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Abstract

We analyse the behaviour of supercritical super-Brownian motion with a barrier through
the pathwise backbone embedding of Berestycki, Kyprianou and Murillo-Salas (2011).
In particular, by considering existing results for branching Brownian motion due to Harris
and Kyprianou (2006) and Maillard (2011), we obtain, with relative ease, conclusions
regarding the growth in the right-most point in the support, analytical properties of the
associated one-sided Fisher–Kolmogorov–Petrovskii–Piscounov wave equation, as well
as the distribution of mass on the exit measure associated with the barrier.
Keywords: Super-Brownian motion; backbone decomposition; killed super-Brownian
motion
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1. Introduction

Suppose that X = {Xt : t ≥ 0} is a (one-dimensional) superdiffusion with motion
corresponding to that of a Brownian motion with drift −ρ ∈ R, stopped at 0, and branching
mechanism ψ taking the form

ψ(λ) = −αλ+ βλ2 +
∫
(0,∞)

(e−λx − 1 + λx)�(dx)

for λ ≥ 0, where α = −ψ ′(0+) ∈ (0,∞), β ≥ 0, and � is a measure concentrated on (0,∞)

which satisfies
∫
(0,∞)

(x ∧ x2)�(dx) < ∞. We also insist that β > 0 if � ≡ 0. The existence
of this class of superprocesses is guaranteed by [4], [6], and [8].

Let MF (I ) be the space of finite measures on I ⊆ R, and note that X is an MF [0,∞)-
valued Markov process under Pµ for each µ ∈ MF [0,∞), where Pµ is law of X with initial
configuration µ. One may think of Pµ as a law on the càdlàg path space X := D([0,∞) ×
MF [0,∞)). Henceforth we shall use standard inner product notation: for f ∈ C+

b [0,∞) and
µ ∈ MF [0,∞),

〈f,µ〉 =
∫

R

f (x)µ(dx).

Accordingly, we shall write ‖µ‖ = 〈1, µ〉.
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672 A. E. KYPRIANOU ET AL.

Recall that the total mass of the process X is a continuous-state branching process with
branching mechanism ψ . Since there is no interaction between spatial motion and branching,
we can characterise our ψ-superdiffusion as supercritical on account of the assumption that
α = −ψ ′(0+) > 0. Such processes may exhibit explosive behaviour; however, under the
conditions assumed above, X remains finite at all positive times. We insist moreover that
ψ(∞) = ∞, which means that, with positive probability, the event limt↑∞ ‖Xt‖ = 0 will
occur. Equivalently, this means that the total mass process does not have monotone increasing
paths; see, for example, the summary in Chapter 10 of [17]. The probability of the event

E :=
{

lim
t↑∞ ‖Xt‖ = 0

}

is described in terms of the largest root, say λ∗, of the equation ψ(λ) = 0. It is known
(cf. Chapter 8 of [17]) that ψ is strictly convex with ψ(0) = 0 and, hence, since ψ(∞) = ∞
and ψ ′(0+) < 0, it follows that there are exactly two roots in [0,∞), one of which is always 0.
For µ ∈ MF [0,∞), we have

Pµ

(
lim
t↑∞ ‖Xt‖ = 0

)
= e−λ∗‖µ‖.

It is a straightforward exercise (cf. Lemma 2 of [3] or Theorem 2.6 of [25]) to show that the
law of X under Pµ conditioned on E is that of another superdiffusion with the same motion
component as X, but with a new branching mechanism which is given by ψ∗(λ) = ψ(λ+ λ∗)
for λ ≥ 0. Said another way, the aforementioned superdiffusion has a semigroup characterised
by the nonlinear equation (4) below with the quantity ψ replaced by ψ∗. We denote its law
by P∗

µ.
In this paper we shall also assume that

∫ ∞ 1√∫ ξ
λ∗ ψ(u) du

dξ < ∞. (1)

Condition (1) implies in particular that
∫ ∞ 1/ψ(ξ) dξ < ∞ (cf. [25]), which in turn guarantees

that the event E agrees with the event of extinction, namely, {ζX < ∞}, where

ζX = inf{t > 0 : ‖Xt‖ = 0}.
Note that (1) cannot be satisfied for branching mechanisms which are the Laplace exponents
of bounded variation, spectrally positive Lévy processes.

