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ASYMPTOTOLOGY—A CAUTIONARY TALE
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Abstract

The art of asymptotology is a powerful tool in applied mathematics and theoretical physics,
but can lead to erroneous conclusions if misapplied. A seemingly paradoxical case is
presented in which a local analysis of an exactly solvable problem appears to find solutions
to an eigenvalue problem over a continuous range of the eigenvalue, whereas the spectrum
is known to be discrete. The resolution of the paradox involves the Stokes phenomenon.
The example illustrates two of Kruskal’s Principles of Asymptotology.

1. Introduction

In his 1963 pedagogical essay [7] Kruskal coined the term asymptotology to describe
the “art of dealing with applied mathematical systems in limiting cases”.

By “applied mathematical system” he means one that satisfies a Principle of Clas-
sification (or Determinism). By this he means that the system must be completely
specified mathematically so that a well-defined individual solution can be determined
(or a family of solutions classified) for systematic asymptotic study.

He then formulates seven Principles of Asymptotology:

The Principle of Simplification;

The Principle of Recursion;

The Principle of Interpretation;

The Principle of Wild Behaviour;

The Principle of Annihilation;

The Principle of Maximal Balance;

The Principle of Mathematical Nonsense.
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In this paper we pose a simple mathematical problem—a second-order linear or-
dinary differential equation (ODE) eigenvalue problem whose spectrum is to be de-
termined asymptotically in the limit € — 0, where € is the coefficient of the second
derivative term. This is used to illustrate some of the principles of asymptotology and
to provide a cautionary example of some of the pitfalls.

Since 1963 a number of good texts have appeared on asymptotic methods in areas
of applied mathematics. We shall use forreference the book of Bender and Orszag [1].

The genesis of the problem lies in an attempt to illustrate, in a brief one-page
Comment [5], what we suggested was a flaw in a published [6] analysis of the
spectrum of drift wave instabilities in a plasma with sheared drift velocity. The earlier
authors [6] had concluded that the spectrum is continuous.

The physical problem is quite complicated and had not really been posed in such
a way in [6] as to fully satisfy Kruskal’s Principle of Classification. That is, it was
arguably not yet an applied mathematical system and thus it was not perhaps surprising
that the authors would come to grief in trying to apply asymptotic reasoning.

Our approach was to replace the original physical problem with a simpler, well-
posed problem and to show that an analogous line of reasoning to that used in [6]
would give erroneous results. It is true that our “counter example” is not very relevant
to the original physical problem, and there is thus room for debate as to whether it
catches its essence. However, we note that a much more physically motivated model
equation has subsequently been analysed [3] with the same conclusion—there is no
continuous spectrum in this problem.

2. The model problem

Consider the ODE defined on the real x-line
€’y"(x) + iey'(x) + [ — f X)) y(x) = 0. (D
Specifically, for the function f we take
fx)=x%/4—ix/2. )

Equation (1) is to be solved under the boundary conditions y(x) — 0 as x — oo to
determine the allowed (possibly complex) values of the eigenvalue A.

The first order term can be removed by defining the new dependent variable ¥ (x) =
exp(ix/2¢)y(x), leading to the standard form [1, (10.1.5)]

€Y' — Qx)Y =0, 3)

where Q(x|A) = (x — i)?/4 ~ A.
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By transforming the independent variable using u = (x — i)/€'/?, defining ¥ (1) =

Y(x), and analytically continuing from the line Imu = —1/€¢'/? to the real line,
Im u = 0, we find that (1) is nothing but a disguised version of the “quantum oscillator”
equation

Y'(w) + (E — u?/4) ¥ (u) =0,

where E = A /e.
This equation can be solved [1, pp. 332-3, 573—4] in terms of the parabolic cylinder
functions D,. When E = n + 1/2, where n = 0, 1, ..., there exists a solution

satisfying the boundary conditions ¥r(4) — 0 as u — +00:
Va(u) = D,(u) = He,(u) exp (—u?/4),

He, denoting a Hermite polynomial.

The boundary conditions for y are also satisfied on the original contour,
Imu = —1/€'?, so the eigenvalue spectrum of (1) is discrete and given by A =
€E, =e(n+1/2).

In terms of the original variables, the general solution in the complex plane (arbi-
trary A, z € Q) is

y(z) = exp (——;%) [ADu (Z?,_/Tl) +BD_,, (l(zel%l))] ,

where v = A /e — 1/2 and A and B are arbitrary constants. The dominant asymptotic
behaviour as x — %00 is as 27! exp[(z%/4 — iz) /€], with the subdominant solution
going as z° exp(—z2/4¢).

