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1. Introduction

Throughout this paper, k is an algebraically closed field of characteristic zero, A
1 and P

1

are the affine line and projective line respectively (both over k). If U is an irreducible alge-
braic variety over k, then we write k[U ], k(U) and Bir(U) for its ring (k-algebra) of regu-
lar functions, the field of rational functions and the group of birational k-automorphisms
respectively.

The following definition was inspired by the classical theorem of Jordan about finite
subgroups of general linear groups.

Definition 1.1 (Popov [3, Definition 2.1]). A group B is called a Jordan group
if there exists a positive integer JB such that every finite subgroup B1 of B contains a
normal commutative subgroup, whose index in B1 is at most JB .

Popov [3, § 2] posed the question of whether Bir(Y ) is a Jordan group when Y is an
irreducible surface. He obtained a positive answer to his question for almost all surfaces.
(The case of rational surfaces was done earlier by J.-P. Serre.) One of the few remaining
cases is a product E × P

1 of an elliptic curve E and the projective line.
Our main result is the following statement, which gives a negative answer to Popov’s

question.
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Theorem 1.2. If E is an elliptic curve over k, then Bir(E×P
1) is not a Jordan group.

Since U × A
1 is birationally isomorphic to U × P

1, the groups Bir(U × A
1) and

Bir(U × P
1) are isomorphic and Theorem 1.2 becomes equivalent to the assertion that

Bir(E × A
1) is not a Jordan group, which, in turn, is a special case of the following

statement.

Theorem 1.3. Let X be an abelian variety of positive dimension over k. Then
Bir(X × A

1) is not a Jordan group.

Corollary 1.4. Let X be an abelian variety of positive dimension over k and Z be a
rational variety of positive dimension over k. Then Bir(X × Z) is not a Jordan group.

Proof of Corollary 1.4 (modulo Theorem 1.3). Since Z is birationally isomorphic
to the d-dimensional affine space A

d with d = dim(Z) � 1, the groups Bir(X × Z) and
Bir(X×A

d) are isomorphic. So, it suffices to check that Bir(X×A
d) is not a Jordan group.

If d = 1, the result follows from Theorem 1.3. If d > 1, then X×A
d = (X×A

1)×A
d−1 and

one may view Bir(X×A
1) as the certain subgroup of Bir(X×A

d), and again Theorem 1.3
gives us the desired result. �

The paper is organized as follows. Section 2 deals with the certain subgroup Bir1(X ×
A

1) of Bir(E×A
1) that is generated by translations on X and multiplications of the global

coordinate t on A
1 by non-zero rational functions on X. We assert that Bir1(X × A

1) is
not a Jordan group; obviously, this assertion implies that Bir(X×A

1) is also not a Jordan
group. In § 3 we discuss a symplectic geometry related to certain analogues of Heisenberg
groups that were introduced by Mumford [1, § 1]. In § 4, using results of Mumford [1, § 1],
we realize these analogues as subgroups of Bir1(X × A

1), which allows us to prove that
Bir1(X × A

1) is not a Jordan group.

2. Birational automorphisms of products of an abelian variety and
the affine line

Let X be an abelian variety of positive dimension over k. If y ∈ X(k), then we write Ty

for the translation map

Ty : X → X, x �→ x + y.

As usual, we write div(f) for the divisor of a rational function f ∈ k(X)∗. Clearly, T ∗
y f

is the rational function x �→ f(x + y), whose divisor coincides with T ∗
y (div(f)). Let t be

the global coordinate on A
1.

We write Bir1(X × A
1) ⊂ Bir(X × A

1) for the set of birational automorphisms of the
form

A(y, f) : X × A
1 ��� X × A

1, (x, t) �→ (x + y, f(x) · t) = (Ty(x), f(x) · t),

https://doi.org/10.1017/S0013091513000862 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000862


Theta groups 301

where y runs through X(k), and f through k(X)∗. Actually, Bir1(X × A
1) is a subgroup

of Bir(X × A
1). Indeed, one may easily check that

A(y2, f2)A(y1, f1) = A(y1 + y2, T
∗
y1

(f2) · f1) ∈ Bir1(X × A
1)

and that the inverse of A(y, f) in Bir(X×A
1) coincides with A(−y, T ∗

−y(1/f)) ∈ Bir1(X×
A

1).
Now Theorem 1.3 becomes an immediate corollary of the following statement.

