiog (c(e)Deg(2 1og | 2)

e"?|A] — 1

— - mu/2 -m —-mu/2 m
[, swlEria= + emeriap — 2 T

— et e-u/z] du ] ,
eu/Z . e—u/z + ‘zl ___ IR’-l

where c(z) is defined as above.

§5. Contribution from parabolic conjugacy classes
Put B, = {gel'al’|gk; = k,, |trg| = 2}, then

B, = e[, (finite disjoint union).
3

Each element g€ B; can be written in the form

1 U(g))o.i—l ,

g§= S(g)at(o 1

where s(g) = + 1, v(g) e R. We may assume that v(a,)<c[0,1). We con-
sider the sum

(21 o X ke | ke b 8@ $)dadg,

2 géauls
where >/ is the summation which avoids g = 1. Put

exp (27 —18,,)
X(er,)s(e, )™ ~ ( Ce ) ,
exp (2zv/ —18,,)

exp 22V —1¢)
Un)s™ ~ ( '

Cexp(2rV/—18) ) ,

where 7 is a generator of I';, Then

21) = Z‘ lim U: ﬁ ;Z’ exp @V —1(nk; + B,.)

7=1 Y=o

X @ ({n + U((xy)}z)e- Y=1mArg{2y+ v=1(n+v(ay)} dxdy] .
¥ ¥’

So we study the next integral
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1¢,0) = [ 5 exp @av =1y (M L )em Fmsceirs s &
0 nez y* y*

(n+v)/Y _— — du
— v J exp (2nv — 1 n)P(ut)e- vTimarses T QU
nezZ

(n+v)c0 —n—U
As { can be written in the form ¢/r, (¢=0,1,---,r, — 1), we replace n
by nri +k(k=0,1, ---, r). Then
ri—1 (nri+k+v)/Y J— —
1€, v) = 35 exp (2ey =12 e [0 g upem mansie B,
k=0 r; / n€Z J (nri+k+v)e —nri—k—v

where > * runs over all neZ except n =k =v=0. We put

® [ du
d) = —_—
J(d) n;I(nfi+d)/Y$(u) nr, +d’

E(u) — @(uz)e— V=ImATgQ2+ V=1

Then we can see that

1G, ) = 5 exp e/ = 1H0) (9 +v)+ T=F=0)+ak=v=0)| . Ewdu)
where

5=5(k=v=0)={0 if k=v=0
1 otherwise

LemMma 3. We have

©

r o
721 A “+ rn f(A-H'n)/Y S(u)du

- (— % 1+ Alr) + log(Y/r)) f “swdu + f:E(u) log (wdu + o(1)

as Y— oo,

To prove this, we use the Euler-Maclaurin summation formula. (See
Kubota [10], p. 103~104). Using this lemma, we get

It = [ (= L+ EEY) + 108 (rZ)) ["ewau + [ ewog waul

r I r,
+ o(1) .

Hence we see

izl glx 2SY4

I(g, v)=k§—

[z Re f: £(w) log (Wdu

r;
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+( Z;/(l_i_k‘l"v)__f_/(l—lfii’>+k+v+210g )Ref &(w)du

r, r r;
I’ k+v\ , I" k+v or
(= () () + ) wan].
+ r + r; +F r; +k+v mOE(u)u
By the property of digamma function, we have
ﬂCOt*(M>=—£(l+k+v>+£_/_(l_k+v)_|_ or;
r; Z-' ri F r; k + U
where
cot* (x) = {COt (%) for x = 0 (mod =)
0 for x =0 (mod r)

LEmMmA 4. We have
fm dj(uZ)e-m VT1Arg 2+ v=1u) du
0
g(0) — J g(w) exp( ; 1 u)( et — 1 )du.

coshu — 1

E
5.

LEMMA We have

Re | 0(u) log (we~ e+ i g
0

— (= 2 — log 4)2(0) + h(0)/2 — _l_r h(r)%,(l + v =Irdr
e I

R

where 7 is the Euler constant.

For the proof of these lemmas, see Hejhal {6] p. 399 ~p. 400, p. 407 ~
p. 411.