In this paper our objective is to show the robustness of a recent pathwise backbone
decomposition, described in detail in the next section, as a mechanism for transferring results
from branching diffusions directly into the setting of superprocesses. We shall do this by
demonstrating how two related fundamental results for branching Brownian motion with a
killing barrier induce the same results for aψ-super-Brownian motion with killing at the origin.
The latter, which we shall denote byX+ = {X+

t : t ≥ 0}, can be defined on the same probability
space as X by simply taking

X+
t (·) = Xt(· ∩ (0,∞)). (2)

For f ∈ C+
b (0,∞), µ ∈ MF (0,∞), x > 0, and t ≥ 0,

− log Eµ(e
−〈f,Xt 〉) =

∫
(0,∞)

uf (x, t)µ(dx), t ≥ 0, (3)
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Application of the backbone decomposition 673

describes the semigroup of X, where uf is the unique positive solution to

uf (x, t) = E−ρ
x [f (Bt∧τ0)] − E−ρ

x

[∫ t∧τ0

0
ψ(uf (Bs, t − s)) ds

]
, x, t ≥ 0. (4)

Here, E−ρ
x is the expectation with respect to P−ρ

x , under which {Bt : t ≥ 0} is a Brownian
motion with drift −ρ, issued from x ≥ 0, and τ0 = inf{t > 0 : Bt < 0}. The reader is referred
to Theorem 1.1 of [5], Proposition 2.3 of [14], and Proposition 2.2 of [27] for further details;
see also [6] and [8] for a general overview.

Our first result, based on the branching particle analogue in [15], shows that the classical
growth of the right-most point in the support and its intimate relation with nonnegative stationary
solutions to (4) can also be seen in the superprocess context. Specifically, we mean solutions
of the form u(x, t) = 
(x), which necessarily solve


(x) = E−ρ
x [
(Bt∧τ0)] − E−ρ

x

[∫ t∧τ0

0
ψ(
(Bs)) ds

]
, x ≥ 0.

If we additionally suppose, for technical reasons which will soon become apparent, that 

monotonically connects 0 at the origin to λ∗ at +∞, then it is a straightforward exercise using
the classical Feynman–Kac representation of solutions to ordinary differential equations to
show that 
 solves the differential equation

1
2


′′(x)− ρ
′(x)− ψ(
(x)) = 0 on x > 0 with 
(0+) = 0 and 
(+∞) = λ∗. (5)

In this case we call 
 a wave solution to (5).

Theorem 1. (Strong law for the support.) Define

RXt := inf{y > 0 : Xt(y,∞) = 0} = inf{y > 0 : X+
t (y,∞) = 0},

and denote the extinction time of X+ by

ζX+ = inf{t > 0 : ‖X+
t ‖ = 0}.

(i) Assume that −∞ < ρ <
√

2α. Then, for all x > 0,

lim
t→∞

RXt

t
= √

2α − ρ on {ζX+ = ∞}

Pδx -almost surely, and


(x) := − log Pδx (ζ
X+ < ∞) for all x > 0

is the unique wave solution to (5).

(ii) For all ρ ≥ √
2α, there exists no monotone wave solution to (5) and

Pδx (ζ
X+ < ∞) = 1 for all x > 0.

Remark 1. Whilst Theorem 1 offers results on the existence and uniqueness of solutions to (5),
we do not claim that these are necessarily new. Indeed, we may extract the same or similar
results using the methods in, for example, [16], [22], and [26]. See also the discussion in
Remark 2 below.
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Our second result looks at the distribution of mass that is absorbed at the origin, when ρ
takes the critical value

√
2α, in the spirit of recent results of Addario-Berry and Broutin [1],

Aïdékon et al. [2], and Maillard [20]. In order to describe this result, we need to introduce the
concept of Dynkin’s exit measures.

For each x ∈ R, suppose that we defined the superprocessY = {Yt : t ≥ 0} under Qδx to have
the same branching mechanism as (X,Pδx ); however, the underlying motion associated with Y
is that of a Brownian motion with drift −ρ (i.e. no stopping at 0). The existence of (Y,Qδx ) is
justified through the same means as for (X,Pδx ). In principle, it is possible to construct these
two processes on the same probability space; however, this is unnecessary for our purposes.
For each z, t ≥ 0, define the space–time domain Dt−z = {(x, u) ∈ R × [0,∞) : u < t,

x > −z}. According to Dynkin’s theory of exit measures outlined in Section 7 of [7] and
Section 1 of [9], it is possible to describe the mass in the superprocess Y as it first exits
the domain Dt−z. In particular, according to the characterisation for branching Markov exit
measures given in Section 1.1 of [9], the random measure YDt−z is supported on ∂Dt−z =
({−z} × [0, t)) ∪ ([−z,∞)× {t}) and is characterised by the Laplace functional

