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Solid convergence structure

equals pseudotopology

Oswald Wyler

A new brief proof of the fact stated in the title is presented.

Pseudotopological spaces were introduced by Choquet in [/], and solid

convergence spaces by Schroder in [4], Schroder remarked, without proof,

that every solid convergence structure is a pseudotopology.

The statement of the title of this note was first proved in [5]. It

is shown in [5] that every concrete category A has a quasitopos hull over

sets, and that this quasitopos hull is the category of sheaves for a

canonical Grothendieck topology of A . Day and Kelly [3] had given two

characterizations of topological quotient maps f : X -*• X such that every

pullback of / , in the category Top of topological spaces, is a quotient

map. These characterizations can easily be expanded to describe the

canonical topology of Top . One of the characterizations shows that the

quasitopos hull of Top is the category of solid convergence spaces; see

[2]. The other characterization shows that the quasitopos hull of Top is

the category of pseudotopological spaces.

Obviously, a less involved and more elementary proof of the fact

stated as the title of this note seems desirable. We shall give such a

proof.

Let AT be a convergence space, F a filter on X , and x a point

of X . A cover y of x assigns, by definition, to every filter <p

converging to x a set Y(<P) in <p . We compare the following two

statements.
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(A) Every u l t r a f i l t e r on X finer than F converges to x .

(B) For every cover y of x , there i s a f in i t e l i s t <p , . . . , cp

of f i l t e r s converging to x such that Y(<P-|)
 u u

 Y(<P ) i s in F .

If F converges to x , then the pair (F, x) sa t i s f ies (A) and (B).

X i s called a pseudotopological space i f F always converges to x when

(A) i s sa t i s f ied , and X i s called a solid convergence space i f F always

converges to x when (B) i s sat isf ied.

PROPOSITION. (A) and (B) are logically equivalent.

Proof. Assume first that the conclusion of (B) is false for some

cover of x . The difference sets

with A in F and <p , .. . , tp converging to x , then are non-empty and

form a filter basis. The filter G on X with this basis is finer than

F . No filter I|I finer than G can converge to x , for otherwise both

Y(^) and X\y(\li) would be in \p , a contradiction.

Assume now that some ultrafilter ip finer than F does not converge

to x . A set y(f>) in cp , but not in \p , can be chosen for every

filter cp converging to x ; this defines a cover of x . If

Y(ip,) U ... U Y(<P ) is in F , and hence in \p , for a finite list of

filters (pn , .. . , cp converging to x , then one of the sets Y(CP-) is in

\p , contrary to the construction of Y •

REMARK. (A) and (B) remain equivalent if (B) is sharpened by

restricting covers of x to ultrafilters converging to x .
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