Using these facts, we have

16 =35, ehzf - U , sinél?l(l(tl)t/2) (1 ~ cosh (”;_u))du

+ (— 2r — log 9g(0) + A0)/2 — = j h(r) *a + v =Indr

+< F/(1+k+v)_]"(1_k+v)+k5_r: + 21og )g(O)

r r; r r;
R M W
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As the log Y term will cancel out with that of (16) in §6, we have

TuEOREM 2. The notation being as above, the contribution from para-

bolic conjugacy classes of I'al’ is given by

2. X3, exp 2nV=18,)I(C,, v(a)) — (log ¥ term)

P

= 5% Nexn eV =1g,)| - {1 +1og2+§(74<1+ v(at,))

I — iy — 200 =Y\ ) 4 HO)
-+ 7 ( U(Of,u)) U( 0(,,) )}g(O) + 4
_ 51* (r)%(l + ¥V =1ndr

V=1, - m-1,)( &1
- cot* (zv(e,)) J_m 8(w) exp ( 2 u) ( coshu — 1)du

f 0 s1ngi1(l(tz)t/2) ( COSh< 2 ) ) du]

LEmpEe et (I (1 ok vla)

i=1 !:516 0 2r; T Ty
f'( k—{—v(a)) 5(k=v(a)=0)ri)
- 1— £ I 0
r r; + k 4+ vle,) £0)
V-1 ( k—]—v(o:))J'“’ <m—1 )( et —1
_ t* 2
2 corr r _mg(u) exp 2 “ coshu — 1

where

() = {0 when the inner statement is true
1  otherwise.

o

Proof. Classify the summation according to ;=0 or {, #0. If g,

= 0 then we may replace r, with 1 throughout our arguments.

Remark. This result agrees with the parabolic part of Theorem 6.3
of Hejhal [6] p. 412 in the case that « € I". To see this, we should notice

:Z: cos (2zwk/r) % (R/r) =1 + rlog (2 sin (zw/r))

and

gsin (2rwk/r) —f,—/(k/r) = 2w — 1/2).
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§ 6. Contribution from H(z, ¢, 2, ¢')

Finally, we will calculate the integral (17). To do this, we must know
the constant term of the Fourier-Bessel expansion of E;(z,$;s) and
Fy(z, ¢;s) where

Fyz, ¢;5) = 2. Ma)Ea; (2, ¢); ) .
I3
Denote I'.,; = ¢;'1",0;,. This definition depends only on the regularity of
t;. Then E,; (6,2, ¢);s) and Fyo,2, ¢);s) is invariant under the motion

z— 2z + 2r,. (We must consider the case that m is odd and g, is irregular).
Put

Ei(a/(z, ¢); 8) = E;((z, ¢; s) exp(— mv/ —19),
Fio(z ¢);8) = F,(2, ¢;8) exp(— mv —1¢) .
Then we can expand
27y —1nx )
2r; ’

Fifz ¢;8) = ,§z ba(y, s) exp (%@) .

(3

Ei(z ¢;8) = %lz a.(y, s) exp (

LEMMA 6. We have

aO(y’ 3) = 5iijPi + %;(3)3’1_8 s
where

: = 1"/ 7 F(S)F(s —1/2) sgn Cme—l 1P,
@4y(s) v ﬂp(s + m/2)I'(s — m/[2) rerw,[,z\aé";,—;f]w,/rw,, |cf ~P " o;zr07)P,
=|log 4 ¢#0

and by(y, s) = w,(s)y’ + o¥(s)y*~*,

where sgn d™

r€le o7 Wa—1ro; |d[*
= ¥

w;(s) = X oo YP;,

and Y s T 'l —1/2)
Pi(s) =V 1"/ = T's + m2) (s — mj2)
sgnc™

e I ey el

X

PXo;za7")P;.
=|e 4

Now we calculate the contribution

(22) L | hFG 4.9 Bz . s)drdeds
87t imnJna* ) -
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Using the Maass-Selberg type relation for this case, we get
1 V(o A
(23) —2; jr\ﬂ* Fi(z’ ¢9 S)Ei(z, ¢’3 S)d2d¢

= lim 3 [ Wi(8) 0, P2 Y1 — () ‘pugs) Y1 ]

o=1/2 =1 20 — 1

. @ t 2V-1r __ % ()t P Y—2~/T-Tr

1 [w,,(s) Pi(8) Y ORI ] 1),
+ Hm 2 2/ —1r o)

where s = ¢ + 4/ —1r, and o-symbol is for ¥ — oo.
From the same formula, we can see

(24) w“( + x/—x) Zgoij(; + x/:_lx)‘go,,(—lz— + «/:—lx),

k(%) = z w4, (%) ‘i) ,

for xe R. The first part of (23) is
lim Z [wu(s) G, P Y — 0k() ()Y 2"]

0—1/2 j=1 20' - 1
= lim [wu(s)(YZ"_1 — Y (wils) — 20 ¢¥(8) 'eiss)) Y‘—ZV]
a=1/2 20 — 1 20 — 1

= 21log Yw,,(% + v—lr)

1
Y

i Me

—aa—-(w”(s)ﬁij — p¥(s) z%g(s))laul/z .
Thus the contribution from the first part of (23) is

1 ° 1

—log Yj h(r)wq, (— + ——lr)dr

2r —c 2

5| i@, — 656) G msn |ar
T J-w =1l go

Notice the fact

dt = zf(0).