Qδx (exp{−〈f, YDt−z〉}) = e−uzf (x,t),

where x ≥ −z, f ∈ Cb([−z,∞)×[0,∞)), and uzf (x, t) uniquely solves, amongst nonnegative
solutions (cf. Theorem 6.1 of [7]), the equation

uzf (x, t) = E−ρ
x [f (Bt∧τ−z , t ∧ τ−z)]

− E−ρ
x

[∫ t∧τ−z

0
ψ(uzf (Bu, t − u)) du

]
, x ≥ −z, t ≥ 0,

where τ−z = inf{t > 0 : Bt < −z}. Intuitively speaking, we should think of YDt−z as the
analogue of the atomic measure supported on ∂Dt−z which describes the collection of particles
and their space–time positions in a branching Brownian motion with drift −ρ that are first in
their genealogical line of descent to exit the space–time domain (−z,∞)× [0, t).

In the case that ρ ≥ √
2α, it was shown in Theorem 3.1 of [18] that the limiting random

measure YD−z = limt↑∞ YDt−z (which exists almost surely by monotonicity) is almost surely

finite and has total mass which satisfies

Qδx (exp{−θ‖YD−z‖}) = e−vθ (x+z)

for θ ≥ 0 and x ≥ −z, where

1
2v

′′
θ (x)− ρv′

θ (x)− ψ(vθ (x)) = 0,

with vθ (0) = θ . In particular, {vθ (x) : x ≥ 0} is the semigroup of a continuous-state branching
process whose branching mechanism satisfies

ψD(λ) = � ′(�−1(λ))

for λ ∈ [0, λ∗], where � is the unique monotone solution to the wave equation

1
2�

′′(x)+ ρ� ′(x)− ψ(�(x)) = 0 on R with �(−∞) = λ∗ and �(+∞) = 0. (6)

Indeed, it was shown in Theorem 3.1 of [18] that ‖YD‖ := {‖YD−z‖: z ≥ 0} is a continuous-state
branching process with growth rate ρ + √

ρ2 − 2α.
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We are now ready to state our second main result, based on the branching Brownian motion
analogue in [20], which in particular focuses on the case that the underlying motion has a critical
speed

√
2α.

Theorem 2. (Absorbed mass at criticality.) Set ρ = √
2α. Assume that, for some ε > 0,∫

[1,∞)

x(log x)2+ε�(dx) < ∞. (7)

Then, for each z, x > 0, we have

Qδx (‖YD−z‖ > t) ∼ √
2α
(x + z)e(x+z)

√
2α

t (log t)2

as t ↑ ∞.

Note that, in terms of our earlier notation, we see that X+
t under Pδx has the same law as

YDt0
|(0,∞)×{t} under Qδx . Whilst Theorem 1 therefore concerns the spatial evolution of the

support of the measure YDt0 away from the origin for speeds ρ >
√

2α, by contrast, Theorem 2
addresses the distribution of mass accumulated at the origin by the same measure, at the critical
speed

√
2α.

The remainder of this paper is structured as follows. In Section 2 we give a brief overview of
the backbone decomposition for X, noting that similar decompositions also hold for a number
of other processes used in this paper. In Section 3 we prove Theorem 1, and in Section 4 we
prove Theorem 2.

2. The backbone decomposition and Poissonisation

As alluded to above, our results are largely driven by the backbone decomposition, recently
described in the pathwise sense by Berestycki et al. [3] for conservative processes. Note
that backbone decompositions have been known in the earlier and more analytical setting of
semigroup decompositions through the work of Evans and O’Connell [12] and Engländer and
Pinsky [11], as well as in the pathwise setting in the work of Salisbury and Verzani [23], [24].

To describe the backbone decomposition in detail, consider the process {�Xt : t ≥ 0} which
has the following pathwise construction. First sample from a branching particle diffusion with
branching generator

F(r) = q

(∑
n≥0

pnr
n − r

)
= 1

λ∗ψ(λ
∗(1 − r)), r ∈ [0, 1], (8)

and particle motion which is that of a Brownian motion with drift −ρ, stopped at the origin.
Note that in the above generator, q is the rate at which individuals reproduce and {pn : n ≥ 0}
is the offspring distribution. With the particular branching generator given by (8), q = ψ ′(λ∗),
p0 = p1 = 0, and, for n ≥ 2, pn := pn[0,∞), where, for y ≥ 0, we defined the measure
pn(·) on {2, 3, 4, . . .} × [0,∞) by

pn(dy) = 1

λ∗ψ ′(λ∗)

{
β(λ∗)2δ0(dy)1{n=2} + (λ∗)n y

n

n! e−λ∗y�(dy)

}
.

