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1. Introduction

Throughout this paper X will be a finite connected CW-complex of dimension m, and £
will be a real (n + l)-plane bundle over X (n > 0) equipped with a Riemannian metric.
We aim to give a systematic account of the space rS£ of sections of the sphere-bundle
St.

In particular we prove a result, announced as Theorem 2.14 of [3], which shows that
for n > 2m +1 the homotopy type of FS£ determines the stable homotopy type of the
(stable) Thom space X~* (see Corollary 5.3 below). The ingredients of the proof are
Freudenthal's suspension theorem over X and S-duality theory.

In a sequel, we shall refine the Freudenthal theorem to an EHP sequence, in analogy
with the classical procedure. This provides a natural setting for the results of [15] (see
the remark on p. 224 of that paper).

The later sections of the paper deal with the homology of TS^. Let 3f be the group
of orientation-preserving isometric isomorphisms of £, over X and P-+B a principal JV-
bundle over a finite CW-complex B. The main result is a computation of the homology
Hj(Px j^TSE), up to group extension, for j<2n—2m—l (see Corollary 9.4), by a sort of
"Gysin sequence" involving B and X~*. As an application we prove two results of J. M.
Moller, [11], [12] and [13], on the homology of spaces of sections of projective
bundles.

The detailed statements of our results appear in the relevant sections, according to the
following plan. In Section 2 we summarize some facts about the geometry of FS^. In
Section 3, assuming that TSS, is non-empty, we obtain preliminary results on its
homotopy; in particular we show that each component is a space of finite type. In
Section 4 we establish our basic notation before describing the Freudenthal suspension
theorem. Duality is discussed in Section 5, and under suitable restrictions this adds
precision to the description in Section 3 of the components of TSt; (Theorem 5.1). In
Section 6 the suspension process is reformulated in two ways using the stable
cohomotopy Euler class. The first of these is used in Section 7 to study the action of
certain symmetries of S^ on the components of TSl;. Finally, in Sections 8 and 9 we
apply previous work to get information on the homology of FS<̂ .

At two stages we append clarifying details. The appendix to Section 4 deals with "the
Thom space of a virtual bundle", and the appendix to Section 9 on "stable homotopy
over a base space" includes the proof of a result (essentially standard, but for which we
know of no suitable reference) used in that section.
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384 M. C. CRABB AND W. A. SUTHERLAND

2. Geometry of TS%

We topologize rS£ as a subspace of the Banach space YE, of sections of the vector
bundle E,. Then TSE, is a smooth submanifold. Its tangent space at a point s of rS£ is
r((s), where {(s) is the sub-bundle of E, which is fibrewise orthogonal to the one-
dimensional sub-bundle spanned by s. The normal bundle of FSl; in Tt; is trivial, with
fibre the space ^{X) of continuous real-valued functions on X.

In fact FSE, even has an algebraic structure. To see this, let us write A for the
commutative ring ^(X) and P for the finitely-generated projective A-module TE,. The
Riemannian metric on £ induces a non-singular bilinear form <,) :PxP-»A Our space
TS£ is the set {seP|<s, s> = l}. It is now easy to see that FSE, is an affine algebraic
variety over A.

Let ^ be the group of isometric automorphisms of £ over X. Then ^ is a Lie group
(in general infinite-dimensional) which is algebraic over A and acts smoothly on rs< .̂ It
is easy to show that each component of TSE, is a homogeneous space of the connected
component ^° of the identity in <§. The part of this assertion which we need later is
recorded in:

Proposition 2.1. The group &0 acts transitively on each component of FSl;.

Proof. See (5.3) of [3].

3. Homotopy type of TSt;

Throughout the rest of the paper we assume that FSE, is non-empty, and we fix a
section s0 in TSE,. We shall study the homotopy type of the pointed space (TS£, s0). By
(2.1) this homotopy type depends only on the homotopy class of s0.

For convenience we often adopt a slightly different viewpoint on {TSE,, s0), as we shall
now describe. Throughout the paper we use the same symbol for a vector space V and
the product bundle with fibre V over any space. With this notation, s0 determines an
orthogonal splitting E, = £ © U, where £ is an n-plane bundle over X and s0 is the
constant section of R with value 1. Now S£ may be canonically identified with the
fibrewise one-point compactification £+ of £ (obtained by adjoining a basepoint at
infinity to each fibre of Q, in such a way that s0 corresponds to the section s+ of (+

which picks out the basepoint in each fibre. We often state results in terms of the
pointed space r ( + , with the basepoint s+ understood. These results may of course be
translated into corresponding results about (TSE,, s0).

