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1. Introduction and statement of results

We start by recalling the following theorem of Rohrlich [17]. To state it, let
ωz denote half of the size of the stabilizer Γz of z ∈ H in SL2(Z) and for a
meromorphic function f : H → C let ordz( f ) be the order of vanishing of f
at z. Moreover, define ∆(z) := q

∏
n>1(1 − qn)24, where q := e2π i z , and set

j(z) := 1
6 log(y6

|∆(z)|)+ 1, where z = x + iy. Rohrlich’s theorem may be stated
in terms of the Petersson inner product, denoted by 〈 , 〉.

THEOREM 1.1 (Rohrlich [17]). Suppose that f is a meromorphic modular
function with respect to SL2(Z) that does not have a pole at i∞ and has constant
term one in its Fourier expansion. Then

〈1, log | f |〉 = −2π
∑

z∈SL2(Z)\H

ordz( f )
ωz

j(z).

REMARK. In [17], Theorem 1.1 was stated for j − 1 instead. However, by the
valence formula, these two statements are equivalent.

The function j is a weight zero sesquiharmonic Maass form, that is, it is
invariant under the action of SL2(Z) and it is annihilated by ξ0 ◦ ξ2 ◦ ξ0, where
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ξκ := 2iyκ ∂
∂z (see Section 2.2 for a full definition). More precisely, ∆0( j) = 1,

where ∆κ := −y2( ∂
2

∂x2 +
∂2

∂y2 )+ iκy( ∂
∂x + i ∂

∂y ) satisfies ∆κ = −ξ2−κ ◦ ξκ .
To extend this, let j1 := j−744, with j the usual j-invariant and set jn := j1|Tn ,

where for a function f transforming of weight κ , we define the nth Hecke operator
by

f |Tn(z) :=
∑
ad=n
d>0

∑
b (mod d)

d−κ f
(

az + b
d

)
.

There are functions jn defined in (3.10) below whose properties are analogous
to those of j0 := j if we define j0 := 1. Namely, these functions are weight
zero sesquiharmonic Maass forms that satisfy ∆0( jn) = jn and are furthermore
chosen uniquely so that the principal parts of their Fourier and elliptic expansions
essentially only contain a single term which maps to the principal part of jn

under ∆0. More precisely, they have a purely sesquiharmonic principal part, up
to a possible constant multiple of y, vanishing constant terms in their Fourier
expansion, and a trivial principal part in their elliptic expansions around every
point in H; see Lemmas 4.3 and 5.8 below for the shape of their Fourier and
elliptic expansions, respectively. In addition, they also satisfy the following
extension of Theorem 1.1. Here we use a regularized version of the inner product
(see (6.1) below), which we again denote by 〈 , 〉. This regularization was first
introduced by Petersson in [16] and then later independently rediscovered and
generalized by Borcherds [2] and Harvey–Moore [10].

THEOREM 1.2. Suppose that f is a meromorphic modular function with respect
to SL2(Z) which has constant term one in its Fourier expansion. Then

〈 jn, log | f |〉 = −2π
∑

z∈SL2(Z)\H

ordz( f )
ωz

jn(z).

REMARK. This research was motivated by generalizations of Rohrlich’s theorem
in other directions, such as the recent work of Herrero, Imamoḡlu, von Pippich,
and Tóth [12].

Theorem 1.1 was also generalized by Rohrlich [17] by replacing the
meromorphic function f in Theorem 1.1 with a meromorphic modular form

of weight k times y
k
2 , yielding again a weight zero object. We similarly extend

Theorem 1.2 in such a direction.

THEOREM 1.3. There exists a constant cn such that for every weight k
meromorphic modular form f with respect to SL2(Z) that does not have a
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pole at i∞ and has constant term one in its Fourier expansion, we have〈
jn, log

(
y

k
2 | f |

)〉
= −2π

∑
z∈SL2(Z)\H

ordz( f )
ωz

jn(z)+
k
12

cn.

REMARK. Plugging k = 0 into Theorem 1.3, we see that Theorem 1.2 is an
immediate corollary.

An interesting special case of Theorem 1.2 arises if one takes f to be a so-
called prime form, which is a modular form which vanishes at precisely one point
z ∈ H and has a simple zero at z (see [15, Section 1.c] for a full treatment of
these functions). By the valence formula, the prime forms necessarily have weight
k = 12ω−1

z and may directly be computed as

(∆(z)( j (z)− j (z)))
1
ωz .

Multiplying by y
k
2 and taking the logarithm of the absolute value, it is hence

natural to consider the functions

gz(z) := log
(
y6
|∆(z)( j (z)− j (z))|

)
, (1.1)

and Theorem 1.2 states that

〈 jn,gz〉 = −2πjn(z)+ cn. (1.2)

When characterizing modular forms via their divisors, the prime forms are natural
building blocks because they vanish at precisely one point in H, allowing one to
easily construct a function with a given order of vanishing at each point. In the
same way, since each function gz appearing on the left-hand side of (1.2) has
a singularity at only one point and the single term jn(z) is isolated on the right-
hand side of (1.2), it is natural to use the functions gz as building blocks for the
logarithms of weight k meromorphic modular forms.

REMARK. If one were only interested in proving Theorem 1.2, then one could
choose the building blocks z 7→ log | j (z)− j (z)| instead of gz. However, as noted
above, the functions gz are more natural when considering divisors of modular
forms because they only have a singularity precisely at the point z, while the
functions z 7→ log | j (z)− j (z)| have a singularity both at z and i∞.

Generating functions of traces of SL2(Z)-invariant objects such as jn has a
long history going back to the paper of Zagier on traces of singular moduli [18].
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To give a related example, let QD denote the set of integral binary quadratic
forms of discriminant D. The generating function, with τQ ∈ H the unique root
of Q(z, 1), ∑

D<0
D≡0,1 (mod 4)

∑
Q∈QD/SL2(Z)

j(τQ)e2π i |D|τ (1.3)

was shown by Bruinier and Funke [5, Theorem 1.2] to be the holomorphic part
of a weight 3

2 modular object. Instead of taking the generating function in D, one
may also sum in n to obtain, for y sufficiently large,

Hz(z) :=
∑
n>0

jn(z)qn. (1.4)

This function was shown by Asai, Kaneko, and Ninomiya [1] to satisfy the
identity

Hz(z) = −
1

2π i
j ′1(z)

j1(z)− j1(z)
.

This identity is equivalent to the denominator formula

j1(z)− j1(z) = e−2π iz
∏

m∈N, n∈Z

(
1− e2π imze2π inz

)c(mn)
,

for the Monster Lie algebra, where c(m) denotes the mth Fourier coefficient of j1.
The function Hz is a weight two meromorphic modular form with a simple pole
at z = z. For a meromorphic modular form f which does not vanish at i∞, it is
then natural to define the divisor modular form

f div(z) :=
∑

z∈SL2(Z)\H

ordz( f )
ωz

Hz(z).

Bruinier, Kohnen, and Ono [6, Theorem 1] showed that if f satisfies weight κ
modularity then f div is related to the logarithmic derivative of f via

f div
= −

1
2π i

f ′

f
+
κ

12
E2,

where E2 denotes the quasimodular weight two Eisenstein series. Analogous
to (1.4), we define the generating function, for y sufficiently large,

Hz(z) :=
∑
n>0

jn(z)qn,
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and its related divisor modular form

fdiv(z) :=
∑

z∈SL2(Z)\H

ordz( f )
ωz

Hz(z).

The function Hz turns out to be the holomorphic part of a weight two
sesquiharmonic Maass form, while the generating function

Iz(z) :=
∑
n>0

〈gz, jn〉qn,

which is closely related by Theorem 1.3, is the holomorphic part of a biharmonic
Maass form. A weight κ biharmonic Maass form satisfies weight κ modularity
and is annihilated by ∆2

κ = (ξ2−κ ◦ ξκ)
2 (see Section 3 for a full definition).

THEOREM 1.4. The function Hz is the holomorphic part of a weight two
sesquiharmonic Maass form Ĥz and Iz is the holomorphic part of a weight two
biharmonic Maass form Îz.

REMARK. Consider

Θ(z, τ ) :=
∑
n>0

∑
D<0

D≡0,1 (mod 4)

∑
Q∈QD/SL2(Z)

jn(τQ)e2π i |D|τe2π inz.

