Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T10:02:44.803Z Has data issue: false hasContentIssue false

Effects of calcium-free ageing on ethanol-induced activation and developmental potential of mouse oocytes

Published online by Cambridge University Press:  22 May 2023

Chun-Hui Jin
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Ren-Ren Chen
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Xiu-Yun Feng
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Jun-Gui Zhao
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Ming-Tao Xu
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Min Zhang
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
Jun-Zuo Wang*
Affiliation:
Department of Reproduction and Genetics, Tai’an City Central Hospital, Tai’an, Shandong Province, China
Jing-He Tan*
Affiliation:
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, Shandong Province, China
*
Corresponding author: Jing-He Tan. College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, Shandong 271018, China. Fax: +86 0538 8241419. E-mail: tanjh@sdau.edu.cn. Jun-Zuo Wang. Department of Reproduction and Genetics, Tai’an City Central Hospital, Tai’an, Shandong Province, China. E-mail: wjunzuo@163.com
Corresponding author: Jing-He Tan. College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, Shandong 271018, China. Fax: +86 0538 8241419. E-mail: tanjh@sdau.edu.cn. Jun-Zuo Wang. Department of Reproduction and Genetics, Tai’an City Central Hospital, Tai’an, Shandong Province, China. E-mail: wjunzuo@163.com

