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Abstract This paper suggests a new approach to questions of rationality of 3-folds based on category
theory. Following work by Ballard et al ., we enhance constructions of Kuznetsov by introducing Noether–
Lefschetz spectra: an interplay between Orlov spectra and Hochschild homology. The main goal of this
paper is to suggest a series of interesting examples where the above techniques might apply. We start by
constructing a sextic double solid X with 35 nodes and torsion in H3(X, Z). This is a novelty: after the
classical example of Artin and Mumford, this is the second example of a Fano 3-fold with a torsion in
the third integer homology group. In particular, X is non-rational. We consider other examples as well:
V10 with 10 singular points, and the double covering of a quadric ramified in an octic with 20 nodal
singular points. After analysing the geometry of their Landau–Ginzburg models, we suggest a general
non-rationality picture based on homological mirror symmetry and category theory.

Keywords: Fano varieties; rationality questions; Landau–Ginzburg model

2010 Mathematics subject classification: Primary 14E08; 14F05
Secondary 14J45, 14J33

1. Introduction

This paper suggests a new approach to questions of rationality of 3-folds based on cate-
gory theory. It was inspired by recent work of Shokurov and by Kuznetsov’s idea about
the Griffiths component (see [28]). This work is a natural continuation of ideas developed
in [12,23] and of ideas of Kawamata and his school.

We first extend a classical example of Artin and Mumford to construct a sextic double
solid X with 35 nodes and torsion in H3(X, Z). The construction is based on an approach
by Gross and suggests a close relation between the Artin and Mumford example and the
sextic double solid X with 35 nodes. This example, a novelty on its own, opens up the
possibility of a series of interesting examples: V10 with 10 singular points and the double
covering of a quadric ramified in an octic with 20 nodal singular points.
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In this paper we start by investigating these examples from the point of view of homo-
logical mirror symmetry (HMS). We consider the mirrors of the sextic double solid X

with 35 nodes, of the Fano variety V10 with 10 singular points in general positions, and
of the double covering of a quadric ramified in an octic with 20 nodal singular points.
We note that the monodromy around the singular fibre over 0 of the Landau–Ginzburg
models is strictly unipotent in all these examples, which suggests that the categorical
behaviour should be very similar to that of the Artin–Mumford example. We conjecture
that the reason for categorical similarity in all these examples is that they contain the
category of an Enriques surface as a semi-orthogonal summand in their derived cate-
gories. This is done in § 5, where we introduce Landau–Ginzburg models and compare
their singularities.

In § 6 we introduce several new rationality invariants coming out of the notions of
spectra and the enhanced Noether–Lefschetz spectra of categories. We give a conjectural
categorical explanation of the examples from §§ 2–5. The novelty (conjecturally) is that
non-rationality of these examples cannot be predicted by Orlov spectra, but it is detected
by the Noether–Lefschetz spectrum.

The paper has the following structure. In §§ 2–4 we describe classical calculations of
a sextic double solid X with 35 nodes. In § 5 we look at some mirror considerations
for studying some Landau–Ginzburg models. In § 6 we suggest a general categorical
framework for studying the phenomena in §§ 2–5.

The paper is based on examples we have analysed in [3,11,24,25,27]. All these suggest
a direct connection between the monodromy of Landau–Ginzburg models, spectra and
wall crossings in the moduli space of stability conditions, which was partially explored
in [17]. This paper is a humble attempt to shed some light on this connection. We
expect that further application of this method will be the theory of three-dimensional
conic bundles (a small part of the huge algebro–geometric heritage of Shokurov; see
Remark 4.3). In particular, we expect that the Noether–Lefschetz spectra of categories
will allow us to prove non-rationality of new classes of conic bundles: classes where the
method of the intermediate Jacobian does not work.

All varieties considered in this paper are defined over the field of complex numbers C.
The torsion subgroup of a given group G is denoted by Tors(G); the n-torsion subgroup
is denoted by Torsn(G). We denote the Du Val singularities of ADE type by An, Dn and
En. We denote a Landau–Ginzburg model of a variety X by LG(X).

2. Determinantal double solids and Brauer–Severi varieties

2.1. The classical Artin–Mumford example

A double solid is an irreducible double covering π : X → P3. The branch locus of such
a π is a surface S ⊂ P3 of even degree. In 1972 Artin and Mumford gave an example of
a special singular quartic double solid X (i.e. deg S = 4) that is non-rational because of
the existence of a non-zero 2-torsion in its integer cohomology group H3(X, Z) (see [1]).
Since quartic double solids are unirational (see, for example, [21, Example 10.1.3 (iii)]),
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this gives (together with the examples presented at the same time by Iskovskikh and
Manin and Clemens and Griffiths) an example of a non-rational unirational 3-fold.

In [2] Aspinwall et al . present a special case of a singular Calabi–Yau 3-fold: an octic
double solid X (i.e. deg S = 8) with 80 nodes on S and a non-zero 2-torsion in H3(X, Z).

In this section we adapt an approach used in [2] to check again the existence of the
2-torsion in H3(X, Z) for the Artin–Mumford quartic double solid X, and present an
example of a sextic double solid X with 35 nodes and a non-zero torsion in H3(X, Z).
In particular, this special nodal sextic double solid is not rational. Other examples are
presented in the sections to follow.

2.2. Quadric bundles and determinantal double solids

Let X0 be a smooth complex projective variety, let L be an invertible sheaf on X0,
and let E → X0 be a vector bundle of rank r � 2 over X0.

A quadric bundle in E parametrized by L is the OX0-map

ϕ : L−1 → Sym2E∗.

The determinantal loci of ϕ are the subvarieties

Dr−k = Dr−k(ϕ) = {x ∈ X0 : rankϕx � r − k}, k = 0, 1, 2, . . . .

Geometrically, a quadric bundle ϕ represents the bundle of quadrics

Q = {Qx ⊂ P(Ex) : x ∈ X0},

and
Dr−k = {x ∈ X0 : rankQx � r − k}.

If Dr−k ⊂ X0 are non-empty and have the expected codimensions k(k + 1)/2, then their
classes in A∗(X0) can be computed by the formulae in [15, 22]. For our purposes, we
need only know explicit formulae for the first two determinantals Dr−1 and Dr−2, which
can be computed formally as follows. Rewrite ϕ in the form

ϕ : OX0 → Sym2(E∗ ⊗ L1/2),

and compute c(E∗ ⊗ L1/2) = 1 + c1 + c2 + · · · + cr. Then

Dr−1 = 2c1 and Dr−2 = 4(c1c2 − c3).

In the particular case when the base X0 = Pn is a projective space, the determinantal
locus Dr−1 is a hypersurface in Pn of even degree; therefore, Dr−1 defines the double
covering

π : X → Pn

branched along Dr−1. We call such an X a determinantal double solid.
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2.3. Cohomological Brauer groups and Brauer–Severi varieties

Let X be a complex algebraic variety, let OX be the structure sheaf of X, and let O∗
X be

the sheaf of units in OX . The Picard group and the (cohomological) Brauer group of X

are, respectively, the first and second cohomology groups

Pic(X) = H1(X, O∗
X) and Br(X) = H2(X, O∗

X).