Proposition 3.1. (a) The fundamental group n^rC*) is finitely generated nilpotent.
(b) Ifr>l then nr(FC + ) is finitely generated abelian.
(c) IfO^r<n-m then 7ir(rC

 + ) = 0.

Most of this proposition is a special case of a result for locally trivial bundles with
nilpotent fibres (cf. [7] II.2). We include a proof for completeness.

Proof. We use induction over the cells of X. The result holds when X is a single
point, for then m = 0 and F£+ is an n-sphere S".
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Suppose that the proposition holds for (n + l)-plane bundles over a finite connected
CW-complex Y with dim Y^m, and that X is obtained from Y by attaching a single
m-cell with characteristic map f:(Dm, Sm~1)-+(X, Y). Let r ( Y; £+) denote the pointed space
of sections of the restriction C+1Y. When different base spaces are involved, as here, we
shall sometimes for clarity write F(X;C+) instead of FC+. Since the inclusion of Yin X
is a cofibration, the restriction map from r(X;C+) to F(Y;£+) is a fibration. We write
T(X, Y;C+) for the fibre over s + . There is a commutative diagram of fibrations:

(3.2)

and the map f* on fibres is a homeomorphism. After choosing a trivialization of /*C+

over Dm, we may identify the fibre with the iterated loop space QmS". From the
homotopy exact sequence of the upper fibration in (3.2), it is now easy to see that the
assertions of the proposition hold for X provided either n — m > 1 or we restrict
attention to those assertions concerning r > l . The fundamental group requires a little
more care when n — m^l, and we deal with it next.

Recall that whenever F—1—>E p >B is a fibration there is a natural action (indicated
here by a dot) of n^E on n^F,-such that for any g,h in n1E,n1F we have i*(g-h) =
gi+ifyg'1. To compute this action at the upper level in (3.2), by naturality we may
work at the lower level. But there the action of n^S") on 7i1(fi"

IS") is the standard action
on 7im+1(S"), which is trivial. Thus, writing n now for n1T(X;C+), we see that n is a
central extension

0->N->7r->-tf->0 (3.3)

in which AT is a quotient of 7i1(Q
mS") and hence is finitely generated abelian, while H is

a subgroup of n1T(Y;C+)- By inductive hypothesis nlr(Y;C+) is finitely generated
nilpotent, hence so is H and by (3.3) so is n. This completes the inductive step.

We write ( r ( + ) ° for the component of s+ in F ( + . From now on we write ao,b0,... for
the basepoints of pointed spaces A,B,....

Proposition 3.4. The pointed space (F£+)° is homotopy equivalent to a pointed CW-
complex A with finite skeleta A(r) for all r^O and A{r) = {aQ) for r<n — m.

Proof. We use the finiteness criterion of Wall [16]. By (3.1), 7r1(FC+)° is finitely
generated nilpotent. Hence it is finitely presentable and (by Hilbert's basis theorem) its
integral group ring is Noetherian. Since (F£+)0 is locally path-connected and semi-
locally simply-connected it has a universal cover. The homotopy groups and hence the
homology groups of the universal cover are finitely generated as abelian groups (again
by (3.1)) and a fortiori as modules over the group ring. We may therefore apply Wall's
construction, beginning with y4(""m"1) = {a0} if m<n, and get A as specified in the
proposition together with a weak homotopy equivalence f:A->(T(+)°. Finally, (F{+)0

has the homotopy type of a CW-complex by Milnor [10] (cf. Lemma 8.5 of [3]), so / is
a homotopy equivalence.
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4. Stabilization

In this section we describe the suspension theorem mentioned in the introduction, and
prepare the way for the discussion of duality in Section 5. As in Section 3 we use the (+

viewpoint. We shall be doing homotopy theory over the base space X; [9] is a good
textbook reference for the basic theory. First we must fix some notation.