Summary

Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernhardt, M. L., Padilla-Banks, E., Stein, P., Zhang, Y. and Williams, C. J. (2017). Store-operated Ca2+ entry is not required for fertilization-induced Ca2+ signaling in mouse eggs. Cell Calcium, 65, 6372. doi: 10.1016/j.ceca.2017.02.004 CrossRefGoogle Scholar
Boni, R., Cuomo, A. and Tosti, E. (2002). Developmental potential in bovine oocytes is related to cumulus–oocyte complex grade, calcium current activity, and calcium stores. Biology of Reproduction, 66(3), 836842. doi: 10.1095/biolreprod66.3.836 CrossRefGoogle ScholarPubMed
Boni, R., Cocchia, N., Silvestre, F., Tortora, G., Lorizio, R. and Tosti, E. (2008). Juvenile and adult immature and in vitro matured ovine oocytes evaluated in relation to membrane electrical properties, calcium stores, IP3 sensitivity and apoptosis occurrence in cumulus cells. Molecular Reproduction and Development, 75(12), 17521760. doi: 10.1002/mrd.20921 CrossRefGoogle ScholarPubMed
Borland, R. M., Biggers, J. D., Lechene, C. P. and Taymor, M. L. (1980). Elemental composition of fluid in the human fallopian tube. Journal of Reproduction and Fertility, 58(2), 479482. doi: 10.1530/jrf.0.0580479 CrossRefGoogle ScholarPubMed
Coburn, J. W., Elangovan, L., Goodman, W. G. and Frazaõ, J. M. (1999). Calcium-sensing receptor and calcimimetic agents. Kidney International. Supplement, 73, S52S58. doi: 10.1046/j.1523-1755.1999.07303.x CrossRefGoogle ScholarPubMed
Cuthbertson, K. S. R. (1983). Parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol. Journal of Experimental Zoology, 226(2), 311314. doi: 10.1002/jez.1402260217 CrossRefGoogle ScholarPubMed
Cuthbertson, K. S., Whittingham, D. G. and Cobbold, P. H. (1981). Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature, 294(5843), 754757. doi: 10.1038/294754a0 CrossRefGoogle ScholarPubMed
De Santis, T., Casavola, V., Reshkin, S. J., Guerra, L., Ambruosi, B., Fiandanese, N., Dalbies-Tran, R., Goudet, G. and Dell’Aquila, M. E. (2009). The extracellular calcium-sensing receptor is expressed in the cumulus-oocyte complex in mammals and modulates oocyte meiotic maturation. Reproduction, 138(3), 439452. doi: 10.1530/REP-09-0078 CrossRefGoogle ScholarPubMed
Dell’Aquila, M. E., De Santis, T., Cho, Y. S., Reshkin, S. J., Caroli, A. M., Maritato, F., Minoia, P. and Casavola, V. (2006). Localization and quantitative expression of the calcium-sensing receptor protein in human oocytes. Fertility and Sterility, 85(Suppl. 1), 12401247. doi: 10.1016/j.fertnstert.2005.11.033 CrossRefGoogle ScholarPubMed
Didion, B. A., Martin, M. J. and Markert, C. L. (1990). Parthenogenetic activation of mouse and pig oocytes matured in vitro . Theriogenology, 33(6), 11651175. doi: 10.1016/0093-691X(90)90035-R CrossRefGoogle Scholar
Grippo, A. A., Henault, M. A., Anderson, S. H. and Killian, G. J. (1992). Cation concentrations in fluid from the oviduct ampulla and isthmus of cows during the estrous cycle. Journal of Dairy Science, 75(1), 5865. doi: 10.3168/jds.S0022-0302(92)77738-8 CrossRefGoogle ScholarPubMed
Hofer, A. M. and Brown, E. M. (2003). Calcium: extracellular calcium sensing and signaling. Nature Reviews. Molecular Cell Biology, 4(7), 530538. doi: 10.1038/nrm1154 CrossRefGoogle Scholar
Ilyin, V. and Parker, I. (1992). Effects of alcohols on responses evoked by inositol trisphosphate in Xenopus oocytes. Journal of Physiology, 448, 339354. doi: 10.1113/jphysiol.1992.sp019045 CrossRefGoogle ScholarPubMed
Kubiak, J. Z. (1989, December). Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Developmental Biology, 136(2), 537545. doi: 10.1016/0012-1606(89)90279-0 CrossRefGoogle ScholarPubMed
Lan, G. C., Ma, S. F., Wang, Z. Y., Luo, M. J., Chang, Z. L. and Tan, J. H. (2004). Effects of post-treatment with 6-dimethylaminopurine (6-DMAP) on ethanol activation of mouse oocytes at different ages. Journal of Experimental Zoology. Part A, Comparative Experimental Biology, 301(10), 837843. doi: 10.1002/jez.a.62 CrossRefGoogle ScholarPubMed
Liu, C., Wu, G. Q., Fu, X. W., Mo, X. H., Zhao, L. H., Hu, H. M., Zhu, S. E. and Hou, Y. P. (2015). The extracellular calcium-sensing receptor (CASR) regulates gonadotropins-induced meiotic maturation of porcine oocytes. Biology of Reproduction, 93(6), 131. doi: 10.1095/biolreprod.115.128579 CrossRefGoogle ScholarPubMed
Liu, C., Liu, H., Luo, Y., Lu, T., Fu, X., Cui, S., Zhu, S. and Hou, Y. (2020). The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II. Molecular Reproduction and Development, 87(5), 598606. doi: 10.1002/mrd.23322 CrossRefGoogle ScholarPubMed
Loi, P., Ledda, S., Fulka, J. Jr, Cappai, P. and Moor, R. M. (1998). Development of parthenogenetic and cloned ovine embryos: Effect of activation protocols. Biology of Reproduction, 58(5), 11771187. doi: 10.1095/biolreprod58.5.1177 CrossRefGoogle ScholarPubMed
Ma, S. F., Liu, X. Y., Miao, D. Q., Han, Z. B., Zhang, X., Miao, Y. L., Yanagimachi, R. and Tan, J. H. (2005). Parthenogenetic activation of mouse oocytes by strontium chloride: A search for the best conditions. Theriogenology, 64(5), 11421157. doi: 10.1016/j.theriogenology.2005.03.002 CrossRefGoogle ScholarPubMed