There exists an exact sequence

Pic(X) ⊗ Q/Z → H2(X, Q/Z) → Br(X) → 0

(see [14, Part II, (3.1)]). If, in addition, X is non-singular and it fulfils the conditions

Pic(X) = H2(X, Z) and H1(X, OX) = H2(X, OX) = 0, (2.1)

then, by the universal coefficient theorem, Br(X) ∼= Tors(H3(X, Z)) (see, for exam-
ple, [1]). For any X as above, a Brauer–Severi variety over X is a variety P with the
structure of a Pn-bundle f : P → X over X.

Not every Brauer–Severi variety is a projectivization of a vector bundle over X, and
the Brauer group gives obstructions for a Brauer–Severi variety to be a presented as a
projectivization of such. On X, we consider the exact sequence

0 → O∗
X → GLn+1 → PGLn+1 → 0,

where O∗
X is the multiplicative group of X.

The corresponding long exact sequence is

0 → Pic(X) → H1(X, GLn+1)
j−→ H1(X, PGLn+1)

δ−→ Br(X) → · · · .

The vector bundles E → X of rank (n + 1) are elements of the cohomology group
H1(X, GLn+1), while the Pn-bundles P → X are elements of H1(X, PGLn+1).

Therefore, by the above sequence the Pn-bundle P is not a projectivization of a vector
bundle on X if and only if δ(P) �= 0. Since (n + 1)δ = 0, any P with δ(P) �= 0 gives rise
to a non-zero (n + 1)-torsion element δ(P) ∈ Br(X). If, moreover, X fulfils (2.1), then
P represents a non-zero (n + 1)-torsion element of H3(X, Z) ∼= Br(X). In the particular
case we consider below, P is a P1-bundle that is not a projectivization of a vector bundle,
thus representing a non-zero 2-torsion element of H3(X, Z).

In the next sections we use the following.

Lemma 2.1 (torsion criterion for non-rationality). For the smooth complex vari-
ety Y , the torsion subgroup Tors(H3(Y, Z)) is a birational invariant of X. In particular,
if Y is rational, then Tors(H3(Y, Z)) = 0.

Proof. See [1, Proposition 1] or [5, § 9]. �
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3. A determinantal sextic double solid X with a non-zero 2-torsion in
H3(X, Z)

3.1. The double solids of Artin and Mumford, and Aspinwall et al .,
and a determinantal sextic double solid

The Artin–Mumford 3-fold from [1] is a special double solid with a branch locus: a
quartic surface S with 10 nodes and with a torsion in the third integer cohomology
group H3 = H3(X̃, Z), where X̃ → X is the blow-up of X at its nodes. As was shown
later by Endrass, the group H3 of a double solid X branched over a nodal quartic surface
S can have a non-zero torsion only in the case when S has 10 nodes (see [10]). Therefore,
the branch loci of eventual further examples of nodal 3-fold double solids with a non-zero
torsion in the third integer cohomology group H3 should be of degree d either equal
to 2 or greater than or equal to 6. If, in addition, we require such an X to be a Fano
3-fold, then d must be less than or equal to 6, i.e. if there exists such an X, it must be
a sextic double solid or a double quadric. Note that non-singular Fano 3-folds X have a
zero torsion in H3 = H3(X, Z), so the requirement that X be singular (and nodal, for
simplicity) is substantial.

In [2] Aspinwall et al . study a special case of a Calabi–Yau 3-fold that is a double solid
X with a torsion in H3 and with a branch locus S of degree 8 (an octic double solid).
The similarity between the Artin–Mumford quartic double solid and the octic double
solid from [2] is that they are both determinantal double solids. Both these varieties X

are singular: in the Artin–Mumford case X has 10 ordinary double points (nodes), while
the octic double solid from [2] has 80 nodes.

Below, we describe an example of a determinantal nodal sextic double solid X with a
torsion in H3. After the example of Artin and Mumford, this is the second example of
a (necessary) singular nodal Fano 3-fold (see above) with a torsion in the third integer
cohomology group. In particular, our X must be non-rational (see Lemma 2.1).

It was shown by Iskovskikh [20] that the general sextic double solid is non-rational due
to the small group Bir(X) of birational automorphisms of X. This argument was later
extended by Cheltsov and Park, proving the non-rationality of certain singular sextic
double solids (see [7]).

From this point of view, the example studied below is a non-rational sextic double
solid X with 35 ordinary double points. According to Cheltsov (V. Przyjalkowski, private
communication, 2010), the non-rationality of this X cannot be derived, at least for now,
from the results of [7].

The proof of the non-rationality of X presented below follows ideas from [2, Appendix].

3.2. The determinantal sextic double solid

Let P3 × P4 ⊂ P19 be a Segre variety of C∗-classes of non-zero 4 × 5 matrices, and let

W = (P3 × P4) ∩ H ∩ F

be a general complete intersection of P3×P4 with a hyperplane H = P18 ⊂ P19 and a divi-
sor F of bidegree (1, 2). Let Z = (P3 ×P4)∩H, and denote by pZ and pW the restrictions
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of the projection p : P3×P4 → P3 to Z and to W , respectively. The projection pW defines
a structure of a quadric bundle

pW : W → P3

on W with fibres: quadrics Qx = p−1
W (x) in the 3-spaces

P3
x = p−1

Z (x) = (x × P4) ∩ H, x ∈ P3.

The P3-bundle pZ : Z → P3 is a projectivization of the rank 4 vector bundle E on P3,
defined by

0 → E → O⊕5
P3 → OP3(1) → 0;

therefore, c(E∗) = 1 + h + h2 + h3 in A∗(P3) = C[h]/(h4). Since W is an intersection of
Z = P(E) → P3 with a bidegree (1, 2) divisor, the bundle of quadrics defining a quadric
bundle pW : W → P3 is given by the map

ϕ : OP3(−1) → S2E∗.

So
c(E∗( 1

2 )) = 1 + c1 + c2 + c3 = 1 + 3h + 4h2 + 13
4 h3,

and hence
[D3(ϕ)] = 2c1 = 6h and [D2(ϕ)] = 4(c1c2 − c3) = 35.

For a general choice of a bidegree (1, 2) divisor F , the branch locus

S = D3(ϕ)

is a sextic surface in P3 with 35 nodes: the 35 points of

δ = D2(ϕ) = {p1, . . . , p35}.

Let
π : X → P3

be a double covering branched along the sextic surface S = D3. Since Sing(S) = δ, and
the points pi ∈ δ are nodes of S, the sextic double solid X has 35 nodes: the preimages
of the 35 points p1, . . . , p35 of δ.

Proposition 3.1. Let W = (P3 × P4) ∩ H ∩ F be a general complete intersection of
P3 × P4 with a hyperplane and a divisor of bidegree (1, 2). The following conditions then
hold.

(1) The degeneration locus S = D3 of the quadric fibration pW : W → P3, induced by
the projection p : P3 × P4 → P3, is a sextic surface with 35 nodes.

(2) Let π : X → P3 be a double covering branched along the sextic surface S = D3.
The group H3(X, Z) then contains a non-zero 2-torsion element; in particular, X is
non-rational.
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3.3. Proof of Proposition 3.1

Part (1) follows from previous considerations. It remains to verify (2). Following an
approach from [2], we find, below, a non-zero 2-torsion element of H3(X, Z), by represent-
ing it as a Brauer–Severi variety over the smooth part of X. Together with Lemma 2.1,
this completes the proof.