If we denote the aforesaid branching particle diffusion byZX = {ZXt : t ≥ 0} then we shall also
insist that the configuration of particles in space at time 0,Z0, is given by an independent Poisson
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random measure with intensity λ∗µ. Next, dress the branches of the spatial tree that describes
the trajectory of ZX in such a way that a particle at the space–time position (ξ, t) ∈ [0,∞)2

has an independent X-valued trajectory grafted on to it with rate

2β dN∗
ξ +

∫ ∞

0
ye−λ∗y�(dy) dP∗

ξδy
.

Here the measure N∗
ξ is the excursion measure (cf. [9], [10], and [19]) on the space X which

satisfies
N∗
x(1 − e−〈f,Xt 〉) = u∗

f (x, t)

for x, t ≥ 0 and f ∈ C+
b [0,∞), where u∗

f (x, t) is the unique solution to (4) with the branching
mechanism ψ replaced by ψ∗. Moreover, on the event that an individual in ZX dies and
branches into n ≥ 2 offspring at spatial position ξ ∈ [0,∞), with probability pn(dy)P∗

yδξ
, an

additional independent X-valued trajectory is grafted on to the space–time branching point.
The quantity�Xt is now understood to be the total dressed mass present at time t together with
the mass present at time t of an independent copy of (X,P∗

µ) issued at time 0. We denote the
law of (�X,ZX) by Pµ.

The backbone decomposition is now summarised by the following theorem lifted from [3].

Theorem 3. For any µ ∈ MF [0,∞), the process (�X,Pµ) is Markovian and has the same
law as (X,Pµ). Moreover, for each t ≥ 0, the law of ZXt given�Xt is that of a Poisson random
measure with intensity measure λ∗�Xt .

Not much changes in the above account when we replace the role of X by the superprocess
Y or indeed the continuous-state branching process ‖YD‖. Specifically, for the case of Y , the
motion of the backbone, ZY , is that of a Brownian motion with drift −ρ and ψ remains the
same. For the case of ‖YD‖, we may consider the motion process to be that of a particle which
remains fixed at a point and the branching mechanism ψ is replaced by ψD .

3. Proof of Theorem 1

Proof of (i). Using obvious notation in light of (2), and referring to the discussion following
Theorem 2, we necessarily have RXt equal in law to inf{y > 0 : YDt0 |(0,∞)×{t}(y,∞) = 0}, and
the latter is Qδx -almost surely bounded above by RYt . It is known from Corollary 3.2 of [18]
that, under (1), for any ρ ≤ √

2α,

lim
t→∞

RYt

t
= √

2α − ρ

Qδx -almost surely on the survival set of Y . It follows that, under the same assumptions,

lim sup
t→∞

RXt

t
≤ √

2α − ρ on {ζX+ = ∞} (9)

Pδx -almost surely.
For the lower bound, note that the backbone decomposition allows us to deduce straight

away that, again using obvious notation, on {ζ�X+ = ∞}, RZXt ≤ R�
X

t holds Pδx -almost surely
for each x > 0. The restriction of the process ZX to (0,∞) can be formally identified as
a branching Brownian motion with killing at the origin. In [15] it was shown that a dyadic
branching Brownian motion with drift −ρ and killing at the origin which branches at rate q has
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the property that the asymptotic right-most particle speed is equal to
√

2q − ρ on survival. In
fact, careful inspection of their proof shows that it is straightforward to replace dyadic branching
by a random number of offspring with mean m ∈ (1,∞). In that case the right-most speed
is equal to

√
2q(m− 1) − ρ. Note that, for the process ZX, we easily compute from (8) that

q(m− 1) = α. We now have

lim inf
t→∞

R�
X

t

t
≥ lim
t→∞

RZ
X

t

t
= √

2α − ρ on {ζZX+ = ∞} (10)

Pδx -almost surely. Let us temporarily assume however that {ζZX+ < ∞} agrees with the event

{ζ�X+ < ∞} under Pδx . Theorem 3 now allows us to conclude from (10) that

lim inf
t→∞

RX

t
≥ √

2α − ρ on {ζX+ = ∞}

Pδx -almost surely.
To complete the proof of part (i), we must therefore show that {ζZX+ < ∞} agrees with the

event {ζ�X+ < ∞} under Pδx and that their common probabilities give the unique solution to (5).
To this end, first note that the backbone decomposition, and in particular the Poisson embedding
of ZX in �X, gives {ζ�X+ < ∞} ⊆ {ζZX+ < ∞}. Next note that the backbone decomposition
also tells us that {ZX0 (0,∞) = 0} ⊆ {ζ�X+ < ∞}. If we define the monotone increasing
function 
 : [0,∞) → [0,∞) by

e−
(x) = Pδx (ζ
X+ < ∞) = Pδx (ζ

�X+ < ∞),

so that in particular 
(0) = 0, then the previous observations tell us that, for x > 0,

e−λ∗ ≤ e−
(x) ≤ Pδx (ζ
ZX+ < ∞) < 1.

