GENERALIZED SIEGEL MODULAR FORMS AND COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES

MIN HO LEE

ABSTRACT. We generalize Siegel modular forms and construct an exact sequence for the cohomology of locally symmetric varieties which plays the role of the Eichler-Shimura isomorphism for such generalized Siegel modular forms.

1. **Introduction.** Let G be a semisimple Lie group over \mathbb{R} , and let K be a maximal compact subgroup of G. We assume that the associated symmetric space has a G-invariant complex structure. Let $\rho: G \to \operatorname{Sp}(m, \mathbb{R})$ be a homomorphism, and let $\tau: D \to H_m$ be a holomorphic embedding of D into the Siegel upper half space of degree m satisfying $\tau(gz) = \rho(g)\tau(z)$ for all $g \in G$ and $z \in D$. If Γ is a torsion-free cocompact arithmetic subgroup of G, such a pair (ρ, τ) determines a Kuga fiber variety over the locally symmetric variety $X = \Gamma \setminus D$ whose fibers are polarized abelian varieties (see *e.g.* [4], [6], [9], [12]).

For each $\gamma \in \Gamma$, let the map $z \mapsto J(\gamma, z)$ be the Jacobian determinant of the holomorphic map of *D* into itself. We denote by *j*: Sp(*m*, \mathbb{R}) × $H_m \to \mathbb{C}$ the automorphy factor given by

$$j(g,Z) = CZ + D$$

for $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(m, \mathbb{R})$ and $Z \in H_m$. Then the space $S_k(\Gamma, \tau, \rho)$ of generalized Siegel modular forms consists of holomorphic functions $f: D \to \mathbb{C}$ satisfying

$$f(\gamma z) = j(\rho(\gamma), \tau(z))^k J(\gamma, z)^{-1} f(z)$$

for all $z \in D$ and $\gamma \in \Gamma$.

In this paper we construct a certain line bundle L and a vector bundle V_k over X for a nonnegative integer k such that there is an embedding $V_k \hookrightarrow \mathcal{L}^{-k}$ of the sheaf V_k of locally constant sections of V_k into the sheaf \mathcal{L}^{-k} of locally constant sections of the k-th tensor power of the dual bundle L^{-1} of L. We then show that there exists a natural exact sequence of the form

$$0 \longrightarrow H^{n-1}(X, \mathcal{I}^{-k} / \mathcal{V}_k) \longrightarrow H^n(X, \mathcal{V}_k) \longrightarrow S_k(\Gamma, \tau, \rho) \longrightarrow 0,$$

where *n* is the complex dimension of $X = \Gamma \setminus D$. Such an exact sequence was constructed by Nenashev [11] for $G = \text{Sp}(m, \mathbb{R})$ and a congruence subgroup $\Gamma \subset \text{Sp}(m, \mathbb{Z})$ as a

Received by the editors June 1, 1995.

[©] Canadian Mathematical Society 1997.

Supported in part by a PDL Award from the University of Northern Iowa.

AMS subject classification: Primary: 11F46; Secondary: 11F75, 22E40.

generalization of the Eichler-Shimura isomorphism for elliptic modular forms (see e.g. [1], [8]).

2. Vector bundles on locally symmetric varieties. In this section we construct a vector bundle V_k and a line bundle L over a locally symmetric variety by extending the construction of Nenashev [11] of such bundles over Siegel modular varieties. We fix a positive integer m and set

$$\Psi_m = \left\{ \begin{pmatrix} U \\ V \end{pmatrix} \middle| U, V \in M_m(\mathbb{C}), \ {}^tUV = {}^tVU, \ \text{rank} \ \begin{pmatrix} U \\ V \end{pmatrix} = m \right\}$$

where $M_m(\mathbb{C})$ denotes the set of $m \times m$ matrices with entries in \mathbb{C} . Given an element $\begin{pmatrix} U_0 \\ V_0 \end{pmatrix} \in \Psi_m$ and a nonnegative integer k we define $\eta_k \begin{pmatrix} U_0 \\ V_0 \end{pmatrix}$ to be the map

$$\eta_k \left(\begin{array}{c} U_0 \\ V_0 \end{array} \right) : \Psi_m \longrightarrow \mathbb{C}$$

on Ψ_m given by

$$\eta_k \begin{pmatrix} U_0 \\ V_0 \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix} = \det^k \begin{pmatrix} U_0 & U \\ V_0 & V \end{pmatrix} \text{ for all } \begin{pmatrix} U \\ V \end{pmatrix} \in \Psi_m$$