Let Q0->B,Qi->B be locally trivial bundles of pointed finite CW-complexes over a
fixed finite CW-complex B. (This is sufficiently general for our purposes and indeed we
shall be concerned mainly with sphere-bundles.) In the terminology of [9] these are
(well) sectioned spaces over B (with sections given by the basepoints in the fibres). We
write [ 6 O ; Q I ] B f°r the set of homotopy classes of fibrewise pointed maps from Qo to Qy

over B. When A is a subcomplex of B we write [_QO',QI\B,A) f°r the corresponding set in
which each map takes the fibre over any point of A to the appropriate basepoint.

For example if 0 is the zero vector bundle over X then [0+;C+]x is n0T(,+, since a
fibrewise pointed map 0+->{+ is determined by its restriction to 0 and this is simply a
section of (+. Similarly nor(X, y;C+) = [0+;C](A:.y) where r(X, Y;(+) is as in (3.2).

Now we stabilize [Qo; Q{]B. First, we have a map from

[Go; Gi]« to [R+
 A BQ0; U

+
 A BQ{\B

given by the smash product (over B) with the identity map of the trivial bundle U+.
Iterating this process (and making the standard identification of the Wold product
U+ A ••• A R+ with (Uk)+), we define the stable group co°B{Q0;Ql] as the direct limit of the
sets [(R*) + A £,£>(,; (R*)+ A BQJB (fc^O). Its elements are called stable maps Q0->Qi over B.
The stabilization map from [ G 0 ; G I ] B to «2{Q0;2i} W'U be denoted by E. The relative
group o^B,A){Qo''Qi.} is defined similarly and again we write E for stabilization.

In the usual way we introduce groups &>j,{(2o;Gi} for jeZ as the direct limit of the
sets l(Uk)+

 ABQ0;(IR')+ ABg1]B(/c,/^0,/-fe = ;). Relative groups are defined similarly, and
there is a long exact sequence relating co(*fl /1){go;<21},a;B'{<2o;6i} ar»d G>3{2 0 | ' 4 ; 6 I | / 1 } -

If B is a point then we omit it from the notation and we are doing standard stable
homotopy. So if Z0,Z± are pointed finite CW-complexes we write coQ\Z0\Z^), rather
than the more usual {Z^Z^}, for the group of stable maps from Zo to Zv. Later we
shall introduce analogous groups with stable homotopy co replaced by homology H.
When we use co and H in the usual way (for example co°(X)) we mean the unreduced
theories; co and H denote the reduced theories.Thus : coi{Z0;S°} = 6}i(Z0), (oi{S°;Zl} =
<3-;(Zi)-

We are interested in sphere bundles over X. Let an,**! be real vector bundles over X.
Then we may think of the group cox{tXo',<Xi} of stable maps of sphere-bundles over X
as stable cohomotopy groups of Thom spaces. We use the traditional notation X^ for
the Thom space of £,, and write {X, Y)^ for the quotient of X4 by Y^Y. As we describe in
detail in the appendix to this section, we may extend this notation to the case of the
virtual vector bundle <x = <xo — <xl over X. We have then:

(4.1)

We shall use the following local coefficient notation for any well-behaved cohomology
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theory h, such as integral cohomology or stable cohomotopy:

(4.2)

(Again, details are in the appendix). If a is zero, then h\X;0) is simply hJ(X).
By (4.1) and (4.2) we can now write stabilization as £:[<Xo ;<xt]x-KO0(X;<x).
Since [0+;C+~\x = norC+, we have in particular a stabilization map

and similarly in the relative case.

Theorem 4.3. The stabilization maps

(a) E:n0r£+^co°(X;-Qand
(b)

are bijective ifm<2n—l, surjective ifm^2n~l.

This may readily be deduced from the following more precise result. If s e r £ + we
shall sometimes write E(s) e a>°(X; — Q for the stabilization of the class represented by s.

Theorem 4.4. Let m^2n— 1. Suppose that x is an element of a)x{0+;£+} and s a
section of C, + \Y such that x restricts to E(s) in a>y{0+;(+\Y}. Then there is a section s in

+ ) extending s and such that E(s) = x.

The proof of (4.4) is by induction over the cells of X. At the inductive step one uses
Freudenthal's suspension theorem for homotopy groups of spheres. We omit the details.

We can obtain information on T(+ from (4.3) by simply taking adjoints. Let Z be a
finite pointed CW-complex and let us denote the pull-back of £+ under the projection of
ZxX onto X again by (+. Taking adjoints, we may identify the space of pointed maps
from Z to T(X;C) with F((Z,z0) xX;(+). Hence, as in (4.3)(b), we have a stabilization
map

+
 0)xX;C+)^(o0((Z,z0)xX;-Q. (4.5)

An immediate corollary of (4.3)(b) is:

Corollary 4.6. The map E in (4.5) is bijective ifm+dim Z < 2« — 1, surjective ifm+dim Z ^
2 n - l .