We consider the quadric bundle pW : W → P3 = P3(x), and restrict it over the open
subset

P3
0 = P3 − δ.

We define
S0 = S − δ, X0 = X − δX and W0 = W − δW ,

where δX = π−1(δ) is an isomorphic preimage of δ = {p1, . . . , p35} on X, and δW =
p−1(δ) is the set of 35 rank 2 quadric surfaces Qi = p−1(pi), i = 1, . . . , 35. Outside δW ,
the projection p restricts to a quadric bundle

pW0 : W0 → P3
0

with degeneration locus S0.
Let π : X0 → P3

0 be an induced determinantal double covering branched along S0. As
follows from our construction, the fibres of the quadric bundle pW0 : W0 → P3

0 are the
quadrics Qx ⊂ P3

x, x ∈ P3 − δ.
Let P be the family of lines l ⊂ W0 in the quadrics Qx, x ∈ P3 − δ, and let P0 ⊂ P be

the family of these lines l ∈ P, which lie on the quadrics Qx, x ∈ Pk
0 − δ.

We denote by
fP : P → P3

the map sending a line l ⊂ Qx to a point x ∈ P3, and we denote by fP : P0 → P3
0 its

restriction over P3
0.

We also define
π0 : X0 → P3

0

to be the restriction of the double covering π : X → P3 to X0 = X − δX .
For any point x ∈ P3

0 − S0 = P3 − S the quadric Qx ⊂ P3
x is smooth, while for any

x ∈ S0 = S − δ the quadric Qx is a quadratic cone of rank 3 in P3
x.

We then have that

f−1
P (x) ∼= P 1 ∨ P 1 for x ∈ P3

0 − S0 = P3 − S

and

f−1
P (x) ∼= P1 for x ∈ S0 = S − δ.

Since S0 is also a branch locus of the double covering π0 : X0 → P3
0, we identify points

of X0 with generators of the quadrics Qx, x ∈ P3
0. Therefore, the mapping P0 → P3

0 is
represented as a composition

P0
f0−→ X0

π0−→ P3
0,
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where
f0 : P0 → X0

is a P1-fibration sending the sets of lines l on the quadrics Qx to the generators of Qx

containing l. Let
X̃ → X

be the blow-up of X at the 35 nodes of X identified with the 35 double points p1, . . . , p35

of the surface S. Following [2], we see that P0 is not a projectivization of a vector bundle
over X0. This yields that the Brauer group Br(X̃) has a non-zero element of order 2,
representing a non-zero 2-torsion element in H3(X̃, Z).

Suppose that f0 : P0 → X0 is a projectivization of a rank 2 vector bundle E → X0.
Up to a twist by a line bundle, we can always assume that E has sections. Then, any
section of E gives rise to a rational section of f0 : P0 = P(E) → X0. The following lemma
concludes the argument.

Lemma 3.2. The P1-fibration f0 : P0 → X0 has no rational sections. In particular,
P0 is not a projectivization of a rank 2 vector bundle on X0.

Proof (see [2] for more details). Suppose that f0 has a rational section, i.e. a
rational map σ : X0 → P0 defined over an open dense subset U ⊂ X0 and such that
f0(σ(u)) = u for any u ∈ U . By definition, the points of P0 are the lines l that lie on the
quadrics Qt, t ∈ P3

0. Denote by lu ∈ P0 the line lu = σ(u) for points u ∈ U , i.e.

σ : U → P0

x 	→ lu.

Let π : X → P3 be the double covering, and let i : X → X be the involution interchanging
two possibly coincident π-preimages of the points x ∈ P3. Without any loss of generality
(e.g. by replacing U by U ∩ i(U)), we may assume that U = i(U). Let D ⊂ W be the
Zariski closure of the set

{lu ∩ li(u) : u ∈ U and u �= i(u)}.

The variety D is a 3-fold in W that intersects the general quadric Qx ⊂ P3
x = x × P3,

x = π(u) at a unique point, the point y(u) = lu ∩ li(u), i.e. DQx = 1.
The 5-fold W = (P3 × P4) ∩ H ∩ (F (x; y) = 0) is an ample divisor in the 6-fold

Z = (P3 × P3) ∩ H, which in turn is an ample divisor in P3 × P4.
By the Lefschetz hyperplane section theorem, the restriction map then defines the

isomorphism
H4(P3 × P4, Z) → H4(Z, Z) → H4(W, Z).

In particular, the codimension 2 subvariety D ⊂ W is a restriction of a codimension 2
subvariety of P3 × P4 to W .

In the Chow ring
A∗(P3 × P4) = Z[h1, h2]/(h4

1, h
5
2),
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the class of the fibre Qx of p : W → X is 2h3
1h

2
2. Since codimension 2 cycles on P3×P4 are

generated over Z by h2
1, h2

2 and h1h2, the intersection number of any codimension 2 cycle
on W with general quadric Qx is even, which contradicts the equality DQx = 1. �

Note also that the varieties X0 and X̃ fulfil (2.1) from 2.3, so Br(X0) and Br(X̃) are
isomorphic to H3(X0, Z) and H3(X̃, Z).

Theorem 3.3. The P1-bundle P0 represents a non-zero 2-torsion element in Br(X) =
H3(X̃, Z). In particular, X̃, and hence X, is non-rational.

Proof. Let Ei, i = 1, . . . , 35, be the exceptional divisors of the blow-up X̃ → X at
the nodes p1, . . . , p35. Then, by [14], for the Brauer groups of X0 = X − {p1, . . . , p35} ∼=
X̃ −

⋃
{Ei : i = 1, . . . , 35}, there exists an exact sequence

0 → Br(X̃) → Br(X0) →
35⊕

i=1

H1(Ei, Q/Z),

and since, for surfaces Ei
∼= P1 × P1, one has that H1(Ei, Q/Z) = 0, i = 1, . . . , 35, and

thus Br(X̃) ∼= Br(X0). �

It follows from Lemmas 3.2 and 2.3 that P0 represents a non-zero 2-torsion element of
H3(X̃, Z). Combining this with Lemma 2.1, we get the non-rationality of X̃, and hence
the non-rationality of X. This proves Proposition 3.1.

4. An Artin–Mumford quartic double solid

4.1. Quadrics in P3 and an Artin–Mumford quartic double solid

Let P3 = P3(y), (y) = (y0 : · · · : y3), be the three-dimensional complex projective space.
In the space P9 = P(H0(OP 3(2))) of quadrics in P3 consider the determinantals

∆1 ⊂ ∆2 ⊂ ∆3 ⊂ P9,

where
∆k = {Q ∈ P9 : rankQ � k, k = 1, 2, 3}.