Let W_k be the vector space over \mathbb{C} generated by the functions $\phi: \Psi_m \to \mathbb{C}$ of the form $\eta_k \begin{pmatrix} U_0 \\ V_0 \end{pmatrix}$ for $\begin{pmatrix} U_0 \\ V_0 \end{pmatrix} \in \Psi_m$. Then the real symplectic group $\operatorname{Sp}(m, \mathbb{R})$ acts on W_k by

$$\sigma \cdot \eta_k \begin{pmatrix} U_0 \\ V_0 \end{pmatrix} = \eta_k \left(\sigma \begin{pmatrix} U_0 \\ V_0 \end{pmatrix} \right)$$

for $\sigma \in \text{Sp}(m, \mathbb{R})$. The group $\text{Sp}(m, \mathbb{R})$ also acts on the Siegel upper half space

$$H_m = \{ Z \in M_m(\mathbb{C}) \mid {}^tZ = Z, \Im Z \gg 0 \}$$

of degree m by

$$\sigma \cdot Z = (AZ + B)(CZ + D)^{-1} \text{ for } \sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(m, \mathbb{R})$$

and $Z \in H_m$. We set

$$j(\sigma, Z) = \det(CZ + D).$$

Then *j*: Sp(m, \mathbb{R}) × $H_m \rightarrow \mathbb{C}$ is an automorphy factor, *i.e.*, it satisfies

$$i(\sigma\mu, Z) = j(\sigma, \mu Z)j(\mu, Z)$$

for $\sigma, \mu \in \operatorname{Sp}(m, \mathbb{R})$ and $Z \in H_m$. If $Z \in H_m$ and if I_m denotes the $m \times m$ identity matrix, then the matrix $\begin{pmatrix} Z \\ I_m \end{pmatrix}$ is an element of Ψ_m . Now we define the map $\eta_k \colon H_m \to W_k$ by

$$\eta_k(Z) = \eta_k \left(\begin{array}{c} Z \\ I_m \end{array} \right) \in W_k$$

for all $Z \in H_m$. From the action of $Sp(m, \mathbb{R})$ on W_k described above we have

$$\sigma\eta_k(Z) = \eta_k \left(\sigma \left(\begin{array}{c} Z \\ I_m \end{array} \right) \right)$$

for $\sigma \in \operatorname{Sp}(m, \mathbb{R})$ and $Z \in H_m$.

LEMMA 2.1. The map η_k satisfies

$$\eta_k(\sigma Z) = j(\sigma, Z)^{-k} \sigma \eta_k(Z)$$

for all $\sigma \in \operatorname{Sp}(m, \mathbb{R})$ and $Z \in H_m$.

PROOF. See [11, (2.1.4)].

Let *G* be a semisimple Lie group over \mathbb{R} , *K* a maximal compact subgroup of *G*, and D = G/K the associated Riemannian symmetric space. We assume that *D* has a *G*-invariant complex structure. Let $\rho: G \to \operatorname{Sp}(m, \mathbb{R})$ be a homomorphism and $\tau: D \to H_m$ a holomorphic embedding such that

$$\tau(gz) = \rho(g)\tau(z)$$

for all $g \in G$ and $z \in D$ (see [12] for detailed descriptions and applications of maps ρ and τ of this type). Then *G* acts on W_k by

$$g \cdot \eta_k \begin{pmatrix} U \\ V \end{pmatrix} = \eta_k \Biggl(
ho(g) \begin{pmatrix} U \\ V \end{pmatrix} \Biggr)$$

We define the map $\xi_k: D \to W_k$ by $\xi_k(z) = \eta_k(\tau(z))$ for all $z \in D$. Then for each $g \in G$ and $z \in D$ we obtain

$$\begin{aligned} \xi_k(gz) &= \eta_k \big(\tau(gz) \big) = \eta_k \big(\rho(g) \tau(z) \big) \\ &= j \big(\rho(g), \tau(z) \big)^{-k} \rho(g) \eta_k \big(\tau(z) \big) \\ &= j \big(\rho(g), \tau(z) \big)^{-k} \rho(g) \xi_k(z) \end{aligned}$$

by using Lemma 2.1.