The modularity of (1.3) hints that τ 7→ Θ(z, τ ) may have a relation to a
function satisfying weight 3

2 modularity, while we see in Theorem 1.4 that it
is the holomorphic part of a weight two object as a function of z (assuming
convergence). It should be possible to prove this modularity using the methods
from [4] (and which in particular requires generalizing [4, Proposition 1.3] to
include functions which have poles in points of the upper half plane).

As a corollary to Theorem 1.4, one obtains the modular completion for fdiv

f̂div(z) :=
∑

z∈SL2(Z)\H

ordz( f )
ωz

Ĥz(z).

COROLLARY 1.5. If f is a meromorphic modular function with constant term
one in its Fourier expansion, then the function fdiv is the holomorphic part of the
Fourier expansion of a weight two sesquiharmonic Maass form f̂div and we have

ξ2

(̂
fdiv
)
= −

1
2π

log | f |.
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The paper is organized as follows. In Section 2, we introduce some special
functions. In Section 3, we construct a number of functions and discuss their
properties. In Sections 4 and 5, we determine the shapes of the Fourier and elliptic
expansions, respectively, of the functions defined in Section 3. In Section 6, we
compute inner products in order to prove Theorem 1.3. In Section 7, we consider
the generating functions of these inner products and prove Theorem 1.4 and
Corollary 1.5.

2. Special functions, Poincaré series, and polyharmonic Maass forms

2.1. The incomplete gamma function and related functions. We use the
principal branch of the complex logarithm, denoted by Log, with the convention
that, for w > 0,

Log(−w) = log(w)+ π i,

where log : R+→ R is the natural logarithm.
For s, w ∈ C with Re(w) > 0, define the generalized exponential integral Es

(see [7, 8.19.3]) by

Es(w) :=

∫
∞

1
e−wt t−s dt.

This function is related to the incomplete Gamma function, defined for Re(s) > 0
and w ∈ C by

Γ (s, w) :=
∫
∞

w

e−t t s dt
t
,

via (see [7, 8.19.1])
Γ (s, w) = ws E1−s(w). (2.1)

Up to a branch cut along the negative real line, the function E1 may be analytically
continued via

E1(w) = Ein(w)− Log(w)− γ

(see [7, 6.2.4]), where γ is the Euler–Mascheroni constant and Ein is the entire
function given by

Ein(w) :=
∫ w

0

(
1− e−t

) dt
t
=

∑
n>1

(−1)n+1

n! n
wn.

The function Ein also appears in the definition of the exponential integral, namely

Ei(w) := −Ein(−w)+ Log(w)+ γ.
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In order to obtain a function which is real-valued for w ∈ R \ {0}, for κ ∈ Z it is
natural to define

Wκ(w) := (−2w)1−κ Re(Eκ(−2w)).

By [3, Lemma 2.4], (2.1), and the fact that Eκ(w) ∈ R for w > 0, we obtain the
following.

LEMMA 2.1. For w > 0, we have

Wκ(w)= (−1)1−κ
(
(2w)1−κEκ(−2w)+

π i
Γ (κ)

)
= Γ (1−κ,−2w)+

(−1)1−κπ i
(κ − 1)!

.

For w < 0, we have
Wκ(w) = Γ (1− κ,−2w).

We next define

W s(w) :=

∫ w

sgn(w)∞
W2−s(−t)t−se2t dt.

A direct calculation shows the following lemma.

LEMMA 2.2. For m ∈ Z\{0} we have

ξκ (Wκ(2πmy)qm) = −(−4πm)1−κq−m,

ξκ (Wκ(2πmy)qm) = (2πm)1−κW2−κ(−2πmy)q−m .

In particular, Wκ(2πmy)qm is annihilated by ∆κ , and Wκ(2πmy)qm is
annihilated by ξκ ◦∆κ .

We next determine the asymptotic behaviour for Wκ and Wκ .

LEMMA 2.3. As w→±∞, we have

Wκ(w) = (−2w)−κe2w
+ O

(
w−κ−1e2w) , Wκ(w) = −2κ−2w−1

+ O
(
w−2) .

Proof. It is not hard to conclude the claims from (see [7, 8.11.2])

Γ (1− κ,−2w) = (−2w)−κe2w (1+ O
(
w−1)) .

2.2. Polar polyharmonic Maass forms. In this section, we introduce polar
polyharmonic Maass forms. Letting ξ `κ denote the ξ -operator repeated ` times, a
polar polyharmonic Maass form on SL2(Z) of weight κ ∈ 2Z and depth ` ∈ N0

is a function F : H→ C satisfying the following:
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(1) For every γ =
(

a b
c d

)
∈ SL2(Z), we have

F |κγ (z) := (cz + d)−κF
(

az + b
cz + d

)
= F(z).

(2) The function F is annihilated by ξ `κ .

(3) For each z ∈ H, there exists an mz ∈ N0 such that limz→z(r
mz
z (z)F(z)) exists,

where
rz(z) := |Xz(z)| with Xz(z) :=

z − z

z − z
. (2.2)

(4) The function F grows at most linear exponentially as z→ i∞.

REMARK. Note that in (2), ξ `κ can be written in terms of ∆κ if ` is even. If a
function satisfies (2) (but is not necessarily modular), then we simply call it depth
` with respect to the weight κ .

REMARK. Note that our notation differs from that in [13]. In particular, if the
depth is ` in this paper, then it is depth `

2 in [13].

We omit the adjective ‘polar’ whenever the only possible singularity occurs at
i∞. Note that polar polyharmonic Maass forms of depth one are meromorphic
modular forms. We call a polar polyharmonic Maass form F of depth two a polar
harmonic Maass form and those of depth three are polar sesquiharmonic Maass
forms. We call those forms of depth four biharmonic.

2.3. Niebur Poincaré series. We next recall the Niebur Poincaré series [14]

Fm(z, s) :=
∑

γ∈Γ∞\SL2(Z)

ϕm,s(γ z), (Re(s) > 1,m ∈ Z)

where Γ∞ :=
{
±
(

1 n
0 1

)
: n ∈ Z

}
and

ϕm,s(z) := y
1
2 I

s−
1
2
(2π |m|y)e2π imx .

Here Iκ is the I -Bessel function of order κ . The functions s 7→ Fm(z, s) have
meromorphic continuations to C and do not have poles at s = 1 [14, Theorem 5].
The functions ϕm,s are eigenfunctions under ∆0 with eigenvalue s(1 − s). Hence
for any s with Re(s) sufficiently large so that z 7→ Fm(z, s) converges absolutely
and locally uniformly, we conclude that Fm(z, s) is also an eigenfunction under
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∆0 with eigenvalue s(1 − s). Arguing by meromorphic continuation, we obtain
that

∆0(Fm(z, s)) = s(1− s)Fm(z, s)

for any s for which Fm(z, s) does not have a pole. In particular, one may use this
to construct harmonic Maass forms by taking s = 1. Indeed, by [14, Theorem 6]
(note that there is a missing 2π

√
n), there exists a constant Cn such that

2π
√

nF−n(z, 1) = jn(z)+ Cn. (2.3)

2.4. Real-analytic Eisenstein series. Throughout the paper, we use various
properties of the real-analytic Eisenstein series, defined for Re(s) > 1 by

E(z, s) :=
∑

γ∈Γ∞\SL2(Z)

Im(γ z)s .

Via the Hecke trick, E(z, s) is closely related to the weight two completed
Eisenstein series

Ê2(z) := 1− 24
∑
m>1

σ1(m)qm
−

3
πy
,

where σ`(n) :=
∑

d|n d`. The following properties of E(z, s) and Ê2(z) are well
known.

LEMMA 2.4. (1) The function s 7→ E(z, s) has a meromorphic continuation to
C with a simple pole at s = 1 of residue 3

π
.

(2) The function z 7→ E(z, s) is an eigenfunction with eigenvalue s(1−s) under
∆0.

(3) The function Ê2 is a weight two harmonic Maass form which satisfies

ξ2

(
Ê2

)
=

3
π
.

(4) Denoting by CTs=s0( f (s)) the constant term in the Laurent expansion of the
analytic continuation of a function f around s = s0, we have

Ê2(z) = CTs=1(ξ0(E(z, s))).