Theorem 2.1. Let X be an abelian variety of positive dimension over k. Then
Bir1(X × A

1) is not a Jordan group.

We prove Theorem 2.1 in § 4.

3. Group theory

Let K be a finite commutative group. Let K̂ := Hom(K, k∗) be the group of characters
of K. We write the group law on K additively and on K̂ multiplicatively. In particular,
we write 1 for the trivial character of K. Clearly, the groups K and K̂ are isomorphic
(non-canonically); in particular, they have the same order, which we denote by N = NK .

Let µN ⊂ k∗ be the (sub)group of Nth roots of unity. Clearly, for every non-zero
x ∈ K there exists � ∈ K̂ with �(x) �= 1. On the other hand,

Nx = 0, �(x) ∈ µN , ∀x ∈ K, � ∈ K̂.

Let us consider the commutative finite group HK = K × K̂ and the non-degenerate
alternating bi-additive form

eK : HK × HK → k∗, ((x, �), (x′, �′)) �→ �′(x)/�(x′).

Clearly, all the values of eK lie in µN .
Let E be an isotropic subgroup of HK with respect to eK . Let E⊥ be the orthogonal

complement of E in HK with respect to eK . Then E ⊂ E⊥ and the non-degeneracy of
eK gives rise to a group isomorphism

HK/E⊥ ∼= Hom(E, k∗) = Ê.

In particular, E and HK/E⊥ have the same order. The inclusions E ⊂ E⊥ ⊂ HK imply
that

#(E)2 = #(E) · #(HK/E⊥)

divides #(HK) = N2 and therefore #(E) divides N . Since

N2 = #(HK) = #(E) · #(HK/E),

the index of E in HK is divisible by N . This means that the index of every isotropic
subgroup in HK is divisible by N and therefore is greater than or equal to N .
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Following [1, § 1], let us consider the set

GK = k∗ × HK = k∗ × K × K̂,

and introduce on it the group structure by defining the product

(a, x, �)(a′, x′, �′) := (aa′�′(x), x + x′, ��′).

One may naturally identify k∗ with the central subgroup {(a, 0,1) | a ∈ k∗}. In fact, GK

sits in the short exact sequence

0 → k∗ → GK
π−→ HK → 0,

where π : GK � HK sends (a, x, �) to (x, �). One may easily check that if g, g′ ∈ GK ,
then

gg′g−1g′−1 = eK(π(g), π(g′)) ∈ k∗ ⊂ GK .

It follows that a subgroup Ẽ ⊂ GK is commutative if and only if its image π(Ẽ) is an
isotropic subgroup in HK ; if this is the case, then the index of π(Ẽ) in HK is greater
than or equal to N = NK .

Clearly, the subset

G
1
K = µN × HK = µN × K × K̂ ⊂ GK

is actually a subgroup of GK . We have π(G1
K) = HK . Therefore, if Ẽ is a commutative

subgroup in G1
K , then the index of π(Ẽ) in HK = π(G1

K) is greater than or equal to
N = NK . This implies that index of Ẽ in G1

K is also greater than or equal to N = NK .

4. Mumford’s theta groups

We keep all the notation and assumptions of § 2.
We denote by MX the constant sheaf (of rational functions) on the abelian variety X

with respect to Zariski topology, which assigns to every non-empty open subset U of X

its field of rational functions k(U) = k(X). For every f ∈ k(X)∗ let us consider the sheaf
(auto)morphism

[f ] : MX → MX

that is induced by multiplication by f in k(X). If y ∈ X(k), then T ∗
y MX = MX and the

induced (by functoriality) sheaf (auto)morphism [f ] : T ∗
y [f ] : T ∗

y MX → T ∗
y MX coincides

(after the identification of T ∗
y MX and MX) with

[T ∗
y f ] : MX → MX .