LEMMA 2.2. Let Δ be a subset of D whose image $\tau(\Delta)$ under τ contains a nonempty subset of H_m . Then the set

$$\{\xi_k(z) \mid z \in \Delta\}$$

is a linear span of the complex vector space W_k .

PROOF. Let Δ' be a nonempty open subset of H_m that is contained in $\tau(\Delta)$. Then it follows from [11, Lemma 2.1.1] that the set

$$\{\eta_k(z') \mid z' \in \Delta'\}$$

is a linear span of W_k . However, since $\xi_k(z) = \eta_k(\tau(z))$ for $z \in D$, we have

$$\{\xi_k(z) \mid z \in \Delta\} \supset \{\eta_k(z') \mid z' \in \Delta'\};\$$

hence the lemma follows.

Let Γ be a torsion-free cocompact arithmetic subgroup of *G*. Then Γ acts on the space $D \times W_k$ by

$$\gamma \cdot (z, x) = (\gamma z, \rho(\gamma)x)$$

for all $\gamma \in \Gamma$ and $(z, x) \in D \times W_k$. The group Γ also acts on $D \times \mathbb{C}$ by

$$\gamma \cdot (z, \lambda) = \left(\gamma z, j(\rho(\gamma), \tau(z))\lambda\right)$$

for $\gamma \in \Gamma$ and $(z, \lambda) \in D \times \mathbb{C}$. We set

$$V_k = \Gamma \setminus D \times W_k, \quad L = \Gamma \setminus D \times \mathbb{C},$$

where the quotients are taken with respect to the actions of Γ described above. Then the natural projection map $D \to \Gamma \setminus D$ induces the structures of a vector bundle on V_k and a line bundle on L over the locally symmetric space $X = \Gamma \setminus D$. Since the map $\xi_k : D \to W_k$ satisfies

$$\xi_k(gz) = j(\rho(g), \tau(z))^{-k} \rho(g)\xi_k(z)$$

for all $g \in \Gamma \subset G$, the map ξ_k can be regarded as a holomorphic section of the vector bundle

$$V_k \otimes L^{-k}$$

over $X = \Gamma \setminus D$, where L^{-k} denotes the *k*-fold tensor power $(L^{-1})^{\otimes k}$ of the dual bundle L^{-1} of L.

Now we define a bilinear pairing $\langle , \rangle : W_k \times W_k \to \mathbb{C}$ on W_k obtained by extending linearly to the whole vector space W_k the map

$$\left\langle \eta_k \begin{pmatrix} U \\ V \end{pmatrix}, \eta_k \begin{pmatrix} U' \\ V' \end{pmatrix} \right\rangle = \det^k \begin{pmatrix} U & U' \\ V & V' \end{pmatrix}$$

for the generators $\eta_k \begin{pmatrix} U \\ V \end{pmatrix}$ and $\eta_k \begin{pmatrix} U' \\ V' \end{pmatrix}$ of W_k with $\begin{pmatrix} U \\ V \end{pmatrix}$, $\begin{pmatrix} U' \\ V' \end{pmatrix} \in \Psi_m$.

LEMMA 2.3. The bilinear pairing \langle , \rangle on W_k is nondegenerate and is invariant under the action of G on W_k .

PROOF. The nondegeneracy follows from [11, Lemma 2.3.1]. For the G-invariance, we have

$$\begin{cases} g \cdot \eta_k \begin{pmatrix} U \\ V \end{pmatrix}, g \cdot \eta_k \begin{pmatrix} U' \\ V' \end{pmatrix} \end{pmatrix} = \left\langle \eta_k \left(\rho(g) \begin{pmatrix} U \\ V \end{pmatrix} \right), \eta_k \left(\rho(g) \begin{pmatrix} U' \\ V' \end{pmatrix} \right) \right\rangle \\ = \det^k \left(\rho(g) \begin{pmatrix} U & U' \\ V & V' \end{pmatrix} \right) = \det^k \begin{pmatrix} U & U' \\ V & V' \end{pmatrix} \\ = \left\langle \eta_k \begin{pmatrix} U \\ V \end{pmatrix}, \eta_k \begin{pmatrix} U' \\ V' \end{pmatrix} \right\rangle$$

for each $g \in G$, since det $(\rho(g)) = 1$ due to the fact that $\rho(g) \in \text{Sp}(m, \mathbb{R})$. Therefore \langle , \rangle is *G*-invariant.