When Z — Sj the righthand group in (4.5) is a>~J(X; — Q, and we get:

Corollary 4.7. The stabilization map

is bijective if j<2n — m— 1, surjective if j^2n — m— 1.
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Remark 4.8. In particular n^C'1' is abelian when m<2n — 2. For E in (4.7) is clearly
a group homomorphism if y>0. If m<2n —2 then (4.7) applies withy'=l and n^Tt,*
is isomorphic to the abelian group co~1(X; — Q.

Appendix: the Thom space of a virtual bundle

A virtual bundle a over X is just an ordered pair (ao,^) of real vector bundles; it is
often written as <x0—cc1. We want to explain how a group such as (b0X") is to be
understood.

It may be helpful to recall first another, familiar, definition: that of the tangent space
TXM at a point x of a smooth m-manifold M. One procedure is as follows. We choose a
chart <p:U^>V, where [ /SM is an open neighbourhood of x and Fis an open subset of
Um, and then for practical purposes take TXM to be the well understood tangent space
IRm of V at <fi(x). Nevertheless TXM is a well-defined geometric object, and formally we
can define a tangent vector at x as an equivalence class of pairs {<}>, v) where <p is a chart
at x and v e Um.

To define /JJ(X°) we follow a similar recipe. Choose a trivialization 0:a, ©<J->IRM for
some vector bundle a and M^O. Then take ftJ{X") to be the cohomology /P'+M(Arotoe<')
of the genuine space x*0®', or in the notation (4.2) hi+M(X;a0®a). To make sense
of this as a definition we must say how the groups arising from different trivializa-
tions are to be identified. Let il/:a1 © T->(RN be a second trivialization. Consider first
the case T = CT©R, N = M+1, ^ = $ © 1 . Then we identify hJ+M(X;a0 © a) with
hJ+M + l(X;a0®o(&M) = hj+N{X;tx0®x) by the suspension isomorphism. This allows
us to stabilize, and in general we can reduce by repeated suspension isomorphisms
to the situation in which M and N are equal and dimcr —dimr is large compared with
dimX. Then the linear isomorphism \jj~l ° </>:«!© a-xt^ © x is homotopic to 1 © / for
some isomorphism f:a-*x, and / is unique up to homotopy. The isomorphism
1 © / : a 0 © cr->a0 © x induces the required map hj+N(X; a0 © x)-*hi+M{X; oc0 © a). This
construction is consistent with stabilization, and so the identification is unambiguous.

Thus fiJ(X*) = hJ(X;ix) is a well-defined abelian group, independent of any choices
involved in its description. (Formally, an element is an equivalence class of pairs (</>, v)
with vehi+M(X;a0 © a). And to avoid set-theoretic problems we had better insist that a
is a sub-bundle of UM. But this formal approach does not add much to our
understanding of Xa.)

In the following sections we shall refer to the stable Thom space X" itself. Our
statements involving X" can be interpreted in the way we have just described, without
actually giving a meaning to the object X". For example, a stable map from a pointed
finite CW-complex Z to X" is an element of the group co°{Z; X"}, which can be defined
exactly as above. To work with X", one chooses a trivialization 0 and takes X" to be
the stable space (or spectrum) £-M^«O©<T (Formally, X" is the category of all such
stable spaces, one for each <£, with morphisms between any two the unique stable map
giving the canonical identification. It is customary to regard such a category as a single
object!)

Finally, we explain the isomorphism (4.1). If al is trivial, say <x1=X xUM, then it is
easy to see that cox{<*o >x x(^M) + } is (canonically isomorphic to) a)°{Xao;(MM)+} =
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a>M(Xao). See (9.10). In general, we fix a trivialization 0:aj © o-*MM. The smash product
over X with the identity map on CT+ gives a suspension isomorphism

Then <f> induces an isomorphism to co£{(a0 © a) + ;X x(UM) + } = a>M(X'">3)''), which is
^"(Z"). It is straightforward to check that this isomorphism is independent of the choice
of 0.