In light of Lemma 2.4(1), it is natural to define, for some C ∈ C,

E(z) := lim
s→1

(
4πE(z, s)−

12
s − 1

)
+ C. (2.4)
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Letting ζ(s) denote the Riemann zeta function, we specifically choose C :=
−24γ + 24 log(2)+ 144 ζ

′(2)
π2 so that, by [9, Section II, (2.17) and (2.18)],

lim
y→∞

(
E(z)− 4πy + 12 log(y)

)
= 0. (2.5)

3. Construction of the functions

In this section, we construct two weight two biharmonic functions Gz and Jn

satisfying
ξ2(Gz) = gz, ξ2 ◦ ξ0 ◦ ξ2(Jn) = − jn, (3.1)

where gz is the weight zero sesquiharmonic Maass form that is defined in (1.1).
Similarly, Jn is constructed to have a singularity at i∞ such that ξ2(Jn) is the

function jn given in the introduction, that is, the only singularity of Jn lies in its
biharmonic part.

Recall the automorphic Green’s function

Gs(z, z) :=
∑

γ∈SL2(Z)

gs(z, γ z). (3.2)

Here, with Qs the Legendre function of the second kind, we define

gs(z, z) := −2Qs−1

(
1+
|z − z|2

2yy

)
, z = x+ iy ∈ H.

The series (3.2) is convergent for Re(s) > 1, is an eigenfunction under ∆0 with
eigenvalue s(1 − s), and has a meromorphic continuation to the whole s-plane
(see [11, Ch. 7, Theorem 3.5]). For γ ∈ SL2(R), gs satisfies gs(γ z, γ z) = gs(z, z),
yielding that Gs(z, z) is SL2(Z)-invariant in z and z.

REMARK. Using [8, Proposition 5.1] and the Kronecker limit formula, Gs(z, z)
is related to gz by

gz(z) = 1
2 lim

s→1
(Gs(z, z)+ 4πE(z, s))− 12. (3.3)

In the next lemma, we collect some other useful properties of Gs(z, z).

LEMMA 3.1. (1) The function s 7→ Gs(z, z) has a simple pole at s = 1 with
residue −12.

(2) The limit in (3.3) exists.
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(3) The function gz is sesquiharmonic with ∆0(gz) = 6.

(4) The only singularity of gz in SL2(Z)\H is at z = z with principal part
4ωz log(rz(z)).

To construct Gz and Jn , we find natural preimages of certain polyharmonic
Maass forms, such as gz, under the ξ -operator. For this we study the Laurent
expansions of eigenfunctions under ∆κ .

LEMMA 3.2. Suppose that z 7→ f (z, s) is an eigenfunction with eigenvalue
(s − κ

2 )(1 − s − κ

2 ) under ∆κ and that s 7→ f (z, s) is meromorphic. Then for
s close to 1− κ

2 , we have the Laurent expansion

f (z, s) =
∑

m�−∞

fm(z)
(

s +
κ

2
− 1

)m
.

The coefficients fm have the following properties:

(1) We have
∆κ( fm) = (κ − 1) fm−1 − fm−2.

(2) If s 7→ f (z, s) is holomorphic at s = 1 − κ

2 , then f0 (respectively f1) is
annihilated by ∆κ (respectively ∆2

κ).

(3) If z 7→ f (z, 1− κ

2 ) vanishes identically, then f1 is annihilated by ∆κ .

(4) We have

ξ2−κ

(
CTs=1−

κ

2

(
∂

∂s
ξκ( f (z, s))

))
= (1− κ)CTs=1−

κ

2
( f (z, s))+ Ress=1−

κ

2
( f (z, s)).

Proof. (1) The claim follows using the eigenfunction property by comparing
coefficients in the Laurent expansions on both sides of Lemma 3.2(1).
(2) By (1) we have

∆κ( f0) = (κ − 1) f−1 − f−2, ∆κ( f1) = (κ − 1) f0 − f−1. (3.4)

Since s 7→ f (z, s) is holomorphic at s = 1 − κ

2 , we have that f` = 0 for ` < 0,
yielding the claim.
(3) The claim follows immediately from (3.4) and the fact that f (z, 1− κ

2 ) = f0(z)
if f (z, s) is holomorphic at s = 1− κ

2 .

https://doi.org/10.1017/fms.2019.46 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.46


K. Bringmann and B. Kane 12

(4) Noting that

f−1(z) = Ress=1−
κ

2
( f (z, s)), f0(z) = CTs=1−

κ

2
( f (z, s)),

f1(z) = CTs=1−
κ

2

(
∂

∂s
f (z, s)

)
,

it is not hard to conclude the statement using (3.4) and the fact that 1 − κ

2 is real
so that

CTs=1−
κ

2

(
∂

∂s
ξκ( f (z, s))

)
= CTs=1−

κ

2

(
∂

∂s
ξκ( f (z, s))

)
.

We are now ready to construct the functions Gz and Jn . Namely, we set

Gz(z) :=
1
2
Gz,1(z)+

π

6

(
E(z)− C − 12

)
Ê2(z) (3.5)

Jn(z) := −π
√

nF−n(z, 1)+
Cn

12
E(z)+ an Ê2(z), (3.6)

where

Gz,s(z) :=
∂

∂s
ξ0(Gs(z, z)) (3.7)

E(z) := 4π
[
∂

∂s
ξ0(E(z, s))

]
s=1

+
π

3

(
C − 12

)
Ê2(z),

F−n(z, s) :=
∂2

∂s2
ξ0(F−n(z, s))− 2

∂

∂s
ξ0(F−n(z, s)) (3.8)

with C and Cn given in (2.4) and (2.3), respectively, and with an determined below
in Section 4.3. Also define auxiliary functions Gz := ξ0(gz), jn := ξ2(Jn), and
Jn := −ξ0( jn) so that (3.1) is implied by

ξ2(Gz) = gz, ξ0(gz) = Gz, ξ2(Gz) = −6, (3.9)
ξ2(Jn) = jn, ξ0( jn) = −Jn, ξ2(Jn) = jn. (3.10)

Note that throughout the paper, we are using uppercase blackboard for depth
four, lowercase blackboard for depth three, uppercase script for depth two, and
standard letters for depth one. The exception to this rule is Ê2, whose notation
is standard; the analogous notation for the Eisenstein series may be found by
comparing the functions in (3.18) vertically.

LEMMA 3.3. The functions Gz and Jn satisfy (3.1) and we have

ξ2(E) = E . (3.11)
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Proof. Lemma 3.2(4) with f (z, s) = E(z, s) and (2.4) yields that

4πξ2

([
∂

∂s
ξ0(E(z, s))

]
s=1

)
= E(z)− C + 12.

Combining this with Lemma 2.4(3) yields (3.11).
Plugging f (z, s) = Gs(z, z) into Lemma 3.2(4) and using Lemma 3.1(1), we

see that

ξ2(Gz,1(z)) = CTs=1(Gs(z, z))+ Ress=1(Gs(z, z))

= lim
s→1

(
Gs(z, z)+

12
s − 1

)
− 12

= 2gz(z)− E(z)+ C + 12, (3.12)

by (2.4) and (3.3).
To show the identity for Jn in (3.1), first note that if s 7→ f (z, s) is holomorphic

at s = 1 and z 7→ f (z, s) is real-differentiable, then

[ξκ( f (z, s))]s=1 = ξκ( f (z, 1)). (3.13)

Using this and then interchanging the ξ -operator with differentiation in s and
recalling that F−n(z, s) is an eigenfunction under∆0 with eigenvalue s(1− s), we
conclude that

ξ2

([
∂2

∂s2
ξ0(F−n(z, s))

]
s=1

)
= 2F−n(z, 1)+ 2

[
∂

∂s
F−n(z, s)

]
s=1

. (3.14)

Applying Lemma 3.2(4) with f (z, s) = F−n(z, s), we furthermore have

ξ2

([
∂

∂s
ξ0(F−n(z, s))

]
s=1

)
= F−n(z, 1). (3.15)

Combining (3.14) and (3.15) with the definition (3.8) then gives

ξ2(F−n(z, 1)) = 2
[
∂

∂s
F−n(z, s)

]
s=1

. (3.16)

Applying ξ0 to (3.16) and pulling the ξ -operator inside, we conclude that

ξ0 ◦ ξ2(F−n(z, 1)) = 2
[
∂

∂s
ξ0(F−n(z, s))

]
s=1

. (3.17)

Applying ξ2 to (3.17) we then obtain from (3.15) and (2.3) that

ξ2 ◦ ξ0 ◦ ξ2(F−n(z, 1)) = 2F−n(z, 1) =
(
π
√

n
)−1

( jn(z)+ Cn).

