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THE COEFFICIENT RING OF A PRIMITIVE GROUP RING 

JOHN LAWRENCE 

All rings are associative with unity. A ring R is prime if xRy ^ 0 whenever 
x and y are nonzero. A ring R is (left) primitive if there exists a faithful irre­
ducible left i?-module. 

If the group ring R[G] is primitive, what can we say about R? First, since 
every primitive ring is prime, we know that R is prime, by the following 

THEOREM 1 (Connell [1, 675]). The group ring R[G] is prime if and only if 
R is prime and G has no non-trivial finite normal subgroup. 

We cannot, however, conclude that R is primitive. This was shown recently 
by Formanek with the following 

THEOREM 2 (Formanek [3]). If Ris a domain {not necessarily commutative) 
and G = A * B is a non-trivial free product of groups {except G = Z2 * Z2), and 
\G\ ^ \R\, then R[G] is primitive. 

Of interest here is the cardinality condition, \G\ ^ \R\. If R is a field, then 
the cardinality condition is unnecessary. Formanek showed, however, that the 
condition is necessary for certain commutative domains. 

In this paper we generalize Theorem 2 by showing that R need not be a 
domain. On the other hand, we give an example of a prime semiprimitive ring 
R such that R[G] is not primitive, where G is any group. 

The authors would like to thank Professors I. Connell and V. Dlab for their 
help and encouragement. 

1. Strongly prime rings. 

Definition. A ring R is said to be (left) strongly prime (SP) if for all 0 ^ r Ç R, 
there exists a finite set S{r) C R such that for all 0 ^ t £ R we have tS{r)r ^ 
{0}. 

The set S{r) is a (left) insulator of r. If there is an integer n such that every 
nonzero element has an n-element insulator, then R is said to be bounded 
strongly prime. 

Every SP ring is prime and every prime ring may be embedded in an SP 
ring. Left SP does not imply right SP. These and other properties are dis­
cussed in [6] and [7]. 

THEOREM 3. Domains, simple rings, and prime left Goldie rings are all SP. 

Proof. That a domain is SP is obvious. If R is simple and 0 T6- r £ Ry then 
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1 = Sirti + . . . + snrtn, for some si} tt £ R. We then let S(r) = {si, . . . , sn}. 
Suppose R is a prime left Goldie ring. By Goldie's Theorem and the Faith-
Utumi Theorem, there exists a positive integer n, a division ring D, a left order 
C of D, and a complete set of matrix units {e^}, such that 

E Cetj CRCi: De». 

Let c be a nonzero element of C and let r = E n ^ o - £ R a n d ^ = YL^tjea £ ^ 
be nonzero elements, with ruv ^ 0 and txy 9^ 0. Then txycrux ^ 0 occurs as a 
component in tceyur. We then let S(r) = [ce a}'. 

In the above cases the rings are SP on both sides. 

THEOREM 4 [5; 6]. If R is bounded SP, but not every element has a one-element 
insulator, then R is Goldie, {hence two-sided SP). 

2. Generalization of Formanek's theorem. 

Definition. Let R be a ring and let {Jt} be the set of nonzero two-sided 
ideals of R. R is said to be (left) weakly primitive if it has a proper left ideal M 
with the following property: for every Jt there exists a finite set S(Jt) C Jt 
such that {r Ç R\r • S(Jt) C M] C M. 

We now come to the main theorem of this paper. 

THEOREM 5. For any ring R, the following are equivalent: 
(1) R is weakly primitive; 
(2) if X is a set of indeterminates with \X\ ^ \R\, then the free algebra R[X] 

is left primitive; 
(3) if G = A * B is a free product of groups A and B, \A\ = co , \B\ > 1, 

with \G\ ^ \R\, then the group ring R[G] is left primitive; 
(4) there exists a monoid G such that the monoid ring R[G] is left primitive. 

Before proving this theorem, we state a 

LEMMA. A ring R is (left) primitive if and only if R has a proper left ideal M• 
comaximal with every nonzero two-sided ideal of R, i.e. if (0) 7e J is an ideal, 
then M + J = R. 

Proof. (1) => (3). We may assume that \A\ è \B\. Thus \A\ = \G\ à |^ | , 
hence \R[G]\ = \A\. 

An element g = aibia2b2 . . . anbnan+i of G, in reduced form, is said to have 
length 2n + 1, denoted by 1(g). 1(g) is similarly denned for words q beginning 
with b and or ending with b, etc. A product of two elements of G, g and g', 
is said to be pure if l(g • g') = 1(g) + l(g'). For completeness, we define 
1(1) = 0. 