5. Duality

We now describe the duality mentioned in the introduction. We continue with the
notation of Sections 3 and 4. In particular recall that the basepoints of A,B,... are
written ao,bQ,....

Theorem 5.1. Suppose that n^.2m+ 1. Then the CW-complex A o/(3.4) may be chosen
so that A(n) = A(2n~2m~l) and so that this skeleton is S-dual to the stable Thorn space X~l.

The proof is based on (4.6) together with the following facts which hold for a finite
pointed CW-complex P:

(a) Suppose that l < r ^ s and that P is simply connected with Hj(P;Z)=0 for j<r
and for j>s, and Hs+1(P;Z)=0. Then there is a finite pointed CW-complex Q,
homotopy equivalent to P, with Qir~1) = {q0} and dimQgs. (See [6], Ch. 8).

(b) Suppose that r,s^0, that P( r + s"1 ) = {p0} and that dimPg2r + s. Then there is a
finite pointed CW-complex Q with Q{r~i) = {q0} and dimQ^2r, such that P is
homotopy equivalent to the s-fold suspension ZSQ. (See [1], Appendix).

Proof of (5.1). The result is trivially true for m = 0. Assume that m > 0.

Step 1. We choose a finite pointed CW-complex D which is S-dual to X~^ and study
its cell structure. We shall show that D may be chosen so that £>(0 = {d0} for 0^i<n-m
and dimD^n. For this step it is enough to assume n^2m.

The special case when X is a closed manifold is illuminating, since then X~^ is S-dual
to the stable Thom space X1""1 where T is the tangent bundle of X. The condition n^2m
guarantees that ( is equivalent to T @ n for some (n — m)-plane bundle n over X, and we
may take D = X".

In general we use (a) and (b) above. Let P be a finite pointed CW-complex which is
S-dual to 'L~NX~1' for some N^O. (In other words, if a©C = ^M is trivial, P is S-dual
to T.-M~NX°.) Then #,{P;Z) = 0, #J'(P;Z) = 0 unless N + n-m^j^N + n. By (a), there
is a finite pointed CW-complex Q, also S-dual to I " " ! " 5 , with QiN+n~m~1) = {q0} and
dimQSN + n. Finally, since n^.2m we see from (b) that Q may be desuspended to a
suitable D:Q^I.ND.

Step 2. We next construct a duality map j:D->FC+.
Let us choose a duality between D and X~^; it will be given by stable maps

k:D A X~^S° and fi:S°^D A X~?. (A good reference for duality theory is [4].)
We regard AGC5°(D A AT~C) as an element of co°{(D,d0) xX;Q. By (4.6)
£:[D; rC+]->a>°((Z),d0) xX; — Q is surjective, since m<n. Choose ; such that E(j) = k.

https://doi.org/10.1017/S0013091500017831 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017831


390 M. C. CRABB AND W. A. SUTHERLAND

Now for any finite pointed CW-complex Z we have a commutative diagram

\_Z\D~\ — — * [Z;F£+]

s\ \E (5.2)

co°{Z;D} — ^ co°((Z,z0)xX;-Q,

in which S (rather than "£", which would be confusing here) is the ordinary
stabilization map and X^ is the duality isomorphism. (A stable map g:Z-*D gives rise to
a stable map X°{g A 1):Z A X ~ C - > D A X~^S°, hence to an element in co°(Z A X~%
which (see (4.2)) is the same as (o°((Z, z0) x X; — Q. The inverse for A,, is constructed
using n)

It is significant that the connection between function spaces and duality was already
emphasized in the initial work of Spanier [14]. If £ is the trivial bundle W, then j is a
map D->M(X,S") to the space of maps from X to S".

Step 3. j induces an isomorphism of homotopy groups in an appropriate range.
Consider the diagram (5.2). By (4.6), E is bijective for dimZ<2n —m—1. Since D is

(n — m — l)-connected, Freudenthal's suspension theorem shows that S, and hence Eoj^
is bijective for dimZ<2n —2m—1, surjective for dimZ^2n — 2m— 1. Hence ;„, satisfies
the same conditions. Taking Z to be a sphere we get the desired conditions on
homotopy groups.

Step 4. If n ^ 2 m + l , then n^2n-2m-l. We take A(2"-2m-1) = D, mapped to (FC+)°
by j , and continue the step-by-step construction of A as in [16] (cf. (3.4) above). This
completes the proof of (5.1).