The claim then follows, using (3.11), Lemmas 2.4(4), and 2.4(3).
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REMARK. Combining (3.9) and (3.10) together with (3.11), Lemmas 2.4(3),
and 2.4(4) yields the following:

Gz
ξ2 // gz

ξ0 // Gz
ξ2 // −6,

Jn
ξ2 // jn

ξ0 // −Jn
ξ2 // − jn,

E ξ2 // E ξ0 // 4π Ê2
ξ2 // 12.

(3.18)

In order to determine the principal parts of the polyharmonic Maass forms
defined in (3.5) and (3.6), we require the Taylor expansions of ϕm,s and ξ0(gs(z, z))
around s = 1; note that the principal parts of the analytic continuations to s = 1
come from the values at s = 1 of the corresponding seeds of the Poincaré series.
We compute the first two coefficients of the Taylor expansion of the seeds in the
following lemma.

LEMMA 3.4. Assume that n ∈ N.

(1) We have

ϕ−n,s(z) = f−n,0(z)+ f−n,1(z)(s − 1)+ O
(
(s − 1)2

)
,

where

f−n,0(z) :=
1

2π
√

n

(
q−n
−W0(−2πny)q−n

)
,

f−n,1(z) := −
1

2π
√

n

(
2W0(−2πny)q−n

+ E1(4πny)q−n
)
.

(2) We have

ξ0(gs(z, z)) = gz,0(z)+ gz,1(z)(s − 1)+ O
(
(s − 1)2

)
, (3.19)

where

gz,0(z) := ξ0(g1(z, z)),

gz,1(z) :=
(

z − z

2
√
y

)−2

B(rz(z))X−1
z (z),

with

B(r) :=
4r 2(

1− r 2
)2

[
∂

∂s
∂

∂w
Qs−1(w)

]
s=1, w=

1+r2

1−r2

.
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Moreover, we have
lim

r→0+
B(r) = 0. (3.20)

Proof. (1) Since s 7→ ϕ−n,s(z) is holomorphic at s = 1, we have a Taylor
expansion of the shape (3.8); we next explicitly determine the Taylor coefficients.
We obtain

f−n,0(z) =
(
2π
√

n
)−1 (

q−n
− qn) .

Evaluating I 1
2
(w) = 1

√
2πw
(ew − e−w), the claim for f−n,0 then follows by

noting that Γ (1, w) = e−w for w > 0 and using Lemma 2.1 to evaluate qn
=

W0(−2πny)q−n .
To determine f−n,1, we observe that by definition

f−n,1(z) = e−2π inx y
1
2

[
∂

∂s
I

s−
1
2
(2πny)

]
s=1

.

Using [7, 10.38.6], we obtain that[
∂

∂s
Is− 1

2
(w)

]
s=1

= −(2πw)−
1
2
(
E1(2w)ew + Ei(2w)e−w

)
.

Hence, plugging in w = 2πny, we obtain

f−n,1(z) = −
(
2π
√

n
)−1

e−2π inx
(
E1(4πny)e2πny

+ Ei(4πny)e−2πny
)
.

Using Lemma 2.1, one sees that for w > 0

Ei(w) = W2

(w
2

)
+ w−1ew.

Applying integration by parts to the definition of W0, this implies

Ei(4πny)e−4πnyq−n
= 2W0(−2πny)q−n,

from which we conclude the claim.
(2) Define

gs(z, z) :=
∂

∂s
ξ0(gs(z, z)). (3.21)

By Lemma 3.1(1), the (s−1)−1 term in the Laurent expansion of gs is constant as
a function of z, and hence annihilated by ξ0. Thus (3.19) is equivalent to showing
that g1(z, z) = gz,1(z). The chain rule yields

g1(z, z) = −2
[
∂

∂s
∂

∂w
Qs−1(w)

]
s=1, w=1+

|z−z|2

2yy

ξ0

(
1+
|z − z|2

2yy

)
. (3.22)
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A direct computation gives

ξ0

(
1+
|z − z|2

2yy

)
= −2

(
z − z

2
√
y

)−2 r 2
z (z)(

1− r 2
z (z)

)2 X−1
z (z). (3.23)

Since

1+
|z − z|2

2yy
= cosh(d(z, z)) =

2
1− r 2

z (z)
− 1 =

1+ r 2
z (z)

1− r 2
z (z)

, (3.24)

we conclude that g1(z, z) = gz,1(z), establishing (3.19).
To evaluate the limit (3.20), we use (see [9, Section II, (2.5)])

Qs−1(w) =

∫
∞

0

(
w +

√
w2 − 1 cosh(u)

)−s
du.

It is then not hard to compute

B(r) = −4r
∫
∞

0

1+ log
(
1− r 2

)
− log

(
1+ r 2

+ 2r cosh(u)
)

(1+ reu)2(1+ re−u)2

×

(
r +

(
1+ r 2

)
2

cosh(u)

)
du. (3.25)

We next determine the limit of this expression as r → 0+. By evaluating∫
∞

0

r + 1+r2

2 cosh(u)
(1+ reu)2(1+ re−u)2

du =
1+ 4r 2 log(r)− r 4

4
(
1− r 2

)3 + O(1),

one can show that the limit of (3.25) as r → 0+ equals

lim
r→0+

(
r
∫
∞

0

log(1+ reu)

(1+ reu)2
eu du

)
− 1.

The claim then follows by determining that the limit equals 1.

4. Fourier expansions

In this section, we investigate the shape of the Fourier expansions of biharmonic
Maass forms.
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4.1. Fourier expansions of sesquiharmonic Maass forms. The following
shapes of Fourier expansions for sesquiharmonic Maass forms follow by
Lemmas 2.2 and 2.3.

LEMMA 4.1. If M is translation-invariant, sesquiharmonic of weight κ ∈ Z\{1},
and grows at most linear exponentially at i∞, then for y � 0 we have M =

M++
+M+−

+M−−, where

M++(z) :=
∑

m�−∞

c++M (m)qm,

M+−(z) := c+−M (0)y1−κ
+

∑
m�∞
m 6=0

c+−M (m)Wκ(2πmy)qm,

M−−(z) := c−−M (0) log(y)+
∑

m�−∞
m 6=0

c−−M (m)Wκ(2πmy)qm .

Moreover, M is harmonic if and only if M−−(z) = 0.

4.2. Fourier expansions of biharmonic Maass forms. A direct calculation
gives the following shape of the constant term of the biharmonic part of the
Fourier expansion.

LEMMA 4.2. The constant term of the Fourier expansion of a weight κ ∈ Z \ {1}
biharmonic Maass form F has the shape

c+++F (0)+ c++−F (0)y1−κ

+ c+−−F (0) log(y)+ c−−−F (0)y1−κ(1+ (κ − 1) log(y)). (4.1)

Moreover, we have

ξκ
(
y1−κ(1+ (κ − 1) log(y))

)
= −(κ − 1)2 log(y).