The transformation Y(x) = exp(ix/2¢)y(x) puts the problem in a more standard
form, and in our case leads to an exact solution. However, it is a trick that may not
be available in more complex physical problems. In plasma physics we often have
to deal with higher order differential equations or even integro-differential equations
{2]. Thus, in order to gain the maximum insight into the general problem, we retumn
to the form given in (1).

3. Boundary layer ordering

In this section we suppose that the solution of (1) is localised in a narrow region
(an “internal boundary layer” [1, p. 455]) about an arbitrary point x, on the real line.
Supposing that the width of this region is O(e'/2) we define a stretched variable & by
setting

x=xo+€%, yx) =)’o(§)+€l/2}’1/2(5) +---
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In the boundary layer, § = O(1).

We also expand the eigenvalue in a power series in €'/2, A = A9+ €2A; + -,
where the A;, j = 0,1,2,..., are O(1). In this ordering the derivative terms are
small, so at lowest order we find the equation

(R0 — fo)yo(§) =0,

where fo = f (xo). (In general, f{” denotes the I’th derivative at xo, f ©®(xo).) This
can be satisfied for arbitrary yy(£¢) by choosing

Ao = fo. 4

Proceeding to next order, we find a first order ODE determining y,
.dyo
—— — (ff— A =0.
L dE (fof Yo
This is solved by
yo = const exp[i(A & — fo€%/2)). &)
Since Im f; = —1/2, this solution approaches zero as £ — +00 for arbitrary A,. As

concluded in [6] there appears to be a continuum of allowed solutions!

This is clearly wrong, since we have given the exact point spectrum in Section 2, but
the error is quite subtle. For instance, we do not find a contradiction by proceeding to
higher order in the €'/ expansion—the solution found above is a perfectly respectable
asymptotic solution and each order decays exponentially to zero as § — Fo00.

However, the boundary layer does not really extend to infinity—once £ becomes
O(e~"/?) the ordering breaks down. Thus we must match to “outer solutions” on either
side of the layer [1, pp. 421-84] to construct a global solution to the problem. Even
though the solution vanishes exponentially towards both sides of the layer, there is
still the possibility that this trend may reverse in the outer region, leading to violation
of the boundary conditions by the global solution at “true infinity”.

4. WKB method

By arranging that the first derivative term dominates the second derivative, the
boundary layer ordering approach gives only a first order ODE at leading nontrivial
order, and thus there is only one solution. The original problem was a second order
ODE, the general solution being a linear superposition of two independent functions,
so we have clearly lost one solution using this method. To recover it we need to
find an asymptotic expansion method that respects Kruskal’s Principle of Maximal
Balance—"no term should be neglected without a good reason” [7, p. 34].
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FIGURE 1. Polya plot [9] in the complex z-plane for the branch g_(z) in the case A = 1/4 — i/2. The
branch cut between the turning points at i = 2+/A is also shown, as is the point z = 1 at which g_(z)
vanishes.

Kruskal’s Principle of Wild Behaviour [7, p. 30] tells us that solutions are lost by
not allowing for sufficiently “wild behaviour” in the initial ansatz. In our case this
wild behaviour is a rapid variation of the solution with respect to x—the Principle of
Maximal Balance tells us to balance the first and second derivative terms in (1) and
this is achieved by assuming variation on the € scale rather than the € 1/2 scale assumed
in the boundary layer ordering.

In discussing his Principle of Wild Behaviour, Kruskal suggests “to write the
unknown as the exponential of a new unknown represented by a series, the dominant
term of which must become infinite (in the limit as € — 0)”. This is the powerful
Wentzel-Brillouin-Kramers (WKB) method, which includes boundary layer theory as
a special case [1, p. 484].

Following Bender and Orszag [1, p. 485] we set

y = Aexp(S/e), (6)

where A and S are slowly varying functions of z [that is, A’/A = O(1), §"/S' =
O(1)]. Defining g(z) = §'(z), at lowest order we find the “local dispersion relation”

@ +ig+r—f =0. %)

Solving this we find the two branches q; = —i/2 £ [f (z) — A — 1/4]"/2. With the
choice of f in (2), we write these solutions in the form

i, Az V2 - 12
w3+ (5 2) (F+7) ®
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FIGURE 2. Stokes lines in the complex z-plane emanating from the turning points at i & 2+/A for the
differential equation in the transformed form, (3) in the case of real A. Note that the real axis cuts two of
these lines.

