A Certain Linear Differential Equation.

By F. H. Jackson, M.A.

The Series

$$
\begin{equation*}
y=1+\frac{\Pi(\alpha) \Pi(\beta-m)}{\Pi(a-n) \Pi(\beta)} \cdot \frac{x}{1!}+\frac{\Pi(\alpha) \Pi(\alpha+1) \Pi(\beta-m) \Pi(\beta-m+1)}{\Pi(\alpha-n) \Pi(a-n+1) \Pi(\beta) \Pi(\beta+1)} \cdot \frac{x^{2}}{2!}+\ldots \tag{1}
\end{equation*}
$$

if convergent, is a particular solution of the Differential Equation

$$
\begin{align*}
& {\left[(a)_{n}+n(a)_{n-1} \cdot x \mathrm{D}+\frac{n . n-1}{2!}(a)_{n-2} x^{2} \mathrm{D}^{2}+\quad \ldots \quad \ldots\right] y} \\
& -\frac{1}{x}\left[(\beta)_{m} \cdot x \mathrm{D}+m(\beta)_{m-1} x^{2} \mathrm{D}^{2}+\frac{m \cdot m-1}{2!}(\beta)_{m-z} x^{3} \mathrm{D}^{3}+\cdots\right] y=0 \tag{2}
\end{align*}
$$

in which
$(a)_{n} \equiv \frac{\Pi(a)}{\Pi(a-n)}$ and Π denotes Gauss's Π Function, D stands for $\frac{d}{d x}$.
The Differential Equation will contain a finite number or an infinite number of terms according as m and n are, or are not positive integers. When $m=n-1$ and n is a positive integer, Equation (1) is identical with " (G)," Vol. XIII. p. 125, Proceedings of Edinburgh Mathematical Society.

Assume that
$y=\mathrm{A}_{1} x^{m_{1}}+\mathrm{A}_{2} x^{m_{2}}+\quad \ldots \quad \ldots \quad+\mathrm{A}_{r} x^{m_{r}}+\quad \ldots \quad \ldots$ (A)
is a possible form of solution of Equation (2). By differentiating r times in succession we obtain
$\frac{d^{r} y}{d x^{r}}=\mathbf{A}_{1}\left(m_{1}\right)_{r} x^{m_{2}-r}+\mathbf{A}_{2}\left(m_{2}\right)_{r} x^{m_{2}-r}+\quad \ldots+\mathbf{A}_{r}\left(m_{r}\right)_{r} x^{m_{r}-r}+\quad \ldots$ in which $\left(m_{1}\right)_{r}=\frac{\Pi\left(m_{1}\right)}{\Pi\left(m_{1}-r\right)}=m_{1} \cdot m_{1}-1 . m_{1}-2 \quad \ldots \quad m_{1}-r+1$.

Substituting the values of the differential coefficients in the expression on the left side of equation (2) we have

$$
\begin{aligned}
& (a)_{n}\left[\mathbf{A}_{1} x^{m_{1}} \quad+\mathbf{A}_{2} x^{m_{2}}+\ldots \quad \ldots+A_{r} x^{n_{r}}+\quad \ldots\right] \\
& +n .(a)_{n-1}\left[\mathrm{~A}_{1}\left(m_{1}\right)_{x^{2}} x^{m_{1}}+\mathrm{A}_{2}\left(m_{2}\right)_{1} x^{m_{2}}+\ldots+\mathrm{A}_{r}\left(m_{r}\right)_{1} x^{m_{r}}+\ldots\right] \\
& +\frac{n . n-1}{2!}(a)_{n-2}\left[A_{1}\left(m_{1}\right)_{2} x^{m_{1}}+A_{2}\left(m_{2}\right)_{2} x^{n_{2}}+\ldots+A_{2}\left(m_{r}\right)_{2} x^{m_{r}}+\ldots\right] \\
& \begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \cdots
\end{array} \\
& +\frac{n!}{r!n-r!}(a)_{n-r}\left[\mathbf{A}_{1}\left(m_{1}\right)_{r} x^{m_{1}}+A_{2}\left(m_{2}\right)_{r} x^{m_{2}}+\ldots+A_{r}\left(m_{r}\right)_{r} x^{m m_{r}}+\ldots\right] \\
& -(\beta)_{m}\left[A_{1}\left(m_{1}\right)_{1} x^{m_{1}-1}+A_{2}\left(m_{2}\right)_{1} x^{m_{2}-1}+\ldots+A_{r}\left(m_{r}\right)_{1} x^{m_{r}-1}+\ldots\right] \\
& -m(\beta)_{m-1}\left[\mathrm{~A}_{1}\left(m_{1}\right)_{2} x^{m_{1}-1}+\Lambda_{2}\left(m_{2}\right)_{2} x^{m_{2}-1}+\ldots+\mathrm{A}_{r}\left(m_{r}\right)_{2} x^{m_{r}-1}+\ldots\right] \\
& \begin{array}{lll}
\ldots & \cdots & \ldots \\
\cdots & \ldots & \cdots \\
\cdots & \cdots & \cdots
\end{array} \\
& -\frac{m!}{r!m-r!}(\beta)_{m-r}\left[\mathbf{A}_{1}\left(m_{1}\right)_{r} x^{m_{1}-1}+\mathbf{A}_{2}\left(m_{2}\right)_{r} x^{m_{2}-1}+\ldots\right. \\
& \left.\ldots+\Lambda_{r}\left(m_{r}\right)_{r} x^{m_{r}-1}+\ldots\right]
\end{aligned}
$$