The homotopy type of (FC+)° does not in general determine the homotopy type of the
skeleton A0). But if it happens that A(t + l) = A('\ then this picks out a natural homotopy
type for AM. This occurs for A(n) when «>2m + l, since then 2n — 2m—l>n, and so since
/4

(2n~2m~1) = y4<") we have certainly Ain+l) = A^n).

Corollary 5.3. Suppose that ( and n are real n-plane bundles over X with n>2m+l ,
and that F£+ and Ff/+ are (weakly) homotopy equivalent in dimensions ^n. Then the
stable Thorn spaces X~^ and X''1 are homotopy equivalent.

Proof. Let A be the CW-complex produced by Theorem 5.1 for F( + and let B be
the similar CW-complex corresponding to Tn+. Then under the current hypotheses, Ain)

and B(n) are homotopy equivalent. Hence so are their S-duals X~^ and X~n.

We note in particular:

Corollary 5.4. Suppose that n>2m + l. Then Y£,* is homotopy equivalent to the space
M(X,S") of maps from X to S" if and only if the sphere-bundle ( + is fibre homotopy
trivial.
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6. Stabilization reformulated

In this section we give two reformulations of stabilization, both giving less emphasis
to the C+ viewpoint than Section 4. These will be used in Section 7 and Section 8
respectively.

As a preliminary, we recall some definitions (for example from Section 2 of [2]). The
(stable cohomotopy) Euler class y(£) of t, is the class in co°(X; — £), or equivalently in
(Ox{0+',£ + }> represented by the inclusion of 0 + in £+. In other words, y(^) is the
stabilization of the zero-section of £+. Let seT{Y;SQ, where Yis a subcomplex of X.
The relative Euler class y(£, s) in co°(X, Y; — £) is defined as follows. Let DE, be the unit
disc bundle of £, and choose a section s in T(X;D£,) extending s. There is a standard
(homotopy class of) bundle map c:Dt;->l;+ collapsing S£ fibrewise to s+. The homotopy
class of the composition c s in F(X, Y;£+) is independent of the choice of s. Set
y(^, s) = E(c • s). It clearly vanishes if s extends to a section of S^ over X.

If sections t0, tj of S£ over X agree on Y, then the difference class d(t0, tt) may be
defined in co~l(X, Y; —£,) as follows. Let p:XxI->X be the projection. Define a section
t of S(p*£) over X x d / u Yx I to agree with p*t0 on X x {0}, p*t^ on X x {1} and their
common value on Yxl. Then y(p*£,,t) lies in co°(X xl,X x dI<oY xl; — p*£), and we
define ^(Jo,^) to be its image in co~l(X, Y; — £) under the suspension isomorphism. The
difference class vanishes if t0 and tl are homotopic. If to,tl,t2

 a r e sections of S£, which
agree on Y, then almost by definition of addition

%to,t2) = 8(t0,t1) + 8(t1,t2). (6.1)

The next lemma expresses the stabilization map E:nor(X, Y;(+)-+co°(X, Y; — Q in
terms of difference classes. Recall that s0 is a fixed section of S£, giving the splitting
£ = C©R, and S£ = £+. We may identify a>~\X,Y;-^) with w°(X, Y;-Q, from the
definitions of these groups. Also, if s is a section of S£ agreeing with s0 on Y, then s lies
in r(X, Y;C), so that the stabilization £(s) of s lies in a>0{X, Y; -Q.

Lemma 6.2. Under the above identification,

E{s) = S{s,s0).

The proof is an exercise in relating reduced and unreduced fibrewise suspensions. We
omit the details.

Under identifications similar to those above, the stabilization map of (4.5) becomes

£: [Z; rS£HoT ^(Z, z0) x * ; - £ ) .

We want next to give a description of E which does not involve the basepoint s0 of rS£.
This will be convenient when we come to discuss homology in Sections 8, 9 and in
particular when we look at the action of symmetries of S£ which do not preserve the
basepoint.