We take the branch cut for the square root w!/? of an arbitrary complex variable w to
be along the negative real axis in the w-plane. With this convention, writing (8) in the
form above defines the two branches on the z-plane cut by a straight line joining the
branch points at z = i & 2+/A, as shown in Figure 1.

We see from (7) that g should have a zero at x; if A = f (xo). This is the same
condition, (4), as we found for the location of the boundary layer in Section 3. With
the choice of f in (2), the branches g, (z) are found to have zeros at z = i F (4A —1)1/2,
respectively. Taking A = f (x,), we find that it is the root z = i + (4A — 1)!/2 that
gives the desired boundary layer point on the real line, z = xo, the other root being
complex. Thus the branch g_(z) should correspond to the boundary layer solution in
the neighbourhood of x,.

Expanding g, about x, and integrating to find the eikonal S, we find one branch,
S_/€ = id& — if 4§72, that agrees with the exponent in the boundary layer solution,
(5). However the other branch is given by S, /e = —i§ /e'/? — id & + if j£2/2, which
violates the boundary layer ordering and was thus missed.

We have now found the missing solution, but this does not in itself resolve the
paradox: does niot the S_ branch by itself provide a solution that satisfies the global
boundary conditions? If this branch provided a global asymptotic solution, then this
would be true. However, it has been known since the work of Stokes in the last century
that the coefficients of the two asymptotic representations may change as we cross a
Stokes line in the complex plane [1, pp. 112-117], where the roles of the dominant
and subdominant solutions interchange. (Sometimes this is called an anti-Stokes line
if a factor i is included in the exponent in (6) [8].) In our problem, if the real axis

_ crosses one or more Stokes lines, then the S; solutions will couple and the S_ branch
alone will not represent a global solution. _

The Stokes phenomenon has been much discussed in texts such as [1] and we
do not intend to review this here. However, we remark that White’s {8] general
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FIGURE 3. Detail of Figure 1 in the neighbourhood of the “internal boundary layer” at z = 1.

graphical computer method for determining Stokes lines in second order ODEs in
the standard form of (3) has been found very useful in practical problems, see for
example [4]. White’s approach is based on plotting vectors representing the direction
of i Q=72 (or i 9"/*) on a grid in the complex plane. Along curves everywhere tangent
to these vectors, the real part of S does not change, so neither solution is dominant
or subdominant. These vectors thus represent the directions of local Stokes lines.
Fortran and C versions of White’s program exist, but in this paper we have used the
PlotPolyaField function in Mathematica [9] to implement the strategy.

Figure 2 shows such a plot and also sketches in the Stokes curves emanating from
the turning points at z = i & 2A'/2 (that is, the points where Q(z) = 0). It is seen
that the real line [the domain of the ODE, (1)] crosses two of these lines, and thus the
localised S, asymptotic solution is not a global solution. That is, both S. solutions
need to be taken into account in determining the eigenvalue on the original domain.

Figures 1 and 3 show “Polya plots”, made using PlotPolyaField, of ig_(z),
with g_ as defined in (8) for the case A = 1/4 — i/2. Using A = f (x,) we see that
this choice corresponds to putting the boundary layer at x, = 1. The vectors are in
the local direction of ig_(z) (where the bar denotes complex conjugation) with the
lengths proportional to 1 + |g_(z)].

As discussed in [2], the general condition for a turning point at z; is not g(z) = 0,
but the requirement that that there be a branch point at z, (that is, a point where two
branches of the local dispersion relation merge). These two conditions are the same
in the standard form, (3), but not in general.

For instance, the boundary layer point x; defined in (4) is not a branch point,
although g_(xo) vanishes there, and it is therefore not a turning point. This is not
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surprising, since it is an artifact of the transformation Y (x) = exp(ix/2¢)y(x). On the
other hand, the branch points at i &= 2!/? remain invariant under this transformation,
as does the “global dispersion relation” [2, (18)]

f ig-(z,A)dz = (2n + 1)m,
C
where the contour C encloses the branch cut shown in Figure 1.

5. Conclusion

By setting up a well defined “applied mathematical system” in accordance with
Kruskal’s zeroth law of asymptotology, the Principle of Classification, we have been
able to shed light on a controversy in the plasma physics literature. We have found that
at least two of Kruskal’s Principles of Asymptotology, the Principle of Wild Behaviour
and the Principle of Maximal Balance, come into play in this problem.
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