Note that the right-hand side inequality above is strict as all initial particles in ZX may hit the
stopping boundary before branching with positive probability. It is a straightforward exercise
to show, using the Markov branching property and the fact that 
(0) = 0, that 
 respects the
relation

e−
(x) = Eδx (PXt (ζ
X+ < ∞)) = Eδx (e

−〈
,X+
t 〉) = Eδx (e

−〈
,Xt 〉) for all x, t ≥ 0.

Inspecting the semigroup evolution equation (4) for X with data f = 
 and taking account of
the fact that its unique solution is given by (3), we see that 
 solves the differential equation
in (5).

To show that 
(+∞) = λ∗, note that the law of 〈
,X+
t 〉 under Pδx is equal to that of

〈
(x + ·), YDt−x |(−x,∞)×{t}〉 under Qδ0 . Due to the monotonicity of
(x) and YDt−x |(−x,∞)×{t}
in x and the fact that 0 < 
(x) ≤ λ∗ we have, with the help of dominated convergence,

e−
(+∞) = lim
x↑∞ Qδ0(exp{−〈
(x + ·), YDt−x |(−x,∞)×{t}〉}) = Qδ0(e

−
(∞)‖Yt‖). (11)

On account of the fact that the process {‖Yt‖: t ≥ 0} is a continuous-state branching process
with branching mechanismψ , the equality in (11) together with the fact that
(+∞) ∈ (0, λ∗]
forces us to deduce that 
(+∞) = λ∗.
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Now suppose that φ solves (5). The backbone decomposition tells us that, for all t ≥ 0,
Zt(·) given �Xt (·) is a Poisson random field with intensity measure λ∗�Xt (·). Hence,

Eδx [e〈log(1−φ/λ∗),ZXt 〉] = EδxE[e〈log(1−φ/λ∗),ZXt 〉 | �Xt ]
= Eδx

[
exp

{
−

∫
(1 − elog(1−φ(y)/λ∗))λ∗�Xt (dy)

}]

= Eδx [e−〈φ,�Xt 〉]
= e−φ(x).

Recalling that φ is monotone with φ(0+) = 0 and φ(+∞) = λ∗, and, hence, that − log(1 −
φ/λ∗) ∈ [0,∞) so that〈

− log

(
1 − φ

λ∗

)
, ZXt

〉
≥ − log(1 − φ(RZ

X

t )),

it follows with the help of the known asymptotics of RZ
X

t , e.g. (10), that

lim sup
t→∞

Eδx [e〈log(1−φ/λ∗),ZXt 〉1{ζZX+ =∞}]

≤ lim sup
t→∞

Eδx [elog(1−φ(RZXt )/λ∗)1{ζZX+ =∞}]
= 0.

Subsequently,

e−φ(x) = Pδx (ζ
ZX+ < ∞)+ lim

t→∞ Eδx [e−〈− log(1−φ/λ∗),ZXt 〉1{ζZX+ =∞}]
= Pδx (ζ

ZX+ < ∞). (12)

We conclude from (12) that


(x) = − log Pδx (ζ
�X+ < ∞) = − log Pδx (ζ

ZX+ < ∞)

is the unique monotone solution to (5). Moreover, since {ζ�X+ < ∞} ⊆ {ζZX+ < ∞}, we may
now also deduce that {ζ�X+ < ∞} = {ζZX+ < ∞}, Pδx -almost surely, which completes the proof
of part (i) of the theorem.

Proof of (ii). Suppose now that ρ ≥ √
2α. The estimate RXt ≤ RYt used in (9) now tells us

that Pδx (ζ
X+ < ∞) = 1 and, hence, because of the backbone decomposition, it also tells us

that Pδx (ζ
�X+ < ∞) = 1. As noted earlier, the Poisson embedding of ZX in �X gives us that

{ζ�X+ < ∞} ⊆ {ζZX+ < ∞} and, hence, it follows that Pδx (ζ
ZX+ < ∞) = 1. Suppose now that

a monotone wave solution,
, to (5) exists. Then the computation in (12) forces us to conclude
that 
 ≡ 0, which is a contradiction. Therefore, there can be no solutions to (5).