[ ror

This integral is considered as Cauchy’s principal value. For the second
part of (23), we have
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_1__ “ wi](s)Pi ¢t](s) YZ'/—T SDZJ(S) 51] Y 1/<1r
S| ot Ja

where o is for ¢ — 1/2. Combining these results to obtain

an = logY
2r

% 28 @log (4,0 B 1P

u
) < *(1)
+—4 i;trgoﬁ )

+ ?];r* J“’:m h(r) trijél [% (wij(s)5ij SDU(S) $0zj(3))|a 1/2]
Define (0 X v) X (0 X v) matrices W(s), ¥(s), T*(s) by
W(s) = (w,(9)), T(s) = (pi8)), T*(s) = (p(s)) -

From the analogous relations to (24), we see

(25) T2 + V=1 T2 + V=1r) = (G,,P)

(26) T2 + V=1InTQ/2 + V—1r) = W(1/2 + v —11).
By Liouville’s theorem and (26), we obtain

(27) W(S¥(s) = T*(s),

for all seC. Let h =¢ — 1/2 and,
W(s) = A + Bh + o(h?)
U(s) = C + Dh + o(h?
U*(s) = C, + Dih + o(h?),
as h — 0. Then from (25), (26) and (27), we get
AC=C, AD+ BC=D,, C'C=(@,P).

Using these facts, we have

Z e (8)3e; — ¢1(5) 01,()

" = tr (W(s) — U*¥)
= — htr (A(D‘C + C*D)) + o(h?).
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Finally we have
(19) = 18T 515 galog d, ) SE D" tr (1(a,) P}
271' i=1 p Id#l
1

+ M0 St (5)

1 co
- ‘87[_@ h(r) tr [W(1/z+f——1r)

X (@124 V=INT A2+ = 1r)+T(1/2++/ —1r) *w'(1/2+vt—1r))]dr.

Considering the conjugacy classes of I'awl’ with respect to I" which fix
cusps of I' precisely, we see that all log Y terms cancel out in (15).

Especially in the case (IV), there is a certain difference between the
element which fix equivalent cusps and the one which fix inequivalent
cusps.

TaeOREM 3. The contribution from H(z, $, 2/, ¢') is given by

Pev()e3)

'4% f_" A te [WQAJ2 + V=112 + V=1¥ /2 — ¥ =1r)]dr.

Notice that this contribution appears with the opposite sign in (15).

Remark. The above results are also valid when I’ contains — 1.
Because each step of the computation is almost the same, we don’t repeat
it. But in the next section we consider, as an example, the case I' = I'(p)
and write down the terms of §4-8§6 as explicitly as possible.

§7. The case I' = I'(p)
We assume that " = I'(p), p a prime, and consider a double coset

B= r(L(l °)>r for DeZ, D> 0and (D,p) = 1. Let % be a Dirichlet

vD\o D
character mod p such that 2(— 1) = (— 1)™. We also assume for simplicity
that X is non-trivial. We put X(g) = X(d) for g = J:(“ b) € B. We take
vD\cd
1 (0 -1
g, =1 and ¢r=—_( )
Vo \p o
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(i) Parabolic conjugacy classes

Parabolic conjugacy classes exist only when D is a square. We put
a = +D e€Z. Then the complete representatives of parabolic conjugacy
classes are

P, UP,,

where P_,={g € B|g is parabolic and goo=oco}= {i ((1) b/la) |beZ, (a, b)=1}

and P, = ¢,P,0;'. Hence in the notation of §4, we have p = bfa, { =0
and r, = 1. Noting that I' contains —1, we get the parabolic contribution
as

2a)” >, 80)1og ¥ + J(P) + o(1)

(a,b)=1
where

@) IP) =20 3 {-20 (%(b/oo +7+log2) + %h«»

<b<
(a,b)=1

- 217 f " h(r)w;—,(l + v =Irdr + fisi—i:lu()ﬂﬂ(l — cosh(ﬂzﬁ»du}.