If D is a divisor on X, then we view the invertible sheaf OX(D) as a certain subsheaf of
MX (see [4, Chapter 6, § 1]). Note that, for all y ∈ X(k),

T ∗
y OX(D) = OX(T ∗

y D).
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If D1 and D2 are linearly equivalent divisors on X, then isomorphisms of invertible
sheaves OX(D1) ∼= OX(D2) are exactly (all the) morphisms of the form

[f ] : OX(D1) ∼= OX(D2)

with div(f) = D1 −D2. In particular, this set of isomorphisms is a k∗-torsor, since div(f)
determines the rational function f up to multiplication by a non-zero constant.

If [f ] : OX(D1) ∼= OX(D2) is an isomorphism of invertible sheaves and y ∈ X(k), then
the induced (by functoriality) isomorphism of invertible sheaves T ∗

y [f ] : T ∗
y OX(D1) ∼=

T ∗
y OX(D2) coincides with

[T ∗
y f ] : OX(T ∗

y D1) ∼= OX(T ∗
y D2).

Now let us choose an ample divisor on X (e.g. a hyperplane section) and set L =
OX(D). Then L is an ample invertible sheaf. Let us consider the (finite) commutative
group

H(L) = {x ∈ X(k) | L ∼= T ∗
x L}.

Remark 4.1. Let n be a positive integer. Then nD remains ample, OX(nD) = Ln

and
H(Ln) = {x ∈ X(k) | nx ∈ H(L)}

(see [1, § 1, Proposition 4]). In particular, H(Ln) contains the group Xn of all points of
order n on X. Since the order of Xn is n2 dim(X) [2, Chapter 2, § 6], the order of H(Ln)
is divisible by n2 dim(X).

Following [1, § 1], let us consider the theta group G(L) that consists of all pairs (x, φ),
where x ∈ H(L) and φ is an isomorphism of invertible sheaves L ∼= T ∗

x L. The group law
on G(L) is defined as follows. If (x, φ : L ∼= T ∗

x L) ∈ G(L) and (y, ψ : L ∼= T ∗
y L) ∈ G(L),

then its composition (y, ψ)(x, φ) is defined as

(x + y, T ∗
x φψ : L ∼= T ∗

y L ∼= T ∗
x (T ∗

y L) = T ∗
x+yL).

Taking into account our considerations in the beginning of this section and the equality
L = OX(D), we conclude that H(L) coincides with the set of x ∈ X(k) such that D is
linearly equivalent to T ∗

x D; the theta group G(L) is the set of all pairs (x, [f ]), where
x ∈ H(L) and f is a non-zero rational function on X such that div(f) = D − T ∗

x D. In
addition, if (y, [h]) ∈ G(L), then

(x, [f ])(y, [h]) = (x + y, [T ∗
x h · f ]) ∈ G(L).

Remark 4.2. It is known [1, § 1, Corollary of Theorem 1] that there exists a finite
sequence of positive integers (elementary divisors) δ = (d1, . . . , dr) such that di+1|di and
the finite commutative group K(δ) =

⊕r
i=1 Z/diZ enjoys the following properties:

(i) H(L) is isomorphic to HK(δ);

(ii) the groups GK(δ) and G(L) are isomorphic.
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Applying the results of § 3, we conclude that G(L) contains a finite subgroup G that
enjoys the following property: every commutative subgroup in G has an index that is
greater than or equal to #(K(δ)) =

√
#(H(L)).

Proof of Theorem 2.1. Comparing the multiplication formulae for (x, [f ]) and
A(y, f) (see § 2), we conclude that the embedding

G(L) ↪→ Bir1(X × A
1), (y, [h]) �→ A(y, h)

is actually a group homomorphism. So G(L) is isomorphic to a subgroup of Bir1(X×A
1).

Applying this assertion to all ample divisors nD and invertible sheaves Ln = OX(nD)
(where n is a positive integer) and combining it with Remarks 4.1 and 4.2, we conclude
that for every positive integer n there exists a finite subgroup

G ⊂ G(Ln) ↪→ Bir1(X × A
1)

that enjoys the following property: every commutative subgroup in G has an index that
is greater than or equal to (n2 dim(X))1/2 = ndim(X); in particular, this index is greater
than or equal to n. This proves that Bir1(X × A

1) is not a Jordan group. �
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