Remark 2. Whilst Theorem 1 offers results on the existence and uniqueness of solutions to (5),
Proposition 2 of [22] and Theorem 1 of [15] also offer the rate of decay of monotone solutions
at +∞ to the wave equation

1
2�

′′(x)− ρ� ′(x)+ F(�(x)) on x > 0 with �(0+) = 1 and �(+∞) = 0 (13)

for ρ <
√

2q, where F(s) = q(s2 − s) and q > 0. A straightforward inspection of the proof
of Theorem 1 of [15] shows that in fact their result on the decay of � holds for more general
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functions F taking, for example, the form F(s) = q(
∑∞
n=2 s

npn − s) for s ∈ [0, 1] and q > 0,
where {pn : n ≥ 2} is a probability distribution satisfying F ′(1) < ∞. Specifically, most of
the arguments in [15] do not require a dyadic offspring distribution such as is imposed there;
however, in [15, Section 6] one must take care with the exponential term in the martingale defined
in Equation (14). In their terminology, the integrand in the exponential term, β(f (Ys) − 1),
needs to be replaced by G(Ys), where G(s) = F(s)/s. Thereafter, the necessary adjustments,
which pertain largely to bounds, are relatively obvious. In that case their result reads as follows.
For all ρ <

√
2F ′(1),

lim
x↑∞ exp

{−(
ρ −

√
ρ2 + 2q

)
x
}
�(x) = kρ

for some kρ ∈ (0,∞).
Note that, when F is given by (8), it is straightforward to check that � solves (13) if and

only if λ∗(1 −�) solves (5). It follows immediately that, when ρ <
√

2α,

lim
x↑∞ exp

{−(
ρ −

√
ρ2 + 2ψ ′(λ∗)

)
x
}(

1 − 
(x)

λ∗

)
= kρ.

4. Proof of Theorem 2

As alluded to above, our objective is to embed an existing result for branching Brownian
motion with absorption at the origin into the superprocess setting with the help of the backbone
decomposition. For all x ∈ R, we shall denote by Qδx the law of the backbone decom-
position, (ZY ,�Y ) of Y . The existing result in question is due to Maillard [20] and when
paraphrased in terms of the backbone process ZY for Y , states that, under the condition that∑
n≥2 n(log n)2+εpn < ∞ for some ε > 0, and ρ = √

2α, it follows that, for all x ≥ −z,

Qδx (‖ZYD−z‖ > n | ‖ZY0 ‖ = 1) ∼
√

2α(x + z)e
√

2α(x+z)

n(log n)2
(14)

as N � n ↑ ∞. Here we understand ZYD−z to mean the atomic-valued measure, supported
on {−z} × [0,∞), which describes the space–time positions of particles in the branching
diffusion ZY that are first in their line of descent to exit the domain D∞−z. The process
‖ZYD‖ := {‖ZYD−z‖: z ≥ 0} is known to be a continuous-time Galton–Watson (cf. Lemma 3.1
and Proposition 3.2 of [20] or Proposition 3 of [21]), which, like its continuous-state space
analogue ‖YD‖, has growth rate

√
2α. Maillard’s result follows by first establishing that

Fz(s) := Qδ0(s
‖ZYD−z‖ | ‖ZY0 ‖ = 1) (15)

satisfies

F ′′
z (1 − s) ∼

√
2αzez

√
2α

s(log(1/s))2
as s ↓ 0, (16)

and then applying a classical Tauberian theorem.
The strategy for our proof of Theorem 2 will be to first show that the moment condition∑
n≥2 n(log n)2+εpn < ∞ is implied by (7). Thereafter, we shall appeal to an analytical

identity that arises through the Poissonisation property of the backbone decomposition, thereby
allowing us to convert the asymptotic (16) into an appropriate asymptotic which leads, again
through an application of a Tauberian theorem, to the conclusion of Theorem 2. We start with
the following lemma.
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Lemma 1. If
∫
[1,∞)

x(log x)2+ε�(dx) < ∞ for some ε > 0 then
∑
n≥2 n(log n)2+εpn < ∞.

Proof. Appealing to the definition of {pn : n ≥ 2}, it suffices to prove that∫ ∞

0

∑
n≥2

n(log n)2+ε (λ∗x)n

n! e−λ∗x�(dx) < ∞. (17)

To this end, define the function f (x) = (log(1 + x))2+ε. Then it is easy to see that

f ′′(x) = −(2 + ε)
(log(1 + x))ε

(1 + x)2
(log(1 + x)− (1 + ε)).