This expression must vanish identically and we see that a possible relation between the indices is

$$
\begin{aligned}
& m_{1}=m_{2}-1 \\
& m_{2}=m_{:}-1 \\
& \ldots \ldots \\
& \ldots \\
& m_{r}=m_{r+1}-1
\end{aligned}
$$

Therefore $m_{r+1}=m_{r}+1$ and $m_{r+1}=m_{1}+r$.

The coefficients of all the powers of x must vanish separately, the coefficient of $x^{m_{1}-1}$ is

$$
-\mathrm{A}_{1}\left[\left(m_{1}\right)_{1}(\beta)_{m}+m\left(m_{1}\right)_{2}(\beta)_{m-1}+\ldots+\frac{m!}{r!m-r!}\left(m_{1}\right)_{r+1}(\beta)_{m-r}+\ldots\right]
$$

which may be written

$$
\begin{equation*}
-\mathbf{A}_{1} m_{1}\left[(\beta)_{m}+m(\beta)_{m-1}\left(m_{1}-1\right)_{1}+\ldots+\frac{m!}{r!m-r!}(\beta)_{m-r}\left(m_{1}-1\right)_{r}+\ldots\right] \tag{3}
\end{equation*}
$$

This series consists of a finite number of terms, only when m is a positive integer ; it is convergent however for all values of m provided that $\beta+m_{1}>0$; and Expression (3) reduces to $-\mathrm{A}_{1} m_{1}\left(\beta+m_{1}-1\right)_{m}$ (Proc. Lon. Math. Soc., Vol. XXVI. p. 285). Now A_{1} is not zero and we see that a possible value of m_{1} is zero, other values of m_{1} are the roots in m_{1} of

$$
\left(\beta+m_{1}-1\right)_{m}=0
$$

that is of $\mathbb{L}_{\kappa=\infty} \frac{\left(\beta+m_{1}-m\right)\left(\beta+m_{1}-m+1\right)}{\left(\beta+m_{1}\right)\left(\beta+m_{1}+1\right)} \quad \cdots\left(\beta+m_{1}-m+\kappa\right)\left(\beta+m_{1}+\kappa\right) \cdot \kappa^{m}=0$
\therefore the other values of m_{1} are

$$
m-\beta, m-\beta-1, m-\beta-2, \text { etc., } \ldots m-\beta-\kappa .
$$

The coefficient of $x^{m_{r}}$ is

$$
\left.\begin{array}{rl}
\mathbf{A}_{r}\left[(\alpha)_{n}+n(\alpha)_{n-1}\left(m_{r}\right)_{1}+\ldots\right. & \ldots+\frac{n!}{r!n-r!}(\alpha)_{n-r}\left(m_{r}\right)_{r}+\quad \ldots
\end{array}\right]
$$

which may be written
$\mathbf{A}_{r}\left(\alpha+m_{r}\right)_{n}-\mathbf{A}_{r+1} m_{r+1}\left(\beta+m_{r+1}-1\right)_{n}$
This expression must vanish identically, therefore

$$
\begin{equation*}
\mathbf{A}_{r+1}=\frac{\mathbf{A}_{r}}{m_{r+1}} \cdot \frac{\left(\alpha+m_{r}\right)_{n}}{\left(\beta+m_{r+1}-1\right)_{m}}=\frac{\mathbf{A}_{r}}{m_{r+1}} \frac{\left(\alpha+m_{r}\right)_{n}}{\left(\beta+m_{r}\right)_{m}} \tag{6}
\end{equation*}
$$