Macháty, Z. and Prather, R. S. (1998). Strategies for activating nuclear transfer oocytes. Reproduction, Fertility, and Development, 10(7–8), 599613. doi: 10.1071/rd98048 CrossRefGoogle ScholarPubMed
Miao, Y. L., Liu, X. Y., Qiao, T. W., Miao, D. Q., Luo, M. J. and Tan, J. H. (2005). Cumulus cells accelerate aging of mouse oocytes. Biology of Reproduction, 73(5), 10251031. doi: 10.1095/biolreprod.105.043703 CrossRefGoogle ScholarPubMed
Miao, Y. L., Stein, P., Jefferson, W. N., Padilla-Banks, E. and Williams, C. J. (2012). Calcium influx-mediated signaling is required for complete mouse egg activation. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 41694174. doi: 10.1073/pnas.1112333109 CrossRefGoogle ScholarPubMed
Nagai, T. (1987). Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Research, 16(3), 243249. doi: 10.1002/mrd.1120160306 CrossRefGoogle ScholarPubMed
Nagai, T. (1992). Development of bovine in vitro-matured follicular oocytes activated with ethanol. Theriogenology, 37(4), 869875. doi: 10.1016/0093-691x(92)90048-v CrossRefGoogle ScholarPubMed
Presicce, G. A. and Yang, X. (1994a). Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Molecular Reproduction and Development, 37(1), 6168. doi: 10.1002/mrd.1080370109 CrossRefGoogle ScholarPubMed
Presicce, G. A. and Yang, X. (1994b). Parthenogenetic development of bovine oocytes matured in vitro for 24 hr and activated by ethanol and cycloheximide. Molecular Reproduction and Development, 38(4), 380385. doi: 10.1002/mrd.1080380405 CrossRefGoogle ScholarPubMed
Rickords, L. F. and White, K. L. (1992). Electrofusion-induced intracellular Ca2+ flux and its effect on murine oocyte activation. Molecular Reproduction and Development, 31(2), 152159. doi: 10.1002/mrd.1080310210 CrossRefGoogle ScholarPubMed
Shiina, Y., Kaneda, M., Matsuyama, K., Tanaka, K., Hiroi, M. and Doi, K. (1993). Role of the extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. Journal of Reproduction and Fertility, 97(1), 143150. doi: 10.1530/jrf.0.0970143 CrossRefGoogle ScholarPubMed
Soboloff, J., Rothberg, B. S., Madesh, M. and Gill, D. L. (2012). STIM proteins: Dynamic calcium signal transducers. Nature Reviews. Molecular Cell Biology, 13(9), 549565. doi: 10.1038/nrm3414 CrossRefGoogle ScholarPubMed
Stricker, S. A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Developmental Biology, 211(2), 157176. doi: 10.1006/dbio.1999.9340 CrossRefGoogle ScholarPubMed
Sun, X. S., Yue, K. Z., Zhou, J. B., Chen, Q. X. and Tan, J. H. (2002). In vitro spontaneous parthenogenetic activation of golden hamster oocytes. Theriogenology, 57(2), 845851. doi: 10.1016/s0093-691x(01)00680-x CrossRefGoogle ScholarPubMed
Szpila, M., Walewska, A., Sabat-Pośpiech, D., Strączyńska, P., Ishikawa, T., Milewski, R., Szczepańska, K. and Ajduk, A. (2019). Postovulatory ageing modifies sperm-induced Ca2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Scientific Reports, 9(1), 11859. doi: 10.1038/s41598-019-48281-3 CrossRefGoogle ScholarPubMed
Tan, J. H., Liu, Z. H., Sun, X. S. and He, G. X. (1996). Tolerance of oocyte plasma membrane to electric current changes after fertilisation. Zygote, 4(4), 275278. doi: 10.1017/S0967199400003221 Google ScholarPubMed
Tan, J. H., Liu, Z. H., Ren, W., Ni, H., Sun, X. S. and He, G. X. (1997). The role of extracellular Ca2+ and formation and duration of pores on the oolemma in the electrical activation of mouse oocytes. Journal of Reproduction and Development, 43(4), 289293. doi: 10.1262/jrd.43.289 CrossRefGoogle Scholar
Wang, C. and Macháty, Z. (2013). Calcium influx in mammalian eggs. Reproduction, 145(4), R97R105. doi: 10.1530/REP-12-0496 CrossRefGoogle ScholarPubMed
Wang, W. H., Macháty, Z., Ruddock, N., Abeydeera, L. R., Boquest, A. C., Prather, R. S. and Day, B. N. (1999). Activation of porcine oocytes with calcium ionophore: Effects of extracellular calcium. Molecular Reproduction and Development, 53(1), 99107. doi: 10.1002/(SICI)1098-2795(199905)53:1<99::AID-MRD12>3.0.CO;2-G 3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Winston, N. J. and Maro, B. (1995). Calmodulin-dependent protein kinase II is activated transiently in ethanol-stimulated mouse oocytes. Developmental Biology, 170(2), 350352. doi: 10.1006/dbio.1995.1220 CrossRefGoogle ScholarPubMed
Yang, R. (2017). Roles of different calcium channels in regulating susceptibility to activation stimuli of rat and mouse oocytes. A Master’s Dissertation. Shandong Agricultural University.Google Scholar
Yang, R., Sun, H. H., Ji, C. L., Zhang, J., Yuan, H. J., Luo, M. J., Liu, X. Y. and Tan, J. H. (2018). Role of calcium-sensing receptor in regulating spontaneous activation of postovulatory aging rat oocytes. Biology of Reproduction, 98(2), 218226. doi: 10.1093/biolre/iox178 CrossRefGoogle ScholarPubMed
Yeste, M., Jones, C., Amdani, S. N., Patel, S. and Coward, K. (2016). Oocyte activation deficiency: A role for an oocyte contribution? Human Reproduction Update, 22(1), 2347. doi: 10.1093/humupd/dmv040 CrossRefGoogle ScholarPubMed