The elements of P9 are C∗-classes of symmetric 4 × 4 matrices Q = (qij), 0 � i, j � 3,
and the determinantals ∆k, 1 � k � 3, defined by vanishing (k + 1) × (k + 1) minors
of Q, have the following properties (for more details see, for example, [9, § 1]):

• ∆3 ⊂ P9 is a quartic hypersurface,

• ∆2 = Sing ∆3 has dimension 6 and degree 10,

• ∆1 = Sing ∆2 = v2(P3) is the Veronese image of P3 in P9,

• the determinantal quartic ∆3 has an ordinary double singularity along ∆2 − ∆1.
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Consider the general 3-space P3 = P3(x) ⊂ P9. As follows from previous considerations,

• S = P3 ∩ ∆3 is a quartic surface with the only singularities being the 10 points of
intersection δ = P3 ∩ ∆2 = {p1, . . . , p10}, and any pk, k = 1, . . . , 10, is an ordinary
double point (a node) of S.

(The quartic surfaces defined as determinantal loci of 3-spaces of quadrics in projective
3-space have appeared in the works of Cayley under the name quartic symmetroids since
the 1980s.)

Since deg(S) = 4 is an even number, there exists the double covering

π : X → P3

branched along S, i.e. X is a determinantal quartic double solid.
The double solid X has 10 nodes: isomorphic preimages of the 10 nodes p1, . . . , p10 of

the branch locus S, which we also denote by p1, . . . , p10. Let X̃ be the blow-up of X at
these 10 points. In the same way as in § 3, we get the following.

Proposition 4.1. The group H3(X̃, Z) contains a non-zero 2-torsion element; in par-
ticular, X is non-rational.

Remark 4.2. In [1], Artin and Mumford prove a stronger result, Tors(H3(X, Z)) =
Z/2Z, by using splitting of the discriminant curve for the natural conic bundle structure
on X (see also [33, Theorem 2]).

4.2. Artin–Mumford quartic double solids and Enriques surfaces

We start by recalling the well-known connection between Artin–Mumford double solids
and Enriques surfaces, defined by Reye congruences (see, for example, [9]). In the above
notation, the Artin–Mumford double solids are defined by the general 3-spaces P3(x) in
the space P9 = P(H0(OP3(y)(2))) of quadrics in P3(y), (y) = (y0 : · · · : y3). Let

{Qx} = {Qx ⊂ P3(y) : x ∈ P3(x) = P3(x0 : · · · : x3)}

be the set of quadrics in P3(y) defined by the 3-space P3(x). Let G be the Grassmannian
of the lines l ⊂ P3(y).

It is known that the general line l ⊂ P3(y) lies on a unique quadric from the fam-
ily {Qx}, and the set of lines

R = {l ∈ G : the line l ⊂ P3(y) lies in a P1-family of quadrics Qx}

is an Enriques surface in G = G(2, 4), classically called a Reye congruence (see [9]). Let τ

be an involution
(x, y) τ←→ (y, x)

on P3(x) × P3(y). The fixed point set of τ is the diagonal ∆ defined by {x = y} in
P3(x) × P3(y). For a quadratic form

Q(y) =
∑

0�i, j�3

qijyiyj , qij = qji,
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let
B(x, y) =

∑

0�i, j�3

qijxiyj

be its corresponding bilinear form. A basis Q0(y), . . . , Q3(y) of P3(x) ⊂ P9 then defines
a quadruple of bilinear forms B0(x, y), . . . , B3(x, y), and hence a linear section

S̃ = (P3(x) × P3(y)) ∩ H0 ∩ · · · ∩ H3,

where Hi = (Bi(x, y) = 0). For a general choice of

P3(x) = 〈Q0, . . . , Q3〉,

the set S̃ is a smooth complete intersection of four hyperplane sections of P3(x) × P3(y),
and hence S̃ is a smooth K3 surface: a Steiner K3 surface in a 3-space of quadrics P3(y).
Since all Bi are invariant under the involution τ , S̃ is also invariant under τ , i.e. τ(S̃) = S̃.
Therefore, τ restricts to an involution τ : S̃ → S̃; and since, for general P3(x), the surface
S̃ does not intersect diagonal ∆, we conclude that τ is without fixed points on S̃. The
K3 surface S̃ has the following properties (see [9,29]).

Let P3(x) be a general 3-space of the 9-space P9 of quadrics in P3(y), and let S = D3 ⊂
P3(x), R ⊂ G(2, 4) and S̃ be, respectively, the quartic symmetroid, the Enriques surface
(the Reye congruence) and the Steiner K3 surface defined by P3(x). It then holds that

(i) S̃ is the blow-up of S at its 10 nodes δ = {p1, . . . , p10},

(ii) R ⊂ G = G(2, 4) is isomorphic to the quotient S̃/τ of S̃ by the involution τ .

Let π : X → P3(x) be the Artin–Mumford double solid, defined by the general 3-space
P3(x) ⊂ P9, let G = G(1 : P3(y)) be as above and let

G̃ = {(x, l) ∈ P3(x) × G : l ⊂ Qx}.

The following (see [5, § 9]) then hold.

(iii) G̃ = P (see the proof of Proposition 3.1), and the projection G̃ → G, (x, l) 	→ l is
a blow-up of the Enriques surface R ⊂ G = G(2, 4).

(iv) The projection σ : G̃ → P3, (x, l) 	→ x factorizes into

G̃
f−→ X

π−→ P3(x),

and the restriction G̃0 → X0 of f over X0 ⊂ X coincides with the P1-bundle
f0 : P0 → X0:

P0 ⊂ P ∼= G̃

f0

��
f

��

σ �� G(2, 4) ⊃ R

X0 ⊂ X

π0

��
π

��
P3 ⊂ P3

https://doi.org/10.1017/S0013091513000898 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000898


156 A. Iliev, L. Katzarkov and V. Przyjalkowski

4.3. The non-rationality of X by 2.1 (see [5])

We observe that, since σ : P = G̃ → G(2, 4) is a blow-up of the surface R in the 4-fold
G(2, 4),

H4(P, Z) = σ∗H4(G(2, 4), Z) ⊕ σ−1H2(R, Z)
∼= H4(G(2, 4), Z) ⊕ H2(R, Z).

Furthermore, since R is an Enriques surface, c1(R) ∈ H2(R, Z) is an element of order 2.
Therefore, Z = σ−1c1(R) is an element of order 2 in H4(P, Z). After restriction, we get
an element Z0 ∈ H4(P0, Z) of order 2.

Since f0 : P0 → X0 is a P1-bundle, all fibres of f0 are isomorphic to the two-dimensional
spheres S2. Therefore, the integral cohomology of P0 and X0 fit in the Gysin sequence
for S2-fibration:

· · · → H3(P0, Z) → H1(X0, Z) e−→ H4(X0, Z)
f∗
0−→ H4(P0, Z)

f0∗−−→ H2(X0, Z) → · · · .

Here, e is the cup product with the Euler class e(f0) ∈ H3(X0, Z) of f0 (see [6, Chap-
ter III, § 14] and [16, 4.11]).

If Im(e) �= 0, then any non-zero element of Im(e) ∈ H4(X0, Z) is a 2-torsion element,
since 2e = 0 (see [16, Theorem 4.11.2 (I)]).

In the case when Im(e) = 0, Z0 ∈ Tors2(H4(P0, Z)) must be an image Z0 = f∗
0 (C0)

of an element C0 ∈ H4(X0, Z), since Tors(H2(X0, Z)) = 0 (see [5, p. 30]). Since in this
case f∗

0 is an embedding and Z0 is a non-zero 2-torsion element of H4(P0, Z), C0 is also
a non-zero 2-torsion element of H4(X0, Z).