Since the pairing \langle , \rangle is *G*-invariant, it induces a fiber-wise pairing

$$\langle , \rangle : V_k \times V_k \longrightarrow X \times \mathbb{C}$$

on the vector bundle V_k over X. We shall now introduce a fiber-wise conjugation operation on V_k which will be used in the next section. If $x \in W_k$, we define the conjugate \bar{x} by

$$ar{x}igg(egin{array}{c} U \ V \end{pmatrix} = \overline{xigg(ar{U})}, \quad igg(egin{array}{c} U \ V \end{pmatrix} \in \Psi_m.$$

Thus we have a conjugation on W_k , which induces a fiber-wise conjugation operation on the vector bundle V_k over X.

3. The cohomology. Let $J: \Gamma \times D \to \mathbb{C}$ be the Jacobian determinant on the hermitian symmetric space D, *i.e.*, for each $\gamma \in \Gamma$ the function $z \mapsto J(\gamma, z)$ is the determinant of the Jacobian matrix of the holomorphic map $z \mapsto \gamma z$ of the complex manifold D. We set

$$J = \Gamma \setminus D \times \mathbb{C},$$

where the quotient is taken with respect to the action of Γ on $D \times \mathbb{C}$ given by

$$\gamma \cdot (z, \lambda) = (\gamma z, J(\gamma, z)\lambda)$$

for $\gamma \in \Gamma$ and $(z, \lambda) \in D \times \mathbb{C}$. If $K_X = \wedge^n T^*(X)$ is the canonical bundle on X (see *e.g.* [13, p. 218]), then K_X can be identified with the dual bundle J^{-1} of J. If B is a vector bundle over X, then we shall denote by B the sheaf of locally constant sections of B.

DEFINITION 3.1. Let $\tau: D \to H_m$, $\rho: G \to \operatorname{Sp}(m, \mathbb{R})$, $\Gamma \subset G$ and $j: \operatorname{Sp}(m, \mathbb{R}) \times H_m \to \mathbb{C}$ be as in Section 2, and let $J: \Gamma \times D \to \mathbb{C}$ be the Jacobian determinant described above. Given a nonnegative integer k, a generalized Siegel modular form on D of type (k, τ, ρ) for Γ is a holomorphic function $f: D \to \mathbb{C}$ such that

$$f(\gamma z) = j(\rho(\gamma), \tau(z))^{\kappa} J(\gamma, z)^{-1} f(z)$$

for all $\gamma \in \Gamma$ and $z \in D$. We shall denote by $S_k(\Gamma, \tau, \rho)$ the space of all generalized Siegel modular forms on *D* of type (k, τ, ρ) for Γ .

REMARK 3.2. Generalized Siegel modular forms in Definition 3.1 generalize mixed automorphic forms of type (2, k) described in [5], [7] and certain types of mixed Siegel modular forms studied in [9] in the case of cocompact Γ . Certain aspects of more general automorphic forms were studied in [10].

LEMMA 3.3. The space of generalized Siegel modular forms $S_k(\Gamma, \tau, \rho)$ is canonically isomorphic to the space $H^0(X, \mathcal{L}^k \otimes J^{-1})$ of sections of the sheaf $\mathcal{L}^k \otimes J^{-1}$.

PROOF. The lemma follows easily from the construction of the bundles L^k and J and the fact that the section of the bundle L^k can be identified with a function $f: D \to \mathbb{C}$ satisfying $f(gz) = j(\rho(\gamma), \tau(z))^k$ for all $\gamma \in \Gamma$ and $z \in D$.