From each nonzero ideal / of R[G], choose a = a(J) G J, (a ^ 0), such that 
a has minimal support. Suppose 

(1) a = X! r(a,g)g, 
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where r(a, g) G R and g (z G. Let g (a) be an element of maximal length in 
the support of a. T h u s g (a) has coefficient r(a, g(a)). Consider the i^-ideal 
1(a) = (r(a, g(a))), and suppose tha t 5 ( J ( a ) ) = {si, s2, . . . , sn}- (Here we 
are assuming t ha t i? is weakly primitive, with a left ideal M satisfying the 
conditions of the definition.) For each Sj G S (I (a)), let a(Sj) be an element of 
RaR with the coefficient of g (a) being Sj. Thus , using our notat ion, a(sj) = 
^2 r(a(Sj)j g)g> and the support of a(sj) is the same as the support of a. 

Fix 6 G B - {1}, and let W: (R[G] - { 0 } ) X N -> A - {1}, be a bijection. 
Given a, chosen above, let T(a, j) equal 

bWiaJJbaisJbWiaJJb + W(a,j2)bW(aJ2)ba(sj)bW(aJj2)bW(aJ2) 

+ bW(aJz)ba{sJ)W(aJ*)bW(aJz) + W 

+ bW(aJ6)a(Sj)bW(aJ6)bW(a,j6)+ W(aJ,)bW(aJ,)a(Sj)bW(aJ,)b 

+ bW{a,j1)a{sj)W{a,j1)bW{a,j1)b 

+ W(a, js)bW(a, js)a(sj) W(a, j8)bW(a, js), 

where W(a, jk) is chosen such tha t it is not equal to any factor of the reduced 
form of any element in the support of a, (k = 1, 2, . . . , 8) , and j i < j 2 < . . . 
< i s < ( j + l ) i - Finally, let H (a) = ^jT(a,j)} a finite sum. 

Note t ha t if 0 G R[G], and r G R occurs as the coefficient of some term in 
the expansion of fi - T(a, j), then r is the coefficient of a pure product in this 
expansion. 

Let M' be the left ideal of R[G] generated by the set {H(a) + 1}, where 
we have chosen some a from each ideal ( ^ (0)) in R[G]. 

In order to prove tha t R[G] is primitive, it is sufficient to show tha t M' is 
proper, for M' is obviously comaximal with every nonzero two-sided ideal of 
R[G}. 

If M' is not proper, then there exists /3i, /32, . . . y /3m G R[G] such tha t 

m 

(2) Z PAH(at) + 1] = 1. 
f = l 

Since 1 ? ¥ (by the definition of weakly primitive), then we must have 
either: 

(3) r(fii, y) - r(ai(Sj), z) G M, for some i = 1, 2, . . . , w, and 
some Sj G 5(7(a^) ) , 

or 

(3') r(ft, y) G M, for some t = 1, 2, . . . , m. 

If (3') occurs, then r($u ;y) • r(ai(Sj), #(«<)) G M, for some j , as the set 
{r (a i(s^), g (a Ï ) ) } ^ equals the set £(./<). Hence we may assume tha t (3) holds. 
We choose y and z in (3) so tha t l(y) + /(z) is maximal in all the products in 
the expansion of (2), for which (3) holds. We now have r = r(fiuy) • r(ai(sj)1z) 
as the coefficient, in the expansion of (2), of a group element x, with l(x) = 

i(y) + Kz) + 6. 
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In order to arrive at a contradiction, we first make two observations for 
arbitrary products occurring in the expansion of (2). 

First, if r' is the coefficient of a group element x' in the expansion of 
fii - T(a.i>, / ) , then r' is the coefficient of x" (in the same expansion), where 
x" ends in W(at>} jk')b or W(aif, j k ' ) , and l(x") ^ l(xf). Therefore, by the 
maximality of /(x), with respect to property (3), x' = x, with (i,j) 9e (i*',/), 
implies that r' Ç M. 

Second, if r(/3t, y') • r(a*(^), z') g M is the coefficient, in the expansion of 
fit • T(OLU j ) , of a group element x', and Z(x') is maximal with this coefficient, 
then l{g') = l(y') + l(z') + 6. Thus we may suppose that 

x = y — z — W(aifjk), 
or 

x = y — z— W(at,jk) • b, 
and 

*' = y ' — z'— W(at,jk>), 
or 

*' = / — *' — W(at,jk>)'b, 

where both x and x' are in reduced form ; hence x = x' implies k = k''. Let us 
suppose, therefore, that (for example) 

x = ybWipti, ji)bzbW(auji)b, and 

x' = y'bWlpLuJabz'bWlpLujJb, 

where both are in reduced form, and neither z nor z' contains W{au ji) as a 
factor in their reduced form. Then, if x = x' ,we must have y = y' and z = z'. 