Thus, in both cases there exists a 2-torsion element C0 ∈ H4(X0, Z).
Let σX : X̃ → X be the blow-up of X at the 10 nodes p1, . . . , p10 of X, and let

Ei = σ−1
X (pi) ∼= P1 × P1 be the 10 exceptional divisors on X̃. Since X̃ is isomorphic

to a disjoint union of X0 and Ei, i = 1, . . . , 10, and H3(Ei, Z) = H3(P1 × P1, Z) = 0,
H4(X0, Z) is embedded isomorphically in H4(X̃, Z). In particular, C0 ∈ H4(X0, Z) is
embedded as an element C of order 2 in H4(X̃, Z).

Since for a smooth projective complex 3-fold X̃ one has that

Tors(H4(X̃, Z)) ∼= Tors(H3(X̃, Z))

(see [1, § 1]), the 2-torsion element C ∈ H4(X̃, Z) equally represents a 2-torsion element
ZC ∈ H3(X̃, Z). By Lemma 2.1, the latter yields that X̃ (and hence X) is non-rational.

Remark 4.3. It was suggested to us by Shramov that the methods of [2] can be
applied to the double covering of a quadric ramified in an octic with 20 singular points.
More precisely, we consider a divisor of bidegree (1, 2) in Q × P3, where Q is a quadric
3-fold. In this case we get a quadric fibration given by a map OQ(−1) → S2(E∗), where
E is a trivial vector bundle of rank 4. We get a 2-torsion (and hence non-rationality) in
a middle cohomology of a double quadric with 20 nodal singular points. Using the fact
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Table 1. Classical homological mirror symmetry.

A-models (symplectic) B-models (algebraic)

X = (X, ω) is a closed symplectic manifold X is a smooth projective variety

Fukaya category Fuk(X). The objects are
Lagrangian submanifolds L, which may
be equipped with flat line bundles. The
morphisms are given by the Floer
cohomology HF ∗(L0, L1).

Derived category Db(X). The objects are
complexes of coherent sheaves E . The
morphisms are Ext∗(E0, E1).

��

���������������

��

���������������

Y is a non-compact symplectic manifold
with a proper map W : Y → C, which is a
symplectic fibration with singularities.

Y is a smooth quasi-projective variety
with a proper holomorphic map
W : Y → C.

Fukaya–Seidel category of the
Landau–Ginzburg model FS(LG(Y )). The
objects are Lagrangian submanifolds
L ⊂ Y , which, at ∞, are fibred over
R

+ ⊂ C. The morphisms are
HF ∗(L+

0 , L1), where the superscript +
indicates a perturbation removing
intersection points at ∞.

The category Db
sing(W ) of algebraic

B-branes, which is obtained by
considering the singular fibres
Yz = W −1(z), dividing Db(Yz) by the
subcategory of perfect complexes
Perf(Yz), and then taking the direct sum
over all such z.

that the double covering of a quadric ramified in an octic with 20 singular points is a
degeneration of a three-dimensional quartic, we study its Landau–Ginzburg model in § 5.

5. Mirror side

In this section we turn to homological mirror symmetry in an attempt to show that the
phenomena observed in previous sections are a part of a much more general scheme. We
briefly outline in Table 1 a schematic picture of classical homological mirror symmetry,
in a version relevant to our purpose (for more details see [23]).

In what follows we describe the fibrewise compactifications of weak Landau–Ginzburg
models of a quartic double solid, a Fano 3-fold V10 and a sextic double solid (see [18,31]).
We conjecture that these compactifications are Landau–Ginzburg models of the Artin–
Mumford example V10 and the sextic double solid, respectively, in the sense of HMS.

Throughout this section we use the following standard notation for blow-up. Consider
the affine variety

{F (x1, . . . , xn) = 0} ⊂ A(x1, . . . , xn).
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We blow up the affine space {x1 = · · · = xk = 0}. The blown-up hypersurface is given
by the system of equations

F (x1, . . . , xn) = 0,

xix
′
j = x′

ixj , 1 � i, j � k,

in
A(x1, . . . , xn) × P(x′

1 : · · · : x′
n).

Consider the local chart x′
1 �= 0. We choose the coordinates

x1,
x′

2

x′
1
, . . . ,

x′
k

x′
1
, xk+1, . . . , xn.

In these coordinates, the blown-up variety is the zero locus of a polynomial given by the
division of

F (x1, x1x
′
2, . . . , x1x

′
k, xk+1, . . . , xn)

by the maximal possible power of x1. We denote by xi the coordinates in this local chart,
instead of x′

i/x′
1, for simplicity. We denote this local chart by x1 �= 0.

We embed fibrewise the above pencil in a projective space or a product of projective
spaces and then resolve singularities. All Calabi–Yau compactifications (see [31]) are
birational in codimension 1.

5.1. The Landau–Ginzburg model of a quartic double solid

The weak Landau–Ginzburg model for a quartic double solid is given by

f =
(x + y + 1)4

xyz
+ z ∈ C[x±1, y±1, z±1].

We compactify the pencil {f = λ, λ ∈ C} in the neighbourhood of λ = 0 in
P(x : y : z : t) × A(λ) and get the hypersurface

{(x + y + t)4 + xyz(z − λt) = 0} ⊂ P(x : y : z : t) × A(λ).

Its singularities are the seven lines

l0 = {x + y + t = z = λ = 0}, l1 = {x = y = t = 0},

l2 = {x + y = z = t = 0}, l3 = {x = y + t = z = 0},

l4 = {x = y + t = z + λy = 0}, l5 = {x + t = y = z = 0},

l6 = {x + t = y = z + λx = 0}.

Generically, the above singularities are locally products of Du Val singularities of type A3

by the affine line. The ‘horizontal’ lines l2 to l6 intersect the ‘vertical’ line l0; moreover,
the pairs of lines l3 and l4, l5 and l6 intersect l0 at one point (see Figure 1).

We resolve the singularities by blowing up these lines. First we blow up the vertical
line l0 twice. After this the singularities are proper transforms of the lines l1 to l6 and the
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0 λ

Figure 1. Singularities for a quartic double solid.

five lines lying on the exceptional divisors. Each of them intersects the proper transform
of one of the lines l2 to l6. After blowing up these five lines we get a 3-fold with six lines
of singularities coming from l1 to l6, which are of type A3 along a horizontal affine line
globally. Blowing them up fibrewise, we get the final resolution. We apply this procedure
in the following steps.

Step 0. The line l1 is of type A3 along the affine line globally. Blowing it up twice
we get horizontal exceptional fibres, so they do not give an additional component for the
fibre over λ = 0. We proceed to a resolution in the neighbourhood of the line l0.

Step 1. Let a = x + y + t. Our variety is then given by

{a4 + xyz2 = λxyz(a − x − y)} ⊂ P(x : y : z : a) × A(λ)

and l0 = {a = z = λ = 0}. There exist two similar local charts: x �= 0 and y �= 0.
Consider the local chart y �= 0. It contains the lines of singularities l0, l2, l3, l4. We study
the resolution in this chart and double the picture over the lines l3, l4. In this local chart
we have an affine hypersurface

a4 + xz2 = λxz(a − x − 1)

and we need to blow up the line l0 = {a = z = λ = 0}.