Let $n = \dim_{\mathbb{C}} X$ be the complex dimension of the locally symmetric space X, then we obtain the Serre duality

$$H^n(X, \mathcal{L}^{-k}) \times H^0(X, \mathcal{L}^k \otimes \mathcal{J}^{-1}) \to \mathbb{C}$$

that is given by

$$([\omega], \varphi) \mapsto \int_X \varphi \omega \wedge dz$$

where $[\omega] \in H^n(X, \mathcal{I}^{-k})$ is the cohomology class represented by a differential form ω of type (0, n) with coefficients in \mathcal{I}^{-k} and φ is a section of the sheaf $\mathcal{I}^k \otimes \mathcal{J}^{-1}$ over *X*. On the other hand, if ξ_k is the section of $V_k \otimes \mathcal{I}^{-k}$ constructed in Section 2, we can define an inner product $\langle \langle , \rangle \rangle$ on the space $H^0(X, \mathcal{I}^k \otimes \mathcal{J}^{-1})$ of sections of $\mathcal{I}^k \otimes \mathcal{J}^{-1}$ by

$$\langle\!\langle f,g \rangle\!\rangle = \int_{\mathbf{X}} f \bar{g} \langle \bar{\xi}_k, \xi_k \rangle \, d\bar{z} \wedge \, dz$$

for all $f, g \in H^0(X, \mathcal{I}^k \otimes \mathcal{J}^{-1})$, where $\bar{g}, \bar{\xi}_k$ are the conjugates of g, ξ_k , respectively, and $\langle , \rangle : V_k \times V_k \to X \times \mathbb{C}$ is the fiber-wise pairing in described in Section 2. Then to each cohomology class $[\omega] \in H^n(X, \mathcal{I}^{-k})$ represented by differential *n*-form ω we can associate a unique section ψ_{ω} of $\mathcal{I}^k \otimes \mathcal{J}^{-1}$ satisfying

$$\langle\!\langle \varphi, \bar{\psi}_{\omega} \rangle\!\rangle = \int_{X} \varphi \omega \wedge dz$$

for all $\varphi \in H^0(X, \mathcal{I}^k \otimes \mathcal{J}^{-1})$. Thus we obtain an antilinear isomorphism

$$H^n(X, \mathcal{L}^{-k}) \cong H^0(X, \mathcal{L}^k \otimes \mathcal{J}^{-1})$$

given by $[\omega] \mapsto \psi_{\omega}$.

Since the fiber-wise pairing \langle , \rangle : $V_k \times V_k \longrightarrow X \times \mathbb{C}$ induces a map

$$\langle , \rangle : \widetilde{V}_k \times (\widetilde{V}_k \otimes \mathcal{I}^{-k}) \longrightarrow \mathcal{I}^{-k},$$

we obtain a map $\nu \colon \widetilde{V}_k \longrightarrow \widetilde{L}^{-k}$ given by $\nu(s) = \langle \overline{s}, \xi_k \rangle$.

LEMMA 3.4. The map $\nu: V_k \to \mathcal{I}^{-k}$ is injective.

PROOF. Suppose $\langle \bar{s}, \xi_k \rangle = 0$ with $s \in \Gamma(U, V_k)$ for an open set $U \subset X$. Recall that the bundle V_k can be considered as the quotient of the trivial vector bundle $D \times W_k \to D$ by Γ with respect to the action

$$\gamma \cdot (z, x) = (\gamma z, \rho(\gamma)x)$$

for $\gamma \in \Gamma$ and $(z, x) \in D \times W_k$. Let $s' \in \Gamma(\pi^{-1}(U), D \times W_k)$ be a locally constant section of the bundle $D \times W_k$ on $\pi^{-1}(U)$, where $\pi: D \to X$ is a natural projection. Given a point $v \in \pi^{-1}(U)$ there is a neighborhood $U' \subset D$ of v such that $s' = \mu$ on U' for some $\mu \in W_k$. Then we have $\langle \bar{\mu}, \xi_k(z) \rangle = 0$ for all $z \in U'$. Since τ is an embedding, $\tau(U')$ is an open set in H_m ; hence by Lemma 2.2 the set $\{\xi_k(z) \mid z \in U'\}$ generates W_k . Thus it follows that $\bar{\mu} = 0$ and $\mu = 0$. Therefore ν is injective.

The embedding $\nu: \widetilde{V}_k \to \mathcal{I}^{-k}$ of \widetilde{V}_k into \mathcal{I}^{-k} thus induces a map $\nu_*: H^n(X, \widetilde{V}_k) \to H^n(X, \mathcal{I}^{-k})$ and therefore a map

$$\phi_*: H^*(X, V_k) \longrightarrow S_k(\Gamma, \tau, \rho),$$

if we use the canonical isomorphisms

$$H^0(X, \mathcal{I}^k \otimes \mathcal{J}^{-1}) \cong S_k(\Gamma, \tau, \rho)$$

in Lemma 3.3 and the antilinear isomorphism

$$H^n(X, \mathcal{I}^{-k}) \cong H^0(X, \mathcal{I}^k \otimes \mathcal{J}^{-1})$$

described above.