4.3. Fourier expansions of the functions from Section 3. We now determine
the shapes of the Fourier expansions of the functions from Section 3. For this,
we complete the definition (3.6) by fixing an . Specifically, since Lemma 2.4(3)
implies that ξ2(an Ê2) =

3
π

an is a constant, we may choose an so that the constant
term of the holomorphic part of the Fourier expansion of jn vanishes for n 6= 0
and the constant term is 1 for n = 0. For n = 0 we must verify that the
holomorphic part of the constant term is indeed equal to 1 in the explicit formula
j0(z) = 1

6 log(y6
|∆(z)|)+ 1. For this, we use the product expansion of∆ to show
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that as y →∞

1
6

log
(
y6
|∆(z)|

)
+ 1 = 1−

π

3
y + log(y)+ o(1). (4.2)

LEMMA 4.3. (1) There exist c jn (m), c+Jn
(m), c−Jn

(m), c++jn
(m), c+−jn

(m), and
c−−jn

(m) ∈ C such that

jn(z) = q−n
+

∑
m>1

c jn (m)q
m,

Jn(z) =
∑
m>0

c+Jn
(m)qm

+ 4πnδn 6=0W2(2πny)qn
− δn=0

1
y

+

∑
m6−1

c−Jn
(m)W2(2πmy)qm,

jn(z) = δn=0 +
∑
m>1

c++jn
(m)qm

+ c+−jn
(0)y +

∑
m6−1

c+−jn
(m)W0(2πmy)qm

+ δn=0 log(y)+ 2δn 6=0W0(−2πny)q−n
+

∑
m>1

c−−jn
(m)W0(2πmy)qm .

Here δS := 1 if some statement S is true and 0 otherwise.
(2) There exist constants c++gz

(m), c+−gz
(m), c+++Gz

(m), c++−Gz
(m), and c+−−Gz

(m) ∈ C
such that for y sufficiently large

Gz(z) = −4π
∑
m>1

mc+−gz
(−m)qm

+
6
y
,

gz(z) =
∑
m>1

c++gz
(m)qm

+

∑
m6−1

c+−gz
(m)W0(2πmy)qm

+ 6 log(y),

Gz(z) =
∑
m>0

c+++Gz
(m)qm

+

∑
m6−1

c++−Gz
(m)W2(2πmy)qm

−
6
y
(1+ log(y))+

∑
m>1

c+−−Gz
(m)W2(2πmy)qm .

(3) There exist constants c+++E (m), c++−E (m), c+−−E (m), c++E (m), and c+−E (m) ∈ C
such that

ξ0(E(z)) = 4π Ê2(z) = 4π
∑
m>0

cE2(m)q
m
−

12
y
,

E(z) =
∑
m>1

c++E (m)qm
+ 4πy +

∑
m6−1

c+−E (m)W0(2πmy)qm
− 12 log(y),

https://doi.org/10.1017/fms.2019.46 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.46


An extension of Rohrlich’s theorem 19

E(z) =
∑
m>0

c+++E (m)qm
+

∑
m6−1

c++−E (m)W2(2πmy)qm

+ 4π log(y)+
∑
m>1

c+−−E (m)W2(2πmy)qm
+

12
y
(1+ log(y)).

Proof. (1) Since the expansion for jn is well known, it is enough to show the
expansion for jn . The expansion for Jn then follows by applying ξ0, employing
(3.10) and Lemma 2.2. We now use (3.16), then apply ∂

∂s to the Fourier expansion
of F−n(z, s) given in [14, Theorem 1], and employ Lemma 3.4(1) to determine
the contribution to the principal part from the first term in (3.6). Combining this
with (2.4) and (3.11), we see that the principal part of jn is the growing part of

c+−jn
(0)y + δn=0 log(y)+ δn 6=0

(
2W0(−2πny)q−n

+ E1(4πny)q−n
)
. (4.3)

However, by (2.1) and the asymptotic growth of the incomplete gamma function
[7, 8.11.2], E1(4πny)q−n decays exponentially as y → ∞ and thus does not
contribute to the principal part. The constant term of the holomorphic part of
jn is determined by the choice of an . In the special case n = 0, the evaluation
c+−j0

(0) = −π

3 implies that (4.3) matches (4.2).
(2) We first claim that gz(z) − 6 log(y) vanishes as y → ∞. By [9, Section II,
(2.19)] we have

Gs(z, z) =
4π

1− 2s
y1−s E(z, s)+ Os(e−y) (as y →∞), (4.4)

where the error has no pole at s = 1. Combining (4.4) with (3.12) and (2.4) implies
that

gz(z) = lim
s→1

(
2π
(

y1−s

1− 2s
+ 1

)
E(z, s)

)
− 12+ O(e−y) as y →∞. (4.5)

From [9, page 241, second displayed formula], we have

2πE(z, s) =
6

s − 1
+O(1), 1+

y1−s

1− 2s
= (log(y)+2)(s−1)+Oy

(
(s − 1)2

)
,

and hence the right-hand side of (4.5) equals 6 log(y) + O(e−y). We conclude
from (4.5) that gz(z)− 6 log(y) vanishes as y →∞.

Since the sesquiharmonic part of gz is 6 log(y) by Lemma 3.1(3), the expansion
for gz follows from the expansion in Lemma 4.1 by comparing the asymptotics
in Lemma 2.3 with (4.5). The expansion for Gz then follows by applying ξ0 and
using Lemma 2.2.
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Finally, by explicitly computing a preimage under ξ2 of the sesquiharmonic
part of gz, we conclude that the biharmonic part of the expansion of Gz(z) is
−6(1 + log(y))y−1. Subtracting this from Gz yields a sesquiharmonic function
which is bounded as y → ∞ by (4.4) and (3.5). We may thus use Lemma 4.1
and note the asymptotics in Lemma 2.3 to compute the shape of the rest of the
expansion.
(3) The fact that ξ0(E) = 4π Ê2 follows from Lemma 2.4(4). Using Lemma 2.3,
we obtain the claim for E directly from (2.5). Noting the relationship (3.11)
between E and E together with ξ2(y−1) = −1 and ξ2(log(y)) = y, the constant
term of E is then obtained by Lemma 4.2. After subtracting this term, the
remaining function is sesquiharmonic and we obtain the Fourier expansion of
E by Lemmas 4.1 and 2.3.

5. Elliptic expansions

5.1. Elliptic expansions of polyharmonic Maass forms. For a weight κ
nonholomorphic modular form F , the elliptic expansion around the point z ∈ H
is the unique expansion of the type

F(z) =
(

z − z

2
√
y

)−κ∑
m∈Z

cF,z(rz(z);m)Xm
z (z), rz(z)� 1,

where rz and Xz are defined in (2.2). If F is a polar polyharmonic Maass form
of depth `, then cF,z(r;m) satisfies a differential equation with ` independent
solutions for each m ∈ Z. We choose a basis of solutions Bκ, j(r;m) for 1 6 j 6 `

such that (z−z)−κBκ, j(rz(z);m)Xm
z (z) has depth j , that is, j ∈ N0 is minimal with

ξ j
κ,z

((
z − z

2
√
y

)−κ
Bκ, j(rz(z);m)Xm

z (z)
)
= 0.

We then write, iterating ‘+’ `− j times and ‘−’ j − 1 times,

cF,z(rz(z);m) =
`∑

j=1

c+···+−...−F,z (m)Bκ, j(rz(z);m).

A direct calculation gives the following lemma.

LEMMA 5.1. Let gm : (0, 1)→ R be a differentiable function and define

fm(z) :=
(

z − z

2
√
y

)−κ
gm(rz(z))Xm

z (z).

Then the following hold.
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(1) For κ ∈ Z, we have

ξκ( fm(z)) = −
1
2

(
z − z

2
√
y

)κ−2 (
1− r 2

z (z)
)κ

r 2m+1
z (z)g′m(rz(z))X

−m−1
z (z).

(2) The function fm has depth j if and only if there exist a` (1 6 ` 6 j − 1)
with a j−1 6= 0 for which

g′m(r) =
(
1− r 2)−κ r−2m−1

j−1∑
`=1

a`B2−κ,`(r;−m − 1).

By Lemma 5.1(2), one may choose Bκ, j(r;m) such that, for some Cm 6= 0,

B ′κ, j(r;m) = Cm
(
1− r 2)−κ r−2m−1 B2−κ, j−1(r;−m − 1). (5.1)

This uniquely determines r 7→ Bκ, j(r;m) up to an additive constant. If Bκ, j(r;m)
satisfies (5.1) and f has depth j , then we say that f has pure depth j if there exist
constants cz(m) ∈ C such that

f (z) = (z − z)−κ
∑
m∈Z

cz(m)Bκ, j(r;m)Xm
z (z).

Since any function f of depth ` naturally (and uniquely) splits into f =
∑`

j=1 f j

with f j of pure depth j , we call f j the depth j part of the elliptic expansion of f .