Let CZ denote the (unreduced) cone / x Z/{1} x Z on Z. Thus Z s C Z as {0} xZ. As
usual the coboundary A:(o~1((Z,z0) x l ; — ^) ->OJ° ( (CZ ,Z) xX; — £) in the exact se-
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quence of the triple (CZ,Z,zo)xX is an isomorphism, since CZ is contractible to z0.
Given a pointed map s:Z->TS<!;, its adjoint is a section, also called s, of (the pull-back
of) S£ over Z x X, agreeing with s0 on {z0} x X. Thus on the one hand we have a
difference class S(s,s0) in o)"1((Z,zo)xX;-() and on the other a relative Euler class

Lemma 6.3. With the above notation

The point of the lemma is that, by (6.2), the stabilization E{s) is determined by <5(s, s0),
and so, by (6.3), stabilization may be viewed as a map from [Z; rS£] to a>°((CZ, Z)xX; — £),
avoiding any mention of s0.

Proof of (6.3). It is convenient to split A into the composition:

co-1((Z,z0)xX;-Z) = co°((ZxI,{z0}xIuZxdI)xX;-i)

A i =,„ , ( 6 4 )

co°((CZ, Z)xX;- 0 «-^ w°((CZ, C{z0} uZ) x X; -£),
i*

where i is the inclusion and q:Z x I->CZ is the collapsing map. We have a section s on
(C{zo}uZ) xX given by s0 on C{z0} x.Y and by s on ZxX. Then q*y(£,s) = S(s,s0) by
definition of the difference class, and i*y(£,s)=y(l;,s). Now (6.3) follows.

7. Action of ^ on o

An element g in ^ determines an element g, say, in KO~1(X). (Explicitly, choose a
trivialization (j>:£,® er-̂ IR* for N large. Then g © lff gives rise to a map from X to the
orthogonal group O(N) representing g. It is easy to check that g is independent of the
choice of a and 4>) The J-homomorphism maps KO~1(X) to the group of units in
the (unreduced) stable cohomotopy ring a>°(X). The next lemma follows by unwinding
definitions.

Lemma 7.1. With the above notation, J(g) corresponds to the fibrewise one-point
compactification g+:l; + ->£+ under the natural isomorphism of a>°(X) with co°(X;^ — ̂ ) =
co°x{t+-,n-

The following obstruction-theoretic fact is also useful in studying the action of 0 on

Lemma 7.2. Letge$,se TS£. Then

8(gs, s0) = J(g)d{s, s0) + 8(gs0, s0).
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Proof. From (6.1), 5(gs,so) = 8(gs,gsQ) + 5{gso,so), and 5(gs,gsQ) = J(g)5{s,s0) by
naturality of 8.

For an element ge^, let us define an afiine linear map p{g).(o~l(X; —£)-+OJ~X(X; — £)
by p{g)x = J(g)x + 5(gs0, s0). Clearly p(g) depends only on the component of g. It is not
hard to check the cocycle condition: p(gh) = p(g)p{h) for g,he^. Now by (6.2) we can
rephrase (7.2) in terms of E:n0rS£-Ko°(X; - £ ) as:

E(g-s) = p(g)E{s). (7.3)

Before illustrating the use of these results, we describe p(g) for certain symmetries g.
The antipodal involution T which acts as — 1 in each fibre of £ is particularly
interesting. Let n denote the Hopf element which generates K0~1(*) =

Proposition 7.4. (cf. [8]) Let [£] be the class oft, in KO°(X). Then

(b) 8(Tso,s0) =

Proof, (a) If £ is the trivial bundle U over a point * then T = n essentially by
definition of n. The general case quickly follows.

(b) By (6.2), 8{Tso,so) = E(Tso). But Ts0 is the zero-section of £+ (in the usual
identification of Sf with C+), so E(Tso) = y(£) by definition of y (see the beginning of
Section 6).

Next, for any t in FS£ let R(t) be the (fibrewise) reflection of £ in the hyperplane
orthogonal to t. Let S(t) be the orientation-preserving element R(t)R(s0). Write y = E(t)
and £ = .%•[£]).

Proposition 7.5. With notation as above,

(a) p(R{so)T)x=-ex,
(b) p(R(so))x=-
(c)

for x eaT 1

Proof. Since R(t) = — 1 and .R(so)so = Ts0, (a) and (b) follow easily from (7.4). From
(c) we use the identity R(t)t = Tt. It follows that p(R(t))y = p(T)y = ey + y{Q. This enables
us to compute p(R(t)) and then, using (b), p(S(t)).

Example 7.6. (cf. [5], [15]). Let X be a closed connected m-manifold with m odd,
and let £ be an (m + l)-plane bundle over X with w^ = wtX. Then 7torS£ = QJ~ 1(X; —£)^Z,
but we shall see that there are at most two orbits under the action of eS. For dim ( is
odd, so y{Q is a 2-torsion class and therefore y(()=0 here. Also, e acts as + 1 . The
assertion follows from (7.5) (c).

