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Numerical simulations of semiconvection
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Abstract. Using a semiconvective model based on thermohaline convection, we investigate the
case of an expanding core of a main-sequence massive star. The numerical simulations at high
Prandtl number show a flow consistent with the assumption that a dynamically neutral layer
sits between the core and the radiative envelope. More simulations at low Prandtl number are
needed to infer scaling laws applicable to astrophysical regimes.
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1. Introduction
Some fifty years ago, Schwarzschild & Härm (1958) discovered an inconsistency in the

classical treatment of convection. They found that in main-sequence massive stars, for
example, as the fully mixed convective core expands, the compositional jump across its
boundary causes the helium-rich core to be less opaque than the surrounding envelope.
This can render it impossible to determine the position of the boundary on the basis
of a simple reversal of a local dynamical stability criterion. Under somewhat different
circumstances, a similar difficulty arises when the core retreats. In order to solve the
inconsistency, they postulated a region of partial mixing outside the core. This region,
called semiconvective zone, would have a compositional gradient of precisely the magni-
tude that would render the fluid marginally stable to convection. Subsequently, there has
been disagreement as to what the condition for marginal stability should be. Typically
astronomers choose between two extreme assumptions for the outcome of the semiconvec-
tive instability in order to build evolution models for giant stars. The two outcomes are
as follows: the interface slowly mixes the helium to establish a gradient such that: (i) the
layer is adiabatically stratified or (ii) the stratification is dynamically neutrally stable.
Under some circumstances, these two assumptions lead to quite different evolutionary
consequences for the star. Therefore this study is of great astrophysical importance.

2. Semiconvective model
Since opacity laws and double diffusion play the only key roles in semiconvection, we

developed a simplified model based on thermohaline convection (salt and water) where
opacity laws are embedded in a relation between the thermal conductivity KT and the
salt content S:

KT = KT0f(z)(1 + µS) (2.1)

2D plane-parallel geometry with constant gravity is assumed, but a geometry factor
f(z) is used to provoke a radiative zone on top of a convective zone. The salinity S
plays the role of the helium content. Since opacity decreases, equivalently conductivity
increases, when the helium content increases, the coefficient µ has to be positive.
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Navier-Stokes equations for thermohaline convection are employed in the Boussinesq
approximation for gases:

1
σ

(
∂u

∂t
+ (u.∇)u

)
= −∇p + (RT T − RSS) z + ∇2u (2.2)

∇.u = 0 (2.3)

∂T

∂t
+ (u.∇)T + W = ∇. (f(z)(1 + µS)∇T ) (2.4)

∂S

∂t
+ (u.∇)S = τ∇. (f(z)∇S) (2.5)

Where u is the velocity, p the pressure, W the vertical velocity, z the vertical coordi-
nate, t the time, T the temperature and S the salinity.

Length is scaled out with the height of the layer H, time with the thermal diffusion
time across the layer H2/κT , temperature with the adiabatic temperature jump across
the layer ∆Tad = gH/cp , and salinity with the salinity jump that would create the same
effect on the fluid’s buoyancy ∆Seq = ∆Tadα/αS . The thermal expansion coefficient α
and the saline expansion coefficient αS are defined by:
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ρ
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(
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Four dimensionless numbers appear in the equations: the Prandtl number, the Lewis
number, the thermal and the saline Rayleigh numbers. They are respectively:

σ =
ν

κT
τ =

κS

κT
RT =

gα∆TH3

κT ν
RS =

gαS∆SH3

κT ν

These equations were solved numerically with a code employing 6th-order compact
finite differences in the vertical on a stretched mesh, Fourier expansion in the horizontal
and 3rd-order Runge-Kutta time step. The non-linear terms are treated explicitly, while
the linear terms are treated implicitly. With the geometry factor f(z) set to one and the
heat conductivity KT to a constant, the code reproduced both kinds of double-diffusive
instabilities: salt fingers and overstable motions leading to diffusive interfaces.

3. Expanding core
A small random velocity field is added to a layer of static fluid with neutral strat-

ification, adiabatic temperature gradient and absence of salt. Salt and heat fluxes are
imposed at the bottom boundary in order to simulate nuclear burning in stars. The ex-
pansion of the core is achieved by increasing the heat flux imposed at the bottom with
time. Periodic boundary conditions are used in the horizontal, and free-free boundary
conditions are used in the vertical.

The salinity fields of two different runs are depicted on the next page. In the first
simulation, figure (1), the parameters are σ = 7, τ = 0.01, RT = 107, and RS = 2× 106.
In the second simulation, figure (2), the parameters are σ = 0.03, τ = 0.01, RT = 108,
and RS = 108. In the first simulation, the Prandtl number and the Lewis number have
the same values as in the heat-salt system. In the second simulation, their ratio has the
actual computed value for massive stars, and the Prandtl number is closer to its stellar
value. In the pictures, light regions are salty while dark regions are fresh.
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Figure 1. salt content at an early stage and a late stage of the first simulation.

Figure 2. salt content at an early stage and a late stage of the second simulation.

4. Conclusions
In the simulation at high Prandtl number, a thermal instability on the lower boundary

generates hot saline rising plumes, thus producing an advancing convective mixed layer,
representing the stellar core. In the stable layer above the core, a vacillating flow induces a
descending cold fresh plume on top of the downwelling flow of an eddy, while entraining
a small amount of salt from the other into a layer above the boundary of the true
convective zone. That layer is in hydrostatic equilibrium, not unlike the extreme recipe
(ii) mentioned above. However, the computations extend to too short a time for the layer
to have achieved a diffusive equilibrium. Therefore we cannot say whether the final state
is like (i), (ii), or something else. The low Prandtl number run shows similar features
to those seen in the high Prandtl number run. However, the driving of the counter flow
cannot be achieved by viscosity at low Prandtl numbers. Therefore, thermal driving has
to be instrumental in generating the counter flow.

More simulations are needed to infer scaling laws for the fluxes when the Prandtl
number and the Lewis number have their astrophysical values. Also the influence of large
aspect ratios needs to be probed. The results of this model can be extended to other
scenarios of semiconvection, including the case of the expanding cores of horizontal-
branch stars.
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