5.2. General elliptic expansions of sesquiharmonic Maass forms. We next
explicitly choose a basis of functions Bκ, j(r;m) in the special case that F is
sesquiharmonic. For this we define for 0 < t0, r < 1

Bκ,2(r;m) := βt0

(
1− r 2

; 1− κ,−m
)
, Bκ,3(r;m) := βκ−1,−m(r), (5.2)

with

βt0(r; a, b) := −
∫ 1−t0

r
ta−1(1− t)b−1 dt −

∑
n>0

n 6=−b

(−1)n

n + b

(
a − 1

n

)
tn+b
0

− (−1)bδa∈Nδ06−b<a log(t0),

βa,b(r) := −2
∫ r

0
t2b−1 (1− t2)−a−1

βt0

(
1− t2

; a, 1− b
)

dt.

It turns out that βt0 is independent of the choice of t0 (see Lemma 5.4 below). We
however leave the dependence in the notation to distinguish it from the incomplete
beta function.
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DEFINITION 5.2. We say that a function M has finite order at z if there exists
m0 ∈ R such that rm0

z (z)M(z) does not have a singularity at z.

LEMMA 5.3. If M is sesquiharmonic of weight κ and has singularities of finite
order, then it has an expansion of the type M =M++

z +M+−

z +M−−

z for rz(z)
sufficiently small with

M++

z (z) :=
(

z − z

2
√
y

)−κ ∑
m�−∞

c++M,z(m)X
m
z (z),

M+−

z (z) :=
(

z − z

2
√
y

)−κ ∑
m�∞

c+−M,z(m)βt0

(
1− r 2

z (z); 1− κ,−m
)

Xm
z (z),

M−−

z (z) :=
(

z − z

2
√
y

)−κ ∑
m�−∞

c−−M,z(m)βκ−1,−m(rz(z))X
m
z (z)

for some constants c++M,z(m), c+−M,z(m), and c−−M,z(m) ∈ C. Moreover, the special
functions in this expansion, that is, those given in (5.2), satisfy (5.1) with Cm =

−2.

Proof. We use Lemma 5.1 with gm = gm, j , where for j ∈ {1, 2, 3} we define

gm,1(r) := 1, gm,2(r) := βt0

(
1− r 2

; 1− κ,−m
)
, gm,3(r) := βκ−1,−m(r).

We show that ξ 3
κ annihilates the corresponding functions fm = fm, j and fm, j has

depth j . Clearly f1 has depth one as it is meromorphic. Computing

g′m,2(r) = −2r
[
∂

∂w
βt0(w; 1− κ,−m)

]
w=1−r2

= −2
(
1− r 2)−κ r−2m−1, (5.3)

we see from Lemma 5.1(1) that

ξκ( fm,2(z)) =
(

z − z

2
√
y

)κ−2

X−m−1
z (z) (5.4)

is meromorphic, and hence fm,2 has depth two.
Finally we compute

β ′κ−1,−m(r) = −2r−2m−1 (1− r 2)−κ βt0

(
1− r 2

; κ − 1,m + 1
)
, (5.5)

from which we conclude via Lemma 5.1(1) that

ξκ( fm,3(z)) =
(

z − z

2
√
y

)κ−2

βt0

(
1− r 2

z (z); κ − 1,m + 1
)

X−m−1
z (z). (5.6)

Thus fm,3 has depth three from the above calculation.
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The following lemma follows directly by using the binomial series.

LEMMA 5.4. For 0 < w < 1 and 0 < t0 < 1 we have

βt0(w; a, b) = −
∑

n∈N0\{−b}

(−1)n

n + b

(
a − 1

n

)
(1− w)n+b

− (−1)bδa∈Nδ06−b<a log(1− w).

In particular, βt0 is independent of t0 and as w→ 1− we have

βt0(w; a, b) ∼

−
1
b
(1− w)b if b 6= 0,

(a − 1)δa /∈N(1− w)− log(1− w)δa∈N if b = 0.

Lemma 5.4 then directly implies the following corollary.

COROLLARY 5.5. As r → 0+, we have

βκ−1,−m(r) ∼


−

1
m + 1

r 2 if m 6= −1,

2− κ
2

r 4δκ<2 + 2r 2 log(r)δκ>2 if m = −1.

Using Lemma 5.4 and Corollary 5.5, one may determine those terms in the
elliptic expansion that contribute to the principal part and those that do not.

LEMMA 5.6. Suppose that M is sesquiharmonic of weight κ and has
singularities of finite order. Then the following hold:

(1) The principal part of the meromorphic part M++

z of the elliptic expansion
of M precisely comes from those m with m < 0.

(2) If κ ∈ −N0, then the principal part of the harmonic part M+−

z of the elliptic
expansion of M precisely comes from those m with m > 0.

(3) If κ /∈ −N0, then the principal part of the harmonic part M+−

z of the elliptic
expansion of M precisely comes from those m with m > 0.

(4) The principal part of the sesquiharmonic part M−−

z of M precisely comes
from those m with m 6 −3.

5.3. Biharmonic parts of elliptic expansions. For biharmonic forms we
only require the coefficient of X−1

z (z) of the biharmonic part of their elliptic
expansion. By Lemma 5.4 and Corollary 5.5, B2,2(r;−1) = βt0(1 − r 2

;−1, 1)
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and B2,3(r;−1) = β1,1(r) both vanish as r → 0+. We next show that B2,4(r;−1)
may be chosen so that it also decays as r → 0+. The following lemma follows
directly by (5.5) and Lemma 5.4.

LEMMA 5.7. The function

B2,4(r;−1) :=
log

(
1− r 2

)
+ r 2

1− r 2

satisfies (5.1) with Cm = −2, and hence the corresponding function from
Lemma 5.1 has depth four. In particular, limr→0+ B2,4(r;−1) = 0.

5.4. Elliptic expansions of the functions from Section 3. We next explicitly
determine the shape of the expansions of the functions defined in Section 3.

LEMMA 5.8. (1) There exist c jn ,z(m), c+Jn ,z
(m), c−Jn ,z

(m), c++jn ,z
(m), c+−jn ,z

(m), and
c−−jn ,z

(m) ∈ C such that we have for rz(z) sufficiently small

jn(z) =
∑
m>0

c jn ,z(m)X
m
z (z),

Jn(z) =
(

z − z

2
√
y

)−2
(∑

m>0

c+Jn ,z
(m)Xm

z (z)

+

∑
m6−1

c−Jn ,z
(m)βt0

(
1− r 2

z (z);−1− m
)

Xm
z (z)

)
,

jn(z) =
∑
m>0

c++jn ,z
(m)Xm

z (z)+
∑

m6−1

c+−jn ,z
(m)βt0

(
1− r 2

z (z); 1− m
)

Xm
z (z)

+

∑
m>0

c−−jn ,z
(m)β−1,−m(rz(z))X

m
z (z).

(2) For everyw ∈H, there exist c+++Gz,w
(m), c++−Gz,w

(m), c+−−Gz,w
(m), c++gz,w

(m), c+−gz,w
(m),

and c−−gz,w
(m) ∈ C such that for rw(z) sufficiently small we have

Gz(z) =
(

z − w
2
√

Im(w)

)−2
(

c+−gz,w
(0)X−1

w (z)+
∑
m>0

c+−gz,w
(−m − 1)Xm

w(z)

+
6r 2
w(z)

1− r 2
w(z)

X−1
w (z)

)
,
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gz(z) =
∑
m>0

c++gz,w
(m)Xm

w(z)+
∑
m60

c+−gz,w
(m)βt0

(
1− r 2

w(z); 1,−m
)

Xm
w(z)

+ 6 log
(
1− r 2

w(z)
)
,

Gz(z) =
(

z − w
2
√

Im(w)

)−2
(∑

m>0

c+++Gz,w
(m)Xm

w(z)

+

∑
m6−1

c++−Gz,w
(m)βt0

(
1− r 2

w(z);−1,−m
)

Xm
w(z)

+

∑
m>−1

c+−−Gz,w
(m)β1,−m(rw(z))X

m
w(z)

− 6
log

(
1− r 2

w(z)
)
+ r 2

w(z)
1− r 2

w(z)
X−1
w (z)

)
.

Moreover, c+−gz,w
(0) = 0 unless w is equivalent to z, in which case we have

c+−gz,z
(0) = −ωz

2 .