The two series in (4) are respectively convergent if

$$
\begin{aligned}
& \alpha+m_{r}+1>0 \\
& \beta+m_{r}+1>0
\end{aligned}
$$

Expression (6) which shows the relation between successive coefficients of series (A) is only valid subject to the conditions

$$
\left.\begin{array}{l}
a+m_{r}+1>0 \\
\beta+m_{r}+1>0 \tag{7}
\end{array}\right\}
$$

Now $m_{r}=m_{1}+r-1$ and the possible values of m_{1} are zero and $m-\beta-s$, where s is zero or any positive integer.
When $m_{1}=0$
The conditions (7) become $a+r>0$

$$
\beta+r>0
$$

and since the least value of r is 1

$$
\begin{aligned}
& u+1>0 \\
& \beta+1>0
\end{aligned}
$$

Subject to these conditions

$$
\begin{align*}
& y=\mathrm{A}_{1}\left[1+\frac{(\alpha)_{n}}{(\beta)_{m}} \cdot \frac{x}{1!}+\frac{(\alpha)_{n}(\alpha+1)_{n}}{(\beta)_{n}(\beta+1)_{m}} \cdot \frac{x^{2}}{2!}+\ldots \quad \ldots\right. \\
& \left.\ldots+\frac{(\alpha)_{n}(\alpha+1)_{n} \ldots(a+r)_{n}}{(\beta)_{m}(\beta+1)_{m}} \cdots(\beta+r)_{m} \cdot \frac{x^{r+1}}{r+1!}+\cdots\right] \tag{8}
\end{align*}
$$

is a solution of the Differential Equation (2) provided the series on the Right side of (8) is convergent.
When $m_{1}=m-\beta-s$, the conditions become

$$
\begin{aligned}
u+m-\beta-s+r & >0 \\
\beta+m-\beta-s+r & >0
\end{aligned}
$$

Now the least value of r is 1 , therefore

$$
\left.\begin{array}{l}
s<a-\beta+m+1 \tag{9}\\
s<\quad m+1
\end{array}\right\}
$$

and subject to these conditions

$$
\begin{align*}
& y=\mathrm{A}_{\boldsymbol{o}} x^{m-\beta-s}\left[1+\frac{(\alpha+m-\beta-s)_{n}}{(m-s)_{m}} \cdot \frac{x}{(m-\beta-s+1)}+\cdots\right. \\
& +\frac{(\alpha+m-\beta-s)_{n} \ldots(a+m-\beta-s+r)_{n}}{(m-s)_{m}} \quad \cdots \quad(m-s+r)_{m} \cdot \frac{x^{r+1}}{(m-\beta-s+1) \ldots(m-\beta-s+r+1)}+\cdots \\
& \text {...] } \tag{10}
\end{align*}
$$

s being zero or any positive integer subject to the conditions (9) is a solution of the Differential Equation (2).

If $\alpha=n$ and $\beta=m$.
The Series (8) becomes

$$
\left.\begin{array}{rl}
y & =\mathbf{A}_{1}\left[1+\frac{(n)_{n}}{(m)_{m}} \cdot \frac{x}{1!}+\frac{(n)_{n}(n+1)_{n}}{(m)_{m}(m+1)_{m}} \cdot \frac{x^{2}}{2!}+\cdots\right. \\
\cdots & \cdots \tag{11}
\end{array}\right]
$$

The Series (10) becomes
$y=A, x-\left[1+\frac{(n-s)_{n}}{(m-s)_{m}} \cdot \frac{x}{1-s}+\frac{(n-s)_{n}(n-s+1)_{n}}{(m-s)_{m}(m-s+1)_{m}} \cdot \frac{x^{2}}{1-s .2-s}+\ldots\right]$
s being zero or any positive integer subject to the conditions

$$
\begin{aligned}
& s<m+1 \\
& s<n+1
\end{aligned}
$$

These series are solutions of the Differential Equations

$$
\left.\left.\begin{array}{lll}
\Pi(n)\left[1+\frac{n}{(1!)^{2}} x \mathrm{D}+\frac{n . n-1}{(2!)^{2}} x^{2} \mathrm{D}^{2}+\right. & \cdots & \cdots
\end{array}\right] y\right]=[y=0(13)
$$