Now we shall construct a mapping $\phi^*: S_k(\Gamma, \tau, \rho) \to H^n(X, \overline{V}_k)$. Since $S_k(\Gamma, \tau, \rho)$ is canonically identified with $H^0(X, \overline{L}^k \otimes \mathcal{J}^{-1})$ and ξ_k is a section of the vector bundle $L^{-k} \otimes V_k$ over X, for each $f \in S_k(\Gamma, \tau, \rho)$ the differential form $f\xi_k dz$ is a differential *n*-form on X with values in the vector bundle V_k . Thus by the de Rham theory $f\xi_k dz$ determines a cocycle in $H^n(X, \overline{V}_k)$. We set

$$\phi^*(f) = [f\xi_k dz] \in H^n(X, \overline{V}_k)$$

PROPOSITION 3.5. The composite $\phi_* \circ \phi^*$ is the identity map on the space $H^n(X, V_k)$.

PROOF. First, we extend the morphism $\nu: V_k \to \mathcal{L}^{-k}$ to a map $\nu: V_k \otimes A^p \to \mathcal{L}^{-k} \otimes A^p$ for each p by

$$u(\omega) = \langle \overline{\omega_{(p,0)}}, \xi_k \rangle \in \Gamma(U, \mathcal{L}^{-k} \otimes A^{0,p})$$

for each $\omega \in \Gamma(U, \bar{V}_k \otimes A^p)$, where A^p is the sheaf of differential *p*-forms on *X*, *U* is an open subset of *X*, and $\omega_{(p,0)}$ is the (p, 0)-component of ω . Let *f* be an element of $S_k(\Gamma, \tau, \rho)$ regarded as a section of the sheaf $L^k \otimes J^{-1}$. Then the differential form $f\xi_k dz$ becomes a section of $\bar{V}_k \otimes A^n$ and we have $\phi^* f = [f\xi_k dz]$. Since $f\xi_k dz$ is holomorphic, we obtain $(f\xi_k dz)_{(n,0)} = f\xi_k dz$ and

$$\nu_*\phi^*f = [\langle \overline{f\xi_k \, dz}, \xi_k \rangle] \in H^n(X, \widetilde{L}^{-k}).$$

From the antilinear isomorphism $H^n(X, \mathcal{I}^{-k}) \xrightarrow{\approx} S_k(\Gamma, \tau, \rho)$ it follows that there is an element $f_1 \in S_k(\Gamma, \tau, \rho)$ such that for each $g \in S_k(\Gamma, \tau, \rho)$ we have

$$\int_X g \bar{f_1} \langle ar{\xi_k}, \xi_k
angle dar{z} \wedge dz = \int_X g \langle \overline{f\xi_k \, dz}, \xi_k
angle \wedge dz$$

= $\int_X g ar{f} \langle ar{\xi_k}, \xi_k
angle dar{z} \wedge dz$

i.e., $\langle \langle g, f_1 \rangle \rangle = \langle \langle g, f \rangle \rangle$. Thus we obtain $\phi_*(\phi^* f) = f_1 = f$, and the proposition follows. From the embedding $\nu: V_k \to \mathcal{L}^{-k}$ in Lemma 3.4 we obtain the short exact sequence

From the embedding ν . $v_k \rightarrow L$ in Lemma 3.4 we obtain the short exact seq

$$0 o V_k o \mathcal{I}^{-k} o \mathcal{I}^{-k} / V_k o 0,$$

which induces the long exact sequence

$$\cdots \longrightarrow H^{n-1}(X, \overline{V}_k) \longrightarrow H^{n-1}(X, \overline{L}^{-k}) \longrightarrow H^{n-1}(X, \overline{L}^{-k} / \overline{V}_k)$$
$$\longrightarrow H^n(X, \overline{V}_k) \longrightarrow H^n(X, \overline{L}^{-k}) \longrightarrow H^n(X, \overline{L}^{-k} / \overline{V}_k) \longrightarrow \cdots$$

on the cohomology of $X = \Gamma \setminus D$.