We can find N0 ∈ N such that log(1 + N0) > (1 + ε) and, subsequently, that f ′′(x) < 0 for
x ≥ N0. This implies that f is concave in (N0,∞). Hence, using Jensen’s inequality,

∑
n≥N0+1

n(log n)2+ε (λ∗x)n

n! e−λ∗x

= λ∗x
∑
n≥N0

(log(n+ 1))2+ε (λ∗x)n

n! e−λ∗x

≤ (λ∗x)
( ∑
n≥N0

e−λ∗x (λ
∗x)n

n!
)(

log

(∑
n≥N0

n(λ∗x)ne−λ∗x/n!∑
n≥N0

(λ∗x)ne−λ∗x/n! + 1

))2+ε

≤ (λ∗x)
(

log

(∑
n≥N0

n(λ∗x)n/n!∑
n≥N0

(λ∗x)n/n! + 1

))2+ε
. (18)

On the other hand, we have

lim
x→∞ log

(∑
n≥N0

n(λ∗x)n/n!∑
n≥N0

(λ∗x)n/n! + 1

)/
log x = 1.

So we can find K > 0 such that, if x > K ,

log

(∑
n≥N0

n(λ∗x)n/n!∑
n≥N0

(λ∗x)n/n! + 1

)
< 2 log x.

Using (18), this implies that∫
[K,∞)

∑
n≥N0+1

n(log n)2+ε (λ∗x)n

n! e−λ∗x�(dx) < 22+ελ∗
∫

[K,∞)

x(log x)2+ε�(dx) < ∞.

On the other hand, by choosingN0 large enough, we also have, for all n ≥ N0 +1, (log n)2+ε <
C(n− 1) for some C > 0. Hence,∫

(0,K)

∑
n≥N0+1

n(log n)2+ε (λ∗x)n

n! e−λ∗x�(dx)

≤ (λ∗K)2
∑

n≥N0+1

∫
(0,∞)

(λ∗x)n−2

(n− 2)! e−λ∗x�(dx)

≤ (λ∗K)2
∑
n≥2

pn < ∞.
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For the first terms of (17), we have
∫
(0,∞)

N0∑
n=2

n(log n)2+ε (λ∗x)n

n! e−λ∗x�(dx) =
N0∑
n=2

n(log n)2+ε (λ∗)n

n!
∫
(0,∞)

xne−λ∗x�(dx)

< ∞,

which follows from the fact that each term of the sum is finite. This completes the proof.

Remark 3. It is not difficult to show that the converse of the statement in Lemma 1 is also true;
however, we leave it as an exercise for the reader.

Let us now turn to the proof of Theorem 2. We approach the proof here on in two steps. The
first step is to show that the process ‖ZYD‖ under Qδx , for which distributional properties are
known thanks to (14), has the same branching generator as the continuous-time Galton–Watson
process Z′ := {Z′

z : z ≥ 0}, where the latter is the backbone embedded in the continuous-state
branching process ‖YD‖. Thanks to the backbone decomposition of ‖YD‖, say (Z′,�′), and the
easily seen fact that ψD(λ∗) = 0, the law of Z′

z given �′
z is that of a Poisson random variable

with parameter λ∗�′
z. This Poissonisation result will allow us to feed the known distributional

asymptotic forZ′
z (equivalently, ‖ZYD−z‖) into the required result for�′

z (equivalently, ‖YD−z‖).

Step 1. We start by recalling from [20, Section 3] that ‖ZYD‖ has branching generator given
by �′(�−1(s)), s ∈ [0, 1], where � is the unique monotone solution to the wave equation

1
2�

′′(x)− √
2α�′(x)+ F(�(x)) = 0 on R with �(−∞) = 1 and �(+∞) = 0, (19)

and F is the branching generator of the backbone ZY given in (8). Again, appealing to (8) but
for the backbone decomposition (Z′,�′) of ‖YD‖ and the fact that ψD(λ∗) = 0, we know that
Z′ has branching generator given by

FD(s) = 1

λ∗ψD(λ
∗(1 − s)) for s ∈ [0, 1].

Our objective is thus to show that FD(s) = �′(�−1(s)) for all s ∈ [0, 1].
To this end, recall that ψD(λ) = � ′(�−1(λ)) for λ ∈ [0, λ∗], where � solves (6). It is

a straightforward exercise to check that �(x) = 1 − �(−x)/λ∗. Indeed, �(+∞) = 0 and
�(−∞) = 1, and� solves (19) on account of the fact that� solves (6). Moreover, we readily
confirm that

1

λ∗�
′(�−1(λ∗(1 − s))) = �′(�−1(s)) for s ∈ [0, 1].