The local chart 1a (a �= 0). We have the hypersurface

a2 + xz2 = λxz(a − x − 1).

The exceptional divisor is given by the equation a = 0, so it consists of the three com-
ponents

Ea
1 = {a = x = 0}, Ea

2 = {a = z + (x + 1)λ = 0}, Ea
3 = {a = z = 0}.
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The proper transform of the fibre over λ = 0 is E0 = {λ = a2+xz2 = 0}. The singularities
are

la1 = {x = z = a = 0}, la2 = {x = λ + z = a = 0},

la3 = {z = a = λ = 0}, la4 = {x + 1 = z = a = 0}.

We have that

Ea
2 ∩ Ea

3 = la3 ∪ la4 , Ea
1 ∩ Ea

3 = la1 , E0 ∩ Ea
2 ∩ Ea

3 = la3 .

All proper transforms of the lines l2 to l6 do not lie in this chart.

The local chart 1z (z �= 0). There is nothing new in this chart: all we are interested in is
contained in the chart 1a.

The local chart 1λ (λ �= 0). We have the hypersurface

λ2a4 + xz2 = xz(λa − x − 1).

The exceptional divisor is given by the equation λ = 0, so it consists of the three com-
ponents

Eλ
1 = {λ = x = 0}, Eλ

2 = {λ = z + x + 1 = 0}, Eλ
3 = {λ = z = 0}.

The proper transform of the fibre over λ = 0 does not lie in this chart. We have that

Eλ
1 = Ea

1 , Eλ
2 = Ea

2 , Eλ
3 = Ea

3 .

The singularities are

lλ1 = {x = z = λ = 0} = Eλ
1 ∩ Eλ

3 ,

lλ2 = {a = x = z = 0} (proper transform of l3),

lλ3 = {x + 1 = z = λ = 0} = Eλ
2 ∩ Eλ

3 ,

lλ4 = {a = z = x + 1 = 0} (proper transform of l2),

l5 = {x = z + 1 = λ = 0} = Eλ
1 ∩ Eλ

2 ,

lλ6 = {x = z + 1 = a = 0} (proper transform of l4).

So, after the first blow-up we get a configuration of the components of the central fibre
as shown in Figure 2.

We then blow up the line la3 . It is enough to consider it in the chart 1a. That is, we
blow up the line

{z = a = λ = 0}

at
{a2 + xz2 − λxz(a − x − 1) = 0}.
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Figure 2. The picture after the first blow-up.

The only meaningful local chart is λ �= 0. In this chart, we get the hypersurface

{a2 + xz2 − xz(λa − x − 1) = 0}.

The exceptional divisor is

Ea,λ = {λ = a2 − xz(z + x + 1) = 0}.

The singularities in its neighbourhood are

{a = x = z = 0} (proper transform of la1),

{a = x = z + 1 = 0} (proper transform of la2),

{a = x + 1 = z = 0} (proper transform of la4).

All of them lie on the exceptional divisor. So we did not get ‘new’ singularities after
this blow-up. The divisors Ea

2 , Ea
3 now intersect only by the proper transform of la4 ;

the divisor Ea
1 intersects Ea

2 and Ea
3 in two separated lines both intersecting the line

Ea
1 ∩ Ea,λ = {x = a = λ = 0}. The proper image of E0 intersects only Ea,λ by a line

lying far from the rest of the exceptional divisors.
We now blow up the line la4 = lλ3 . The line la3 does not lie in the chart 1λ, so we can

consider this blow-up only in the chart 1λ. We make the change of variables x → x − 1.
We then get a hypersurface

{λ2a4 + (x − 1)z2 = (x − 1)z(λa − x) = 0},

and we then need to blow up the line

{x = z = λ = 0}.

We get one exceptional divisor, proper images of the lines lλ5 and lλ6 that lie far from
the exceptional divisor, proper images of lλ1 and lλ2 (we discuss them later) and a proper
image of lλ4 (in other words, of l2). It is globally of type A3 along a line, so it resolves
horizontally and does not give an exceptional divisor over λ = 0.

So, after this blow-up the divisors Eλ
2 and Eλ

3 are separated.
We now blow up the line lλ1 . As before, we can do it in the chart 1λ. We have the

hypersurface
{λ2a4 + xz(z + x + 1 − λa) = 0},

and need to blow up the line {x = z = λ = 0}.
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Figure 3. The fibre over 0 in the Landau–Ginzburg model for a quartic double solid.

We get proper transforms of lλ3 and lλ4 , as already discussed, proper transforms of lλ5
and lλ6 , mentioned in the next paragraph, and a proper transform of lλ2 (in other words,
of l3). It is globally of type A3 along a line, so it resolves horizontally and does not give
an exceptional divisor in the central fibre.

Finally, the picture we get after blowing up the line lλ5 is very similar to the picture
we get after blowing up the line lλ1 .

We summarize the final picture of resolved singularities (see Figure 3).
Via direct calculations (see [25,27]), we get the following.

Proposition 5.1. The monodromy of the singular fibre at 0 of the Landau–Ginzburg
model for a quartic double solid with 10 singular points is strictly unipotent.

The proof of the above proposition is based on the analysis of monodromy change
under a conifold transition.

5.2. The Landau–Ginzburg model of V10

The weak Landau–Ginzburg model for a Fano variety V10 is

f =
(x2 + x + y + z + xy + xz + yz)2

xyz
∈ C[x±1, y±1, z±1].

Compactifying the pencil {f = λ, λ ∈ C} in the neighbourhood of λ = 0 in
P(x : y : z : t) × A(λ), we get the hypersurface

{(x2 + xt + zt + xz + yt + yz + xy)2 = λxyzt} ⊂ P(x : y : z : t) × A(λ).

Its singularities are the 12 lines

l1 = {x + z = t = λ = 0}, l2 = {x = z = t = 0}, l3 = {x + z = y = t = 0},

l4 = {x + y = t = λ = 0}, l5 = {x = y = t = 0}, l6 = {x + y = z = t = 0},

l7 = {x = y = z = 0}, l8 = {x + z = y = λ = 0}, l9 = {x + t = y = z = 0},

l10 = {x = y + t = z = 0}, l11 = {x + t = y = λ = 0}, l12 = {x + t = z = λ = 0},
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Figure 4. Singularities for V10.

and the conic
C = {x = yt + zt + yz = λ = 0}

(see Figure 4).
There is a symmetry x ↔ y ↔ z, so we have three types of singular lines: two horizontal

line types and one vertical line type.
We blow up l6, we set a = x + y, and we consider a local chart x = 1. In this chart,

the coordinates of our family can be written as

{(a + at + zt + az)2 = λ(a − 1)zt}.

In the neighbourhood of l6 it is analytically equivalent to a hypersurface {a2 = λzt}. In
this local chart l6, l11 and l4 are given by the equations a = z = t = 0, a = z = λ = 0 and
a = t = λ = 0, respectively. They are intersecting transversally the lines of singularities of
type A1. So, blowing l6 up we get one horizontal exceptional divisor. In its neighbourhood
the singularities (proper images of l11 and l4) are the lines of singularities of type A1.
Similarly, by symmetry, the same holds in a neighbourhood of the lines l3 and l9. After
performing the blow-ups described above, the singularities can be seen in Figure 5.