(ii) Hyperbolic conjugacy classes which fix cusps of I

Let H be the set of all hyperbolic elements in B which fix cusps of
I'. Let g be an element of H and 7, 7, be the fixed points of g. By the
assumption, 7, and 7, are cusps of I'. The following three cases occur:

PYo~Pp~00, p~n~0 and 5 ~ o0, 5,~0.

For £ = oo or 0, we put H, = {ge H|gr = £}. First we consider H.. We
can easily see that the representatives of conjugacy classes H./~ are
given by %, U %, where

%={+ 1 (a b) ad =D, a#+d, a>0, (a,b,d)=1,bmod|a—d|}
" UTVD\0 d/l(a — d)jb,a — d) = 0mod p

and

1 fab
am (e fole )
: vD\od
One remark is necessary for #,. For each g =

l(db'
vVD\0 a

ad =D, a+d, a>0, (a,b,d) =1, bmod[a—dl}/’v.
(@ — d)/(b,a — d) =0modp

7500 4

) with the same condition

) with the above

condition, there exists a unique g =
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such that g ~ g’. Therefore we identify g and g’.

Let T = _lt(a b) be an element of %, (resp. %#,). Then the fixed
VvD\0d

points of T are 7, = oo and 7, = b/(d — a) ~ 0 (resp. ). In the notation
of §4, we have

= <(1) —;72) and c(zr) = ix/ﬁﬁ (resp. iﬁ)'

Since o,l'0;! = I', the contribution from the classes in H, is the same
from the classes in H,. Summing up, the contribution from H/ ~ is given

by
2/D 3, (@) + 1)) LD g(w) og Y + JH) + o)
where
(29) JE) = D 3, o) + 2 ) XL DG, m)
2432 (e, d)
1 — a—d \?
+ — dg(wo)0<b§z—d10g (N/D m) } ,
(a,b,d)=1
with
N cosh (u/2)
(30) Ga.a(m) = f w® (”)[ sinh (z/2) + sinh (w,/2)
n (1 — cosh (v — wy)m/2) sinh (v + wo)/Z)] du
(sinh (z/2))* — (sinh (w,/2))* ’
and

w, = log (a/d) .

(iii) Eisenstein part
The constant term of the Fourier expansion of Eisenstein series is
determined in [6] Chapter 11, §4 and [12], i.e.

Pooyo = Qo0 =0,
(31) ooy = (V=D T — 1/2) L2s — 1, 1)
=T PTG + mDIs —mf2)  L(s, %)
(32) oo = V1"V LI — 1/2) L2s —L%)

pl'(s + m/2)['(s — m/2) L(2s, %)
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We can see easily that w., , = w,. = 0 and

_ p s ol d) xud)!
woo,oo(s) D;‘;Z::D (a d) dx-t ’

s 9la, d) Xa)™!
DagZD ( d) a2t :

Wo,o(8) =

We have, by (31), (32) and the functional equation of L and digamma
functions, that

ai log p.(1/2 + v —1r)
g

ctsi (5 ) < £ ()
- z{% 1 —2/—1r, 0 + %’(1 + oy —1r, 7'()}

and

%log%w(lﬂ + 4/ =1r)
g

_ I’ (14+m ) I’ (1 +m )
=1 H__( v=ir) - L~ _v=i
og (z*/p°) T g T )= F 2 r
_ 2{%(1 — o/ TIr D) + %(1 +2/=1r, )
Using these facts, we get a contribution from Eisenstein series as

VD log ¥ 33 #@ D) 1(a) " + 1)z log (afa)) + J(C) + o),

where

(33) J(C) = — 4_1n f " k) [ww(l/2 +/=1r) Re£ log p.y(1/2-++/—=1r)

+ wy(1/24++ —1r) Re ;— log 0o (1/24++ — lr)]dr .
o

__+vD ([ ol(a, d) 47y . -
—’Wf_mh(")[a%p ) ofd) | [10g ()

L) - £ (g )

—2L (1-2J—rx)_2£(1+2f—r X)]dr
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To state the theorem, put
(34) JE)= 2, IR

[R]: elliptic
(35) J(h) = [TZ] I(T)

where the last summation is over hyperbolic conjugacy classes which fix
hyperbolic points of 7.