This implies in turn that the required equality, FD(s) = �′(�−1(s)), holds, and in particular
that ‖ZYD‖ and Z′ have the same branching generator.

Step 2. Recall that (Z′,�′) is the backbone decomposition of {‖YD−z‖: z ≥ 0}, and denote
the law of the former by Qx when the latter has law Qδx . Appealing to spatial homogeneity,
we may henceforth proceed without loss of generality by assuming that x = 0.

It follows from the conclusion of step 1 and the Poissonisation property of the backbone
decomposition that, for z ≥ 0 and s ∈ [0, 1],

Qδ0(s
‖ZYD−z‖) = Q0(s

Z′
z )

= Q0(Q0(s
Z′
z | �′

z))

= Q0(e
−λ∗�′

z(1−s))
= Qδ0(exp{−λ∗‖YD−z‖(1 − s)}). (20)
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Now, using the fact that, under Qδ0 , ‖ZYD0
‖ = ‖ZY0 ‖ is a Poisson random variable with intensity

λ∗, we have

Qδ0 [s‖Z
Y
D−z‖] =

∞∑
k=0

e−λ∗ (λ∗)k

k! Fz(s)
k = exp{−λ∗(1 − Fz(s))}, (21)

where Fz(s) was defined in (15). If we set

wz(s) = Qδ0(e
−s‖YD−z‖)

then (20) and (21) tell us that

wz(λ
∗s) = exp{−λ∗(1 − Fz(1 − s))}.

Taking second derivatives on both sides of the above equality gives

(λ∗)2w′′
z (λ

∗s) = (λ∗F ′′
z (1 − s)+ (λ∗F ′

z(1 − s))2) exp{−λ∗(1 − Fz(1 − s))}. (22)

Recalling (16) and noting that

F ′
z(1 − s) ∼ ez

√
2α as s ↓ 0,

which holds on account of the fact that ‖ZYD‖ is a continuous-time Galton–Watson process with
growth rate

√
2α, we have, from (22),

w′′
z (λ

∗s) ∼
√

2αzez
√

2α

λ∗s(log(1/s))2
as s ↓ 0. (23)

Taking u = λ∗s and using (23) we obtain

w′′
z (u) ∼

√
2αzez

√
2α

u(log λ∗ + log(1/u))2
∼

√
2αzez

√
2α

u(log(1/u))2
as u ↓ 0. (24)

Denote by Uz(dy) the measure in (0,∞) defined by the relation

wz(s) =
∫

[0,∞)

e−syUz(dy).

In other words, Uz(dy) = Qδ0(‖YD−z‖ ∈ dy) for y ≥ 0. Let us take Ũz(dy) = y2Uz(dy) on
[0,∞). Then it is easy to see that

w′′
z (s) =

∫
[0,∞)

e−syŨz(dy).

Using Theorem 2 XIII.5 of [13], we have, using (24),

Ũz(t) ∼ t
√

2αzez
√

2α

(log t)2
as t → ∞.
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Using integration by parts, it is easy to see that

Uz(t,∞) =
∫
(t,∞)

y−2Ũz(dy)

∼ √
2αzez

√
2α

(
2

∫ ∞

t

1

y2(log y)2
dy − 1

t (log t)2

)
as t → ∞.

But, by Theorem 1 VIII.9 of [13], the integral on the right-hand side above is equivalent to
1/t (log t)2. This implies that

Qδ0(‖YD−z‖ > t) = Uz(t,∞) ∼
√

2αzez
√

2α

t (log t)2
as t → ∞,

which proves the result.

Remark 4. Maillard [20] gave further results in the case that ρ >
√

2α for the asymptotic
behaviour of Qδx (‖YD−z‖ > t) as t ↑ ∞. Again, using ideas of Poisson embedding through
the backbone, analogous asymptotics can be transferred from the case of branching Brownian
motion to super-Brownian motion.
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Added in proof

Since the appearance of Yang and Ren [28], the moment condition in Maillard [20] can
be weakened so that, in the current context,

∑
n≥2 n(log n)2+εpn < ∞ can be replaced by∑

n≥2 n(log n)2pn < ∞. Accordingly, it is trivial to make the adjustments in the given
arguments to weaken the assumption in Theorem 2 from

∫
[1,∞)

x(log x)2+ε�(dx) < ∞ to∫
[1,∞)

x(log x)2�(dx) < ∞.
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