We blow up l7 in the local chart t = 1. We have the hypersurface

{(x2 + x + z + xz + y + yz + xy)2 = λxyz}.

Analytically, in a neighbourhood of l7 it is isomorphic to a hypersurface

{(x + y + z + yz)2 = λxyz}.

The lines l7, l8, l11 and C are given by the equations x = y = z = 0, x + z = y = λ = 0,
x + y = z = λ = 0 and y + z + yz = x = λ = 0, respectively.
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l2

l5

l7

l1

l8

l10

l12

l11

l4

C

0 λ

Figure 5. Singularities for V10.

Consider a local chart x �= 0 in the above blow-up. We get the hypersurface

{(1 + y + z + xyz)2 = λxyz}.

The exceptional divisor is given by

{x = y + z + 1 = 0},

and the singularities in its neighbourhood are given by

lx1 = {x = y = z + 1 = 0}, lx2 = {x = y + 1 = z = 0},

lx = {x = y + z + 1 = λ = 0}, l8 = {y = z + 1 = λ = 0},

l11 = {y + 1 = z = λ = 0}.

In the neighbourhood of lx1 the singularities are three intersecting lines: one horizontal
line lx1 and two vertical lines lx and l8. They are analytically equivalent to singular lines
on the hypersurface {a2 = λxy}. We blow up lx1 first and then lx and l8. We get two
non-intersecting exceptional divisors in the central fibre coming from lx and l8.

Consider now a local chart y �= 0 in the blow-up. We get the hypersurface

{(x + 1 + z + yz)2 = λxyz}.

The exceptional divisor is given by

{y = x + z + 1 = 0},
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Figure 6. Singularities for V10.

and the singularities in its neighbourhood are given by

lx = {y = x + z + 1 = λ = 0}, ly = {x = y = z + 1 = 0},

lx2 = {y = z = x + 1 = 0}, l11 = {x + 1 = z = λ = 0},

C = {x = 1 + z + yz = λ = 0}.

In the neighbourhood of ly the singularities form three intersecting lines of ordinary
double points ly, l11 and C, as before, so we can resolve them in a similar way.

Finally, we repeat the same procedure in the last local chart z �= 0. The lines l1 and l4
intersect transversally and are of type A1. Blowing them up one by one, we get, in the
central fibre, two exceptional divisors intersecting in a line.

The central fibre of resolution is shown in Figure 6. There are 11 surfaces.
As before, direct calculations based on [25,27] give the following.

Proposition 5.2. The monodromy of the singular fibre at 0 of the Landau–Ginzburg
model for V10 with 10 singular points is strictly unipotent.

5.3. The Landau–Ginzburg model of a sextic double solid

The weak Landau–Ginzburg model for a sextic double solid is

(x + y + z + 1)6

xyz
∈ C[x±1, y±1, z±1].

We are compactifying it in a projective space. The singularities are shown in Figure 7.
They are three vertical lines, three horizontal lines and a horizontal plane (lines are
symmetric with respect to changing coordinates x ↔ y ↔ z).
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λ0

Figure 7. The singularities for a sextic double solid.

Figure 8. The final picture after a resolution of singularities
in the neighbourhood of the non-normality locus.

We normalize the plane of singularities by blowing it up (twice). We then resolve the
horizontal vertical singularities. We record the structure of the central fibre and the
vertical singularities in Figures 8, 9 and 10, glued in a way demonstrated in Figure 11.

The lines on Figure 8 are surfaces (we look on them ‘from above’). Bold ones intersect
the ‘base’ surface. The rectangle is a surface lying ‘over’ the ‘base’. It intersects the two
remaining surfaces in two curves (which do not intersect the base surface). The point
of intersection of these lines and a ‘vertical’ line of intersection of two other planes is
denoted by a fat point. Eventually, we have nine surfaces and twelve lines recorded in
the picture.

We follow the procedure for resolving singularities as in previous examples. The final
picture is obtained by gluing the configurations of surfaces shown in Figures 8–10 along
Figure 11. A more detailed description of the Landau–Ginzburg model for a sextic double
solid can be found in [8]. Direct calculations (see [25,27]) yield the following.

Proposition 5.3. The monodromy of the singular fibre at 0 of the Landau–Ginzburg
model for a sextic double solid with 35 singular points is strictly unipotent.
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Figure 9. The resolution in the neighbourhood of the ‘first sheet’ of Figure 11.

Figure 10. The resolution in the neighbourhood of the ‘deep sheet’ of Figure 11.

Figure 11. After blowing up the horizontal singularities.

The results from [25] suggest that the double covering of a quadric ramified in an octic
with 20 nodal singular points will also have strictly unipotent monodromy of the singular
fibre at 0 of its Landau–Ginzburg model. Indeed, this double covering is nothing more
than a three-dimensional quartic deformation, and its monodromy was computed in [25].
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We extract categorical information from this common phenomenon: strict unipotency of
monodromy in the following theorems and conjectures.

We denote by H(LG(X),F) the hypercohomologies of the perverse sheaf of vanishing
cycles on the Landau–Ginzburg model. H(LG(X),F) measure the cohomologies of X

and the monodromy of LG(X) (see [13,23]).

Theorem 5.4. Let X be a smooth Fano variety. Let LG(X) be its Landau–Ginzburg
model (in particular, HMS for X and LG(X) holds). The Hochschild homology of the
Fukaya–Seidel category of LG(X) is then H(LG(X),F).

Proof. The proof follows from [26]. �

According to homological mirror symmetry, the Hochschild homology of the Fukaya–
Seidel category of the Landau–Ginzburg model is isomorphic to the Hochschild homology
of category Db(X).

Combining results from §§ 5.1 and 5.2 with the conifold transition change described
in [23], we get the following.

Proposition 5.5. The Hochschild homologies of category Db(X) of the Artin–
Mumford example, and of the resolved V10 with 10 singular points, is isomorphic.

Proof. The proof follows from direct calculations of the cohomology of the resolved
V10 with 10 singular points. �

In fact, this homology looks like cohomology of a projective space.
Using the above analysis of the monodromy of the Landau–Ginzburg models of the

Artin–Mumford example, of V10 with 10 singular points, of the double covering of a
quadric ramified in an octic with 20 nodal singular points, and of a double solid with
ramification in a sextic with 35 singular points (see [25]), we arrive at the following.

Conjecture 5.6. The categories Db(X) of the Artin–Mumford example, of V10 with
10 singular points, of the double covering of a quadric ramified in an octic with 20 nodal
singular points, and of a double solid with ramification in a sextic with 35 singular points,
contain the category of a nodal Enriques surface as a semi-orthogonal summand.

Remark 5.7. While this paper was being written, Ingalls and Kuznetsov, familiar with
our work, stated the above conjecture for the Artin–Mumford example, and proved it for
the minimal resolution of this example (see [19]). The first two authors are collaborating
with Kuznetsov in order to prove this conjecture for V10 with 10 singular points.