THEOREM 4. Under the notations of (18), (28), (29), (33), (34), and (35),

the following Selberg trace formula holds for B = I «/lD ( (1) B)F

(36) S AV —=1/4 = 2) tr (T(B); 2,
J
= J(id) + J(—id) 4+ J(E) + J(h) + J(H) + J(P) — J(C).
In the rest of this paper, we will treat the functional equation of the
Selberg type zeta function for a double coset. Although we can derive it
for general Fuchsian group I', we restrict ourselves to the group I'y(p)

since we can describe the Eisenstein part by the Dirichlet L-function.
For G, 4(m), we have

LemMA 7. Let m be an integer. Suppose that there is a constant A > 0
such that g(u) = O(e **) for u — . Then we have

m—1 Y1r 1
Ga.a(m) — G o(m — 2) = j hir )< ) rt + ((m — 1)/2)* ar

e — pn(m L) (2)

Proof. By (30), we have
Go.o(m) — Go.olm — 2) = J‘m g(w) (eWD@=-w0u-m _ pu/m@-wim-1)dqy

= Jwg(u + wo)eu(l-m)ﬂdu _fw g(u + wo)e“""“”“du.
0 - 00

We denote the former integral by g,(m) and the latter one by g,(m). To
express these integrals by A(r), we consider m as a complex variable.
Firstly we assume that Re (m) > 1. Substituting (14) and interchanging
the integrals, we have

- _ _i o e~ YZIrwe
(37) am) = — o 7wy o
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The function g(m), defined by (37) for Re(m)>1, can be continued
meromorphically over the line Re (m) = 1 and for Re(m) < 1,

. 1 (= e~ V=irwe m—1
=——| =& d h(_-F— 1) wom-1/2
&i(m) 2 J L A—mpz—-v=1r " + 2 ¢

Similarly we have

- 1 ( e~ Y=Trwo
38 =——1 &
(38) &:(m) D Do = o
for Re(m) < 1. When (38) is continued to the region such that Re (m)>1,
we have
e~ Y=1rwo

gZ(m) = _’LJ‘M dr + h( m,\/__> wo(l m)/Z
2r J-=

)(m —1)/2 — /=1r

Hence we get the lemma.
Now we define the Selberg type zeta function.

DeriniTiON. The Selberg type zeta function 3z(e) with respect to a
double coset B is defined by

(39) 35(a) = Z (sgn T)"U(T) log (3) 5-o

3] 61/2 — 5 1/2

Here the summation runs over the hyperbolic conjugacy classes of B/{+ 1}
which fix hyperbolic points of I'. If T and T, are as in §2, then § = 2*

and 0, = A3
THEOREM 5. Let B = F( N} ((1) DO)>F, D a positive integer which is
prime to p. Then 3z(a) satisfies the following functional equation
— MO Gula) + tu(— )
— — D (p + Dz sin (2za)
D) 6 cos 2za) + (— )™
X(R) Ccos (7C _ 20)“ (if m is even)
by #I'(R) sin @ cos ma
2 (7] XR) sin (r — 20)a

(if m is odd)

#I'(R) sin 6 sin ra
— 2D T L (blvD) + 2/ D) p(v/D) (og 2 — 1)

b 4/D)=1
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Do/ flog® — 27y — 2 I (—
+ 2(/D) ga(«/D){log;; 2L -2 17 ’201)
—La — 9, %) —Jla + 2, x)—fia — %, %) —%(1 + %, Z)}

+D 2 (@ + 1)) [F TG Guaaler) = Gumse)

(a, d)
+ cosh (awo)(log—s - %(i;;}’ + “) - I['—,(sm ;_ : - a))}
+ —C(%ﬂ’_—“g’;—’Q;?log(«/p ‘“:%d“b)“ﬂ

~ VD gizzp%)l{(x(d)-‘(%) + 10 (D)) (Ea - 20,0 +

¥ %((1-\-204, z>)+(x(d)-’(§—)_“+ x(@*‘(%)_“)(%a +2a,X)+%(1—2oz,7())}

where
1 if D=1
3D ={
(D) 0 ifD>1,
. ___{1 if mis odd
" 0 if m is even,

= log (a/d) for each a, b
and, for Re (@) > 0, Gq.q..(cn) are defined by

% cosh (u/2)
Ga.0.(0) = jwo sinh (u/2) + sinh (w,/2)
e—-au
Gu,a..(1) = cosh (wy/2) J wo sinh (u/2) + s1nh(wo/2)

Also (/D) and ¢(4/D) should be considered to be zero if /D is not an
integer.

Proof. We select the Selberg kernel for A(r) in the trace formula.
Namely we put
1 1

D= g~ g Re@ Re®>0.