Proof. (1) Lemma 5.6 gives the claim, up to the vanishing of the terms m = −1
and m = −2 in the sesquiharmonic part. Applying (5.6) and then (5.4) to these
terms, this vanishing follows from the fact that jn = ∆0( jn) does not have a
singularity. The other claims then follow by (5.4) and (5.6).
(2) We begin by proving the expansion for Gz and we first determine its
biharmonic part. Since gz(z)−6 log(y) is harmonic by Lemma 3.1(3), ξ2 maps the
biharmonic part of Gz to 6 times the sesquiharmonic part of the elliptic expansion
of log(y), which by (3.24) may be computed via

log(y) = log(Im(w))+ log
(
1− r 2

w(z)
)

− Log(1− Xw(z))− Log
(

1− Xw(z)
)
. (5.7)

Since the third and fourth terms are harmonic, they do not contribute to the
sesquiharmonic part, and hence the sesquiharmonic part of gz is precisely
6 log(1 − r 2

w(z)) = −6B0,3(rw(z); 0). Hence, by Lemmas 5.7 and 5.1(1), we see
that

Gz(z)+ 6
(

z − w
2
√

Im(w)

)−2 log
(
1− r 2

w(z)
)
+ r 2

w(z)
1− r 2

w(z)
X−1
w (z) (5.8)

is sesquiharmonic. Choosing the function from Lemma 5.7 as a basis element
for the biharmonic part of the elliptic expansion, (5.8) is precisely the sum of
the terms in the elliptic expansion of Gz of depth at most three. The shape of
this expansion is given in Lemma 5.3, and we are left to determine the ranges
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of the summation. Recall that ξ2 sends the Xm
z (z) term to an X−m−1

z (z) term
by Lemma 5.1 and the principal part of ξ2(Gz) = gz is a constant multiple of
log(rz(z)) = − 1

2βt0(1 − r 2
z (z); 1; 0), which follows directly from Lemma 5.4.

Thus the sesquiharmonic principal part comes from an m = −1 term in the
elliptic expansion of Gz and it remains to explicitly compute the meromorphic
principal part of Gz. Since for Re(s) > 1 the principal part of Gz,s comes from
2ωzgs(z, z), taking the limit we conclude that the principal part of Gz comes
from ωzgz,1 by Lemma 3.4(2). Since gs(z, z) is an eigenfunction under ∆0 with
eigenvalue s(1 − s), we may use Lemma 3.2(2) with κ = 0 to conclude that gz,1
is annihilated by ∆2

2. Since gz,1(z) = ( z−z
2
√
y
)−2 B(rz(z))X−1

z (z) is biharmonic, we
may hence write the elliptic expansion of gz,1 as

gz,1(z) =
(

z − z

2
√
y

)−2 4∑
j=1

a j B2, j(rz(z);−1)X−1
z (z)

for some a j ∈ C, and we see that c+++Gz,z
(−1) = ωza1.

Moreover, Lemmas 5.3 and 5.7 together with (3.22) and (3.23) imply that

B(r) = a1 + a2βt0

(
1− r 2

;−1, 1
)
+ a3β1,1(r)+ a4

log
(
1− r 2

)
+ r 2

1− r 2
. (5.9)

We then note that by Lemma 5.4 and Corollary 5.5, the limit r → 0+ on the right-
hand side of (5.9) equals a1. Using (3.20) to evaluate the limit on the left-hand side
of (5.9), we obtain a1 = 0. We hence conclude the claim for Gz by Lemma 5.6.

In order to obtain the elliptic expansion for gz, we apply the operator ξ2 to the
expansion for Gz. Using Lemma 5.1(1) and (5.1) (together with (5.3) and (5.5))
and Lemma 5.7, we conclude the claimed expansion. Similarly, we apply ξ0 to
the expansion of gz and use Lemma 5.1 and (5.1) to obtain the claimed expansion
for Gz.

6. Evaluating the inner product and the proof of Theorem 1.3

To define the regularization of the inner product used in this paper, we set

FT,z1,...,z`,ε1,...,ε` := FT

∖ `⋃
j=1

(Bε j (z j) ∩FT ),

where FT is the usual fundamental domain cut off at height T and

Bε j (z j) := {z ∈ H : rz j (z) < ε j }.
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For two functions g and h satisfying weight k modularity and whose singularities
in the fundamental domain lie in {z1, . . . , z`, i∞}, we define the generalized inner
product (in case of existence)

〈g, h〉 := lim
T→∞

lim
ε`→0+

· · · lim
ε1→0+
〈g, h〉T,ε1,...,ε`, (6.1)

where

〈g, h〉T,ε1,...,ε` :=

∫
FT,z1,...,z`,ε1,...,ε`

g(z)h(z)yk dx dy
y2

.

Before explicitly computing the inner product with jn , we give the following
lemma for evaluating the inner product, which follows by repeated usage of
Stokes’ theorem.

LEMMA 6.1. Suppose that F1,F2 : H → C satisfy weight two modularity and
that ξ2 ◦ ∆2(F2) = C is a constant. Then, denoting f j := ξ2(F j), F j := ξ0(f j),
and f j := −ξ2(F j), we have

〈 f1, f2〉T,ε1,...,ε` =

∫
∂FT,z1,...,z`,ε1,...,ε`

F1(z)f2(z) dz

−

∫
∂FT,z1,...,z`,ε1,...,ε`

f1(z)F2(z) dz

−C
∫
∂FT,z1,...,z`,ε1,...,ε`

F1(z) dz. (6.2)

Here the integral along the boundary ∂FT is oriented counterclockwise and the
integral along the boundary ∂Bε j (z j) is oriented clockwise. In particular 〈 f1, f2〉

equals the limit as T →∞, ε j → 0+, 1 6 j 6 `, of the right-hand side of (6.2),
assuming that the regularized integrals exist.

We are now ready to prove Theorem 1.3 with the explicit constant

cn := 6c+++Jn
(0)+ 6c+−jn

(0). (6.3)

Proof of Theorem 1.3. We begin by recalling the well-known fact that every
meromorphic modular form f may be written as a product of the form (for
example, see [15, (61)])

f (z) = c∆(z)ordi∞( f )
∏

z∈SL2(Z)\H

(∆(z)( j (z)− j (z)))
ordz( f )
ωz
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with c ∈ C. In particular, if ordi∞( f ) = 0 and f is normalized so that c = 1, then
we see that

log
(

y
k
2 | f (z)|

)
=

∑
z∈SL2(Z)\H

ordz( f )
ωz

gz(z). (6.4)

By linearity of the inner product, it suffices to prove (1.2), because Theorem 1.3
follows from (6.4) and (1.2) together with the valence formula.

We take F1 := Jn and F2 := Gz in Lemma 6.1 and evaluate the contribution
from the three terms in (6.2). We have f1 = jn , F1 = −Jn , f1 = jn , f2 = gz,
F2 = Gz, and C = 6.

We first compute the contribution to the three terms in (6.2) along the boundary
near i∞: {

x + iT : − 1
2 6 x 6 1

2

}
. (6.5)

Since the integral is oriented counterclockwise from 1
2 to − 1

2 , these yield the
negative of the constant terms of the corresponding Fourier expansions. By
Lemma 4.3, the first term equals∑

m>1

c++gz
(m)c−Jn

(−m)W2(−2πmT )− 6δn=0
log(T )

T

+

∑
m6−1

c+−gz
(m)(c+Jn

(−m)+ 4πnδm=−nδn 6=0W2(2πnT ))W0(2πmT )

+ 6c+Jn
(0) log(T ). (6.6)

By Lemma 2.3, every term in (6.6) other than the term with log(T ) vanishes
as T → ∞. By Lemma 4.3, the contribution from (6.5) from the second term
in (6.2) equals

−4π
∑
m>1

mc+−gz
(−m)(c+−jn

(−m)W0(−2πmT )+ 2δm=−nW0(−2πnT ))

+ 6δn=0
1+ log(T )

T
+ 6c+−jn

(0). (6.7)

By Lemma 2.3, every term in (6.7) other than 6c+−jn
(0) vanishes as T →∞.