In the next section we look at the above observations from the perspective of the theory
of the spectra of categories.
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6. The spectrum, the enhanced spectrum and applications

6.1. The classical spectrum

In this subsection we review the notions of spectra and gaps following [4].
Non-commutative Hodge structures were introduced in [26], as a means of bringing

the techniques and tools of Hodge theory into the categorical and non-commutative
realm. In the classical setting, much of the information about an isolated singularity is
recorded by means of the Hodge spectrum, a set of rational eigenvalues of the monodromy
operator. A categorical analogue of this Hodge spectrum appears in the works of Orlov
and Rouqier [30, 32]. We call this the Orlov spectrum. Recent work in [4] suggests an
intimate connection with the classical singularity theory.

We recall the definitions of the Orlov spectrum and discuss some of the main results
in [4]. Let T be a triangulated category. For any G ∈ T denote by 〈G〉0 the smallest
full subcategory containing G that is closed under isomorphisms, shifting and taking
finite direct sums and summands. Now, inductively define 〈G〉n as the full subcategory
of objects B such that there exists a distinguished triangle X → B → Y → X[1], with
X ∈ 〈G〉n−1 and Y ∈ 〈G〉0, and direct summands of such objects.

Definition 6.1. Let G be an object of a triangulated category T . If there exists an n

with 〈G〉n = T , we set

t(G) = min{n � 0 | 〈G〉n = T }.

Otherwise, we set t(G) = ∞. We call t(G) the generation time of G. If t(G) is finite, we
say that G is a strong generator. The Orlov spectrum of T is the union of all possible gen-
eration times for strong generators of T . The Rouqier dimension is the smallest number
in the Orlov spectrum. We say that a triangulated category T has a gap of length s if a

and a+s are in the Orlov spectrum but r is not in the Orlov spectrum for a < r < a+s.
We denote the maximum (finite) gap of the Orlov spectrum of T by Gap(T ).

The following three conjectures are from [4].

Conjecture 6.2. If X is a smooth variety, then any gap of Db(X) is at most the Krull
dimension of X.

Conjecture 6.3. The maximal gap in Orlov’s spectrum is a birational invariant.

In particular, this conjecture states that if X is a smooth projective rational 3-fold,
then the gap of Db(X) is equal to 1.

We now apply the theory of gaps to the observations from the previous sections. We
first formulate the following.

Conjecture 6.4. Let X be a smooth algebraic surface. Then, h2,0(X) = 0 is equivalent
to Gap(Db(X)) = 1.

Combining this with Conjecture 5.6, we get the following.
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..

I2

I1

HH*(T )

Spec ( Ann (I1))
Spec ( Ann (I2))

Figure 12. Noether–Lefschetz spectra.

Table 2. HMS and Noether–Lefschetz spectra.

A category T NLSpec(T )

Db(X) NLSpec(T ) ⊂ Specdg−gr(HH∗(Db(X))) × Spec(T )
FS(LG(X)) NLSpec(T ) ⊂ Specdg−gr(H

∗(LG(X), F)) × Spec(T )

Conjecture 6.5. The gap of the category Db(X) for the Artin–Mumford example,
of V10 with 10 singular points, of the double covering of a quadric ramified in an octic
with 20 nodal singular points, and of the double solid with ramification in a sextic with
35 singular points, is equal to 1.

In other words, the gap of the Orlov spectra is too weak a categorical invariant to
distinguish the rationality of these examples. In the next section we introduce more
advanced Noether–Lefschetz spectra.

6.2. Enhanced Noether–Lefschetz spectra

Let T be an enhanced triangulated category and let HH∗(T ) be its Hochschild cohom-
ology.

Definition 6.6. We denote by Noether–Lefschetz spectra NL(T ) the ordered collection
of sets over HH∗(T ) defined as follows. For any graded ideal I in HH∗(T ) we consider
the differential graded (DG) subcategory Ann(I) in T : the annihilator of I. The set
Spec(Ann(I)) is the set of generators of T in the DG subcategory Ann(I). We denote
the maximum gap of Spec(Ann(I)) over all subsets I by NLGap(T ) (see Figure 12).

Clearly, Spec(T ) embeds in the set (I,Spec(Ann(I))), but the behaviour of the gaps
in NL(T ) is much more complex (for more examples see [3]).

We make the following conjecture.

Conjecture 6.7. Let X be a three-dimensional smooth projective variety. If X is
rational, then the gaps in NL(Db(X)) are equal to 1.

The above conjecture suggests a new invariant of rationality. It is based on our studies
of Landau–Ginzburg models from previous sections. Proposition 5.1 together with HMS
suggests that NL(Db(X)) are completely determined by the monodromy and vanishing
cycles of Landau–Ginzburg models (see Table 2). Still, it is possible that NL(Db(X)) has
all gaps equal to 1 and X is not rational.
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Table 3. Summarizing the conjectures.

A Fano variety X Db(X) and HH0(X) Gap(Db(X)) NLGap(X)

A double covering of
P

3 ramified in a K3
surface with 10
nodal singular points
(Artin–Mumford
variety).

Db(X) =
〈Db(E), E1, . . . , E10〉,
where E is a nodal
Enriques surface.
dim(HH0(X)) = 4

1 � 2

Double covering
V10

2:1

��
V5

Db(X) =
〈Db(E), . . . 〉, where
E is a nodal Enriques
surface.
dim(HH0(X)) = 4

1 � 2

P
3 dim(HH0(X)) = 4 1 1

A sextic double solid
with 35 nodal
singular points.

Db(X) =
〈Db(E), . . . 〉, where
E is a nodal Enriques
surface.
dim(HH0(X)) = 4

1 � 2

The double covering
of a quadric ramified
in an octic with 20
nodal singular
points.

Db(X) =
〈Db(E), . . . 〉, where
E is a smooth
Enriques surface.
dim(HH0(X)) = 4

1 � 2

In what follows we give conjectural examples of three-dimensional varieties that have
gaps equal to 1 in Spec(Db(X)) and have gaps equal to 2 or higher in NL(Db(X)).
Following Conjecture 6.3, homological mirror symmetry and examples in § 5, we make
the following conjecture.

Conjecture 6.8. In all examples, the Artin–Mumford example, V10 with 10 singular
points, the double covering of a quadric ramified in an octic with 20 nodal singular points
and the double solid with ramification in a sextic with 35 singular points, NLGap(Db(X))
is equal to 2 or higher.

This conjecture is based on the fact that Landau–Ginzburg models, for the Artin–
Mumford example, for V10 with 10 singular points, for the double covering of a quadric
ramified in an octic with 20 nodal singular points and for the double solid with ramifi-
cation in a sextic with 35 singular points, have the same monodromies (see also [25]).

We record all our findings and conjectures in Table 3.
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Remark 6.9. It is quite possible that derived categories of the Artin–Mumford exam-
ple and of V10 are related via deformation, in which case it is not surprising that their
spectra are equal.

Remark 6.10. The considerations in the last two sections suggest a strong correlation
between spectra, monodromy and walls in moduli spaces of stability conditions. We pose
the following two questions.

Question 1. Do Noether–Lefschetz spectra define a stratification on the moduli space
of stability conditions?

Question 2. Are classical Noether–Lefschetz loci connected to this stratification?

Remark 6.11. The Artin–Mumford example is an example of a conic bundle. We
expect that the technique discussed here will lead to many examples of conic bundles
for which the gap of Orlov’s spectrum is equal to 1 and whose non-rationality can be
established using gaps in the Noether–Lefschetz spectra.
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