Its Fourier transform is given by

1 —alu)] 1
= —8e —_—
£.u) 20 28

e-blul
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Hence the hyperbolic term which fix hyperbolic points of I' reduces to
(1/20)X(D)"*35(e). Each term of the right hand side of (36) is easily seen
to be continued analytically to the whole complex plane (with respect to
the variable «). Since the left hand side of (36) is uniformly convergent

on any compact set not containing any ++/1/4 + 2,, it is unchanged if we
substitute — « for a.
Therefore we have

— L UD)Ga@) + 3x(— @)
2a

= J,(xid) — J_,(Fid) — J(E) — J_(E) + J(H) — J_(H)
+ JU(P) — J_(P) — J(C) + J_(C).

We put
1 3 m—1 . )
£
o 1P e T @ =@ Ta—(m—ppr
m\&) =
2 4 m—1 . .
a2—12+a2-—22+ +oc2——((m—1)/2)2 nmiso

Identity, elliptic and parabolic terms can be calculated as follows:

. o (p + Dr sin (2ra)
J(F1d) — J_, (£ id) 3(D) 6 cos 2ra) + (— 1™

UR) cos (r — 20)x
oz #I'(R) sin 6 cos e

JH(E) - J-a(E) - "27“' & x(R) sin (7[ — 20)0(
#I'(R) sin 6 sin ro

T(P) = Iy = 2D 35 {= (LD + 7+ log2) — (@)

(b, vD) =1
_ 1 L’(e_m ) F'(i@_ ))}
2a<f' 2 te)t e~
where ¢, is defined as above (c.f. Hejhal [6] pp. 430-444). We consider

J(H). We ignore the p-term in A(r) or g(u) for a while. By Lemma 7,
we have

?

if m is even

if m is odd

_ _ _ e—awn m — 1
Ga.am) = Goalm — 2) = = = D2y

1 5 e
- ’Q‘o‘;Ga,d,a(sm) 2C¥ fm(a)'
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~

Clearly G, s, .(c.) can be continued to the whole a-plane as a meromorphic
function. Hence we have

JAHD = J_(H) = VD %, (@) + 1)) [# L G o)

~Gag-olen) — SO £ )
4

cosh (awy) — a—d
e da 528 (‘/p (@ —d, b))] '

Next we consider J,(C). We also ignore the B-term in the following
formula. By the residue theorem, we have, for Re(a) > 0,

e O e

+ o(+/D) X(‘/D)'lr h(r) (2(1 —2¢/=1r,%) +£(1+ 24/ —1r, 7)>d"
x - L L

_ 4D 5 9@ D) gyt e i
i e AR O {10 z

EE e R g

+ VD Z SD((a, d)) {jimh(r)(x(d)-a(a/d)Jﬂr +X(a)“(d/a)“‘—")

7 oz (@, d)

% (%(1 — 2y =1 + %/—(1 + 2y =Tr, z))dr} .

These integrals can be continued meromorphically to the whole a-plane
with a simple pole at « = 0.

Therefore

10101~ ~SDD” o (e ()

_¥D >, v((a, @) @)~ + %(d)"?) cosh (awy)
@ =2 (o, d)

< floe 5= (F(57 ) + 5757 =)

oW'D) ye rin-1( Ly L L _ogn+L 7
+#9D) y(yp) (L(l 20, )+ L1+ 20,0+ 21— 20+ Et 26, x))

4D 5 50 D (3) o (2)) (e -

a gz=r (o, d)
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/ -a -a
+ 501 + 20, 70) + (X(d)"(i) + x(a)-l(i) )
L d a

x (%'(1 ¥ 20,1) + %(1 — %, Z))}.

Because
_ZZ m+1 ) F’(m+1_ )z_li(em—l-l ) _Il(e,,,-\—l_ )__
F( 5 +a _|_[' _.__2 o I ——————2 +0[+2 ——“2 44 fm(“)’

we get the Theorem.

Remark. Let m =1 and consider the space L,(1, — 1/4). It is iso-
morphic to the space S(I’,X) by Lemma 1. We also empoly the Selberg

kernel for A(r). After multiplying the trace formula for B = F%(é g)F

by «, take the residue at « = 0. Then we get

_ 14y = 1D Wl uB)
b 7B, — 1/ = KO Ressa(e) + 1D Y- 1 B D

01 01
the different conjugacy classes. Hence tr T(B, —1/4) = (X(D)"!/2) Res 35().
a=0

The last sum is equal to zero, because R and <—1 O)R(“l 0) belong to
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