THEOREM 3.6. Let $\rho: G \to \operatorname{Sp}(m, \mathbb{R})$, $\tau: D \to H_m$ and $X = \Gamma \setminus H$ be as in Section 2, and assume that $\rho(\Gamma)$ is contained in an arithmetic subgroup of $\operatorname{Sp}(m, \mathbb{Q})$. If $n = \dim_{\mathbb{C}} X$, then we have $H^{n-1}(X, \tilde{L}^{-k}) = 0$.

PROOF. Let Γ' be an arithmetic subgroup of $\operatorname{Sp}(m, \mathbb{Q})$ that contains $\rho(\Gamma)$, and let Y be the corresponding Siegel modular variety $\Gamma' \setminus H_m$. Then we can consider the Baily-Borel compactification Y^* of Y(cf. [2]). The holomorphic embedding $\tau: D \to H_m$ induces an embedding $\tau_X: X \to Y \subset Y^*$. Let $(\tau_X)_* \mathcal{L}$ be the direct image sheaf on Y obtained from the invertible sheaf \mathcal{L} on X via the map τ_X . By [2] there is a positive integer N such that $((\tau_X)_* \mathcal{L})^N$ defines a map of Y^* into a complex projective space whose restriction to Y is an embedding. Thus it follows that \mathcal{L}^N defines an embedding of X into the same projective space, and consequently \mathcal{L} is an ample invertible sheaf on X. Then \mathcal{L}^{-k} is also an ample invertible sheaf, and therefore by Kodaira's vanishing theorem (see *e.g.* [3, Remark III.7.15]) we have

$$H^{j}(X, \mathcal{L}^{-k}) = 0$$
 for $j < n$.

Hence the proposition follows.

THEOREM 3.7. If $n = \dim_{\mathbb{C}} X$, then there is an exact sequence

$$0 \longrightarrow H^{n-1}(X, \widetilde{L}^{-k} / \widetilde{V}_k) \longrightarrow H^n(X, \widetilde{V}_k) \longrightarrow S_k(\Gamma, \tau, \rho) \longrightarrow 0.$$

PROOF. By Proposition 3.5 the map ϕ_* is surjective; hence we have

$$H^n(X, \mathcal{I}^{-k} / \mathcal{V}_k) = 0$$

in the long exact sequence described above. Therefore the theorem follows from Theorem 3.6 and the antilinear isomorphism

$$H^n(X, \mathcal{L}^{-k}) \cong S_k(\Gamma, \tau, \rho).$$

REMARK 3.8. Nenashev [11] obtained the exact sequence in Theorem 3.7 when X is a Siegel modular variety and showed that his exact sequence is a generalization of the Eichler-Shimura isomorphism (see *e.g.* [1]) for elliptic modular forms. The exact sequence in Theorem 3.7 also generalizes a result of [8] in the case of cocompact Γ .

MIN HO LEE

REFERENCES

1. P. Bayer and J. Neukirch, On automorphic forms and Hodge theory, Math. Ann. 257(1981), 137–155.

- 2. W. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math. 84(1966), 442-528.
- 3. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
- 4. M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties I, II, Lect. Notes, Univ. Chicago, 1963/64.
- 5. M. H. Lee, Mixed cusp forms and holomorphic forms on elliptic varieties, Pacific J. Math. 132(1988), 363–370.
- ____, Conjugates of equivariant holomorphic maps of symmetric domains, Pacific J. Math. 149(1991), 6. ____ 127-144.

- *Mixed cusp forms and Poincaré series*, Rocky Mountain J. Math. 23(1993), 1009–1022.
 Mixed automorphic forms and Hodge structures, Panamer. Math. J. (2) 4(1994), 89–113.
- 9. _____, Mixed Siegel modular forms and Kuga fiber varieties, Illinois J. Math. 38(1994), 692–700.
- 10. _____, Mixed automorphic vector bundles on Shimura varieties, Pacific J. Math. 173(1996), 105–126.
- 11. A. Nenashev, Siegel modular forms and cohomology, Math. USSR Izvestiya 29(1987), 559–586.
- 12. I. Satake, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton, 1980.
- 13. R. Wells, Jr., Differential analysis on complex manifolds, Springer-Verlag, New York, 1980.

Department of Mathematics University of Northern Iowa Cedar Falls, IA U.S.A. 50614 e-mail:lee@math.uni.edu