By the second observation we see that x occurs as an element in the support 
of piT(at,j) and has coefficient r d M. (Here we use the maximality of l(y) + 
l(z), hence of l(x).) Now rx must cancel with a sum of other terms in the 
expansion of (2), therefore, by the maximality of /(x) with respect to (3), 
along with the first observation, we see that r'x, (r' $ M), does not occur in 
the expansion of /3^ • T(ai>, j ' ) , for (i, j) ^ (i', f). We conclude that x is in 
the support of fir for some ï, and r(0i>, x) g M. Then for s o m e / , 

(4) r ( (3 f , x ) -r{ar(sr),g{av)) $ M. 

However, l(y) + l(z) < /(x) g /(x) + /(#(«*>)), thus (4) contradicts the fact 
that y and z were chosen such that l(y) + /(s) was maximal with respect to (3). 
This completes the proof. 

(1) =» (2) The proof is similar to the above proof (and, in fact, is easier). 
(2) => (4) and (3) => (4) The proof of these is trivial. 
(4) => (1) Suppose R[G] is left primitive; hence, there is a proper left ideal 

M' of R[G] which is comaximal with every nonzero two-sided ideal of R[G], 
Let (0) ^ J be an ideal of R, and put / ' = J[G]. We then have a{J) £ J' 
such that a(7) - 1 Ç M'. Let 5(7) be the set of coefficients of the support of 
a(J). If rS(J) C M = M' r\ R, (where r 6 ^ ) , then m(7) € AT; since 
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a (J) — 1 G if', we must haver £ M. This completes the proof of the theorem. 
By a similar argument, R[G] WP => R WP. 

COROLLARY 1. If R is left strongly prime, then R is the coefficient ring of a 
primitive group ring. 

Proof. A ring is left strongly prime if and only if, for every nonzero two-
sided ideal / , we have a finite set S (J) C J such that &nr\iS(J) = (0). Thus 
(0) satisfies the conditions of the definition. 

COROLLARY 2. Every prime ring is a subring of the coefficient ring of a primitive 
group ring. 

Proof. Every prime ring is a subring of a strongly prime ring [7], 

COROLLARY 3. If a regular ring Ris a coefficient ring of a primitive group ring, 
then R is primitive. 

Proof. Suppose (0) ^ J is an ideal of R, and let S (J) = {sïy s2, . . . , sk}. 
Since R is regular, siR + s2R + . . . + skR = eR, for some idempotent e. 
Therefore, e Ç J, and (1 — e)S(J) = {0}, hence 1 — e £ M, and so M is a 
proper left ideal of R comaximal with every nonzero two-sided ideal of R. 

Thus the question of whether every prime regular ring is the coefficient ring 
of a primitive group ring is equivalent to a question of Kaplansky: Is every 
prime regular ring primitive? Partial solutions to this problem have been given 
in [2] and [4]. 

COROLLARY 4. / / R is bounded left strongly prime, and the right zero-divisors of 
R form a right ideal, then R is right weakly primitive. 

Proof. We may assume that R is not right SP, hence every r £ R, (r T6 0) 
has a one-element left insulator s(r). Let M be the proper left ideal consisting 
of the right zero-divisors; we will show that M satisfies the conditions of the 
definition. If J O (0)) is an ideal of R, choose 0 ^ / G J, and let S (J) = s(t)t. 
If S(J)r £ M, then S(J)r is a right zero-divisor, whence uS(J)r = 0, for some 
u 7e 0. But uS(J) 7e 0, hence r is a right zero-divisor, i.e. r G M. 

3. Example. We give an example of a prime semiprimitive ring R such that 
R[G] is not primitive, where G is any group. 

Let F = Z2[X, Yi], i = 1, 2, . . . , be the free Z2-algebra in noncommuting 
variables. For a given monomial 

m = X ^Yh X^ . . . Yjn X'»+\ i ^ 0, j ^ 1, 

repetitions allowed, define 

c(rn) — (max j*) (times the number of times Ymaxjk appears), 
if m has a Y term, 

= 0, otherwise, 
d{m) = J2 ik = degree of X in m. 
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Let / be the ideal generated by all monomials m such that d(m) > c(m) ^ 1. 
Set R = F/I. R was given in [10] as an example of a semiprimitive ring with 
nonzero singular ideal. 

THEOREM 5 (Osofsky [10]). R is a prime semiprimitive ring. 

THEOREM 6. Let G be any group. Then R[G] is not primitive. 

Proof. Assume that R[G] is primitive, and let M be a proper left ideal of R[G] 
comaximal with every nonzero two-sided ideal. By hypothesis, there exists 
a G (X) such that a — 1 £ M. Choose h so that if F;- occurs in any monomial 
in a, then h > j . Then there exists b £ (Yh) such that b — 1 £ M. Let n be 
a positive integer and consider anb. By our choice of h, (max jk) (the number 
of times YmSLXjk appears) is independent of w, in any monomial in anb. However, 
in such a monomial, X occurs at least n times, and so for sufficiently large 
n, anb = 0. Then 

- 1 = anib- l) + r X : a* 
L i=o 

(a - 1) G M, 

contradicting the fact that M is proper. 
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