The third integral yields 6 times the complex conjugate of the constant term
of Jn , which has the shape in (4.1). Since κ = 2 > 1, every term in (4.1) other
than

6c+++Jn
(0)+ 6c+−−Jn

(0) log(T ) (6.8)

vanishes as T →∞. However, since ξ2(log(y)) = y and ξ0(y) = 1, we conclude
from (3.10) that

c+−−Jn
(0) = c+−jn

(0) = −c+Jn
(0). (6.9)
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Combining (6.6), (6.7), (6.8), and (6.9), we conclude that the limit T →∞ of the
contribution to (6.2) from the integral along (6.5) is overall

6c+++Jn
(0)+ 6c+−jn

(0). (6.10)

We next compute the contribution from the integral along ∂(Bε(z) ∩ F). Note
that for a function F satisfying weight two modularity we have∫

∂(Bε(z)∩F)
F(z) dz =

1
ωz

∫
∂Bε(z)

F(z) dz.

Moreover, a straightforward calculation yields that, for ` ∈ Z,

1
2π i

∫
∂Bε(z)

(z − z)−2 X `
z(z) dz =

{
(z− z)−1 if ` = −1,
0 otherwise,

(6.11)

where the integral is taken counterclockwise. Thus we need to determine the
coefficient of X−1

z (z) of the corresponding elliptic expansions. Noting that the
orientation of (6.11) is the opposite of the orientation in (6.2), Lemma 5.8 implies
that the contribution along ∂(Bε(z) ∩F) from the first term in (6.2) is

4π
ωz

(∑
m>0

c++gz,z
(m)c−Jn ,z

(−m − 1)βt0

(
1− ε2

;−1,m + 1
)

+

∑
m6−1

c+−gz,z
(m)c+Jn ,z

(−m − 1)βt0

(
1− ε2

; 1,−m
)

+

(
cgz,z(0)βt0

(
1− ε2

; 1, 0
)
+ 6 log

(
1− ε2)) c−Jn ,z

(−1)βt0

(
1− ε2

;−1, 1
))
.

By Lemma 5.4, each of these terms vanishes as ε→ 0+.
By Lemma 5.8, the integral along ∂(Bε(z) ∩ F) from the second term in (6.2)

evaluates as

4π
ωz

((
−
ωz

2
+

6ε2

1− ε2

) (
c++jn ,z

(0)+ c−−jn ,z
(0)β−1,0(ε)

)
+

∑
m6−1

c+−gz,z
(m)c+−jn ,z

(m)βt0

(
1− ε2

; 1,−m
))
.

Lemma 5.4 implies that this converges to −2πc++jn ,z
(0) as ε → 0+. Taking the

limit r = ε → 0+ in the expansion of jn in Lemma 5.8(1) and using the bounds
in Lemma 5.4 and Corollary 5.5 then gives c++jn ,z

(0) = jn(z).
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Since Jn does not have a singularity at z, there is no contribution from the third
integral in (6.2). Hence we conclude that the integral along ∂(Bε(z)∩F) altogether
contributes −2πjn(z). Thus the overall inner product is, using (6.10),

〈 jn,gz〉 = 6c+++Jn
(0)+ 6c+−jn

(0)− 2πjn(z) = −2πjn(z)+ cn. (6.12)

This finishes the proof.

7. A generating function and the proof of Theorem 1.4 and Corollary 1.5

The functions needed for Theorem 1.4 are

Ĥz := −
1

2π
Gz −

1
4π

E, Îz := Gz. (7.1)

Proof of Theorem 1.4. We compute the inner product 〈 jn,gz〉 in another way and
then compare with the evaluation in Theorem 1.3. Namely, we apply Stokes’
theorem with (3.9) to instead write

〈 jn,gz〉T,ε = 〈ξ2(Gz), jn〉T,ε = −

∫
∂FT,z,ε

Gz(z) jn(z) dz.

By Lemma 4.3, the integral along the boundary (6.5) near i∞ contributes

c+++Gz
(n)+ c+−−Gz

(n)δn 6=0W2(2πnT )− δn=0
6
T
(1+ log(T ))

+

∑
m>1

c jn (m)c
++−

Gz
(−m)W2(−2πmT ).

By Lemma 2.3, every term other than c+++Gz
(n) vanishes as T →∞.

We then use the elliptic expansions of jn and Gz in Lemmas 5.8, 5.4, and
Corollary 5.5 to show that the integral along ∂(Bε(z) ∩F) vanishes. Thus

〈 jn,gz〉 = c+++Gz
(n). (7.2)

Taking the generating function of both sides of (7.2) and recalling (1.4), we see
that ∑

n>0

〈 jn,gz〉qn
= G+++z (z) = Î+++z (z).

It remains to show that Hz is the holomorphic part of Ĥz, which is a weight two
sesquiharmonic Maass form because the biharmonic part of 2Gz +E vanishes by
Lemma 4.3. For this, we plug (6.12) into (7.2) and use (6.9) to obtain

jn(z) = −
1

2π
c+++Gz

(n)+
3
π

c+++Jn
(0)−

3
π

c+Jn
(0). (7.3)
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Again by (1.4), to show that Hz is the holomorphic part of Ĥz it remains to prove
that 12c+Jn

(0) − 12c+++Jn
(0) is the nth Fourier coefficient of the holomorphic part

of E. In order to see this, we next compute 〈 jn, E〉T . Using Stokes’ theorem and
noting (3.11) gives

〈 jn, E〉T = 〈ξ2(E), jn〉T = −

∫
∂FT

E(z) jn(z) dz. (7.4)

Plugging in Lemma 4.3, we obtain that (7.4) equals

c+++E (n)+ c+−−E (n)δn 6=0W2(2πnT )

+ δn=0

(
c+−−E (0) log(T )+

12
T
(1+ log(T ))

)
+

∑
m>1

c jn (m)c
++−

E (−m)W2(−2πmT ). (7.5)

We see by Lemma 2.3 that (7.5) becomes

〈 jn, E〉T = c+++E (n)+ δn=0c+−−E (0) log(T )+ O
(

log(T )
T

)
. (7.6)

We next use Lemma 6.1 with F1 = Jn and F2 = E to compute the inner product
another way. We have f1 = jn , F1 = −Jn , f1 = jn , f2 = E by (3.11), F2 = ξ0(E),
and C =−12 in this case. We plug in Lemma 4.3 to the first term from Lemma 6.1
to obtain∑
m>1

c+Jn
(m) c+−E (−m)W0(−2πmT )+ 4πnW2(2πnT )c+−E (−n)W0(−2πnT )

+

(
c+Jn
(0)− δn=0

1
T

)
(4πT − 12 log(T ))+

∑
m6−1

c−Jn
(m)W2(2πmT )c++E (−m).

By Lemma 2.3, this becomes

−4πδn=0 + c+Jn
(0)(4πT − 12 log(T ))+ O

(
log(T )

T

)
. (7.7)

By Lemma 4.3, the second term in Lemma 6.1 equals

4π
∑

m6−1

c+−jn
(m)cE2(−m)W0(2πmT )+ 8πδn 6=0W0(−2πnT )cE2(n)

+ (c+−jn
(0)T + δn=0(1+ log(T )))

(
4πcE2(0)−

12
T

)
.
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Using Lemma 2.3, (6.9), and the fact that cE2(0) = 1, this becomes

−4πc+Jn
(0)T + 12c+Jn

(0)+ 4πδn=0 log(T )+ 4πδn=0 + O
(

log(T )
T

)
. (7.8)

By (6.8) the contribution from the last term in Lemma 6.1 is, using (6.9)

−12c+++Jn
(0)+ 12c+Jn

(0) log(T )+ o(1). (7.9)

Combining the respective evaluations (7.7), (7.8), and (7.9), we get

〈 jn, E〉T = 4πδn=0 log(T )+ 12c+Jn
(0)− 12c+++Jn

(0)+ o(1). (7.10)

Comparing the constant terms in the asymptotic expansions of (7.10) and (7.6)
gives that

c+++E (n) = 12c+Jn
(0)− 12c+++Jn

(0).

Plugging this into (7.3), we conclude that jn(z) is the nth coefficient of Ĥz, as
claimed.

We conclude with the proof of Corollary 1.5.

Proof of Corollary 1.5. The claim follows from Theorem 1.4, (7.1), (3.9), (3.11),
(6.4), and the valence formula.
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