In the case when X is orientable and £ is trivial, this result was first proved in [5]. To
see the connection, let Mr denote the component of M(X, Sm) consisting of all maps of
degree r. Then (7.6) says that 'S provides strong equivalences (diffeomorphisms which
are isometries) between Mr and Mr+2s for any integers r and s.
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Example 7.7. Let X be a closed connected m-manifold with m even and let £ be an
(m+l)-plane bundle with w1^wlX and wm£^0. Then TS£ has two components and
they are strongly equivalent by (7.5)(b).

8. Homology of TS?

In this section, continuing with the notation of previous sections, we deduce results
about the homology of FS1; from the suspension theorem in Section 4. Since (F£+)0 is
of finite type by (3.4), the homology groups flj{(rC+)0) are finitely generated. In a
certain stable range they can be described in terms of the cohomology of X (Corollary
8.3). This is deduced from a similar fact about stable homotopy and cohomotopy
(Proposition 8.2). We then reformulate these results without reference to the basepoint
s0, preparing the way for the next section.

First we "stabilize" the map E of (4.5).

Proposition 8.1 There exists a homomorphism E+ making the following triangle commute:

xX; -£),

co°{Z;r

where S (for clarity, instead of E as elsewhere) is the ordinary stabilization map.

Proof. The proof is by universality. We shall therefore be dealing with "the stable
cohomotopy of FC+". For our purposes, however, it is unnecessary to define this phrase:
for "F£+" one may simply read A(N) where A is as in (3.4) and N is sufficiently large.

Let 1 be the identity class in [rC+;F£+], and let e be the universal class £(1) in
(y°("(FC+,s+)" xX; -Q. Since E maps the class of g : Z - > n + to g*(e), we may define £_
by sending any stable map g:Z->FC+ to g*(e).

Now consider the case Z = SK The next proposition follows easily from (4.7), (8.1) and
the usual Freudenthal suspension theorem applied to S.

Proposition 8.2. Suppose that m<n. Then E^:a>j(rC+)—*a)~J(X; —£) is an isomorphism
for j<2n — 2m—l, an epimorphism for }%2n — 2m — \ (and indeed for j<2n — m).

This gives rise to our first result on integral homology; it is just the homology
analogue of (8.2). To state it, we use the local coefficient notation introduced in Section
4, and we let e denote also the Hurewicz image in H°((r(+,s+) xX;—Q of the stable
cohomotopy class e above. (In cohomology there is no need for the inverted commas on
F£+.) Taking the product with e defines a map

p ; -0-

Corollary 8.3. The above En is an isomorphism for j<2n — 2m—l, an epimorphism for
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Proof. Let P be a finite pointed CW-complex dual to I.~NX~^ for some N^O. Then
£„ is induced by a stable map /:Sw'T(+"-»P. By (8.2), / induces an isomorphism
on the yth stable homotopy group for j<N + 2n—2m—l, an epimorphism for ) £
N + 2n — 2m — 1. By the Whitehead theorem, it does the same on homology groups.

Remark 8.4. If n ̂  2m +1 we can apply the results of Section 5. (5.2) stabilizes to
give

co°{Z; D}-^(o°{Z; F(+}—cuo{Z; D}

with EJ+ = \. The S-dual D of Z" c is a stable retract of 'TC+".

Next, for use in Section 9, we wish to rephrase (8.2) and (8.3) without mentioning s0.
Since &JTC+) may be identified with a>/rs<E,s0) and a)-j(X; - Q with ar o + 1 ) (X; -£),
we first move to viewing E^ as a map from co,(rS£,so) to co"o+1)(X; — ^). Then as in
Section 6 we can "get rid of" s0 by using the boundary isomorphism
d:a>j+l{CrS£,rSZ)-+coJ{rSl;,s0). In order to get the desired translation of (8.2) we need
a lemma.

Lemma 8.5. The composition

is given by multiplication by the relative Euler class y(Z,l) in co°(>l(CrS^,TS^)" x X; -£),
where 1 is the canonical section of (the pull-back of) SE, over TS£, x X given by the identity
map of TSl;.

Proof. This follows from (6.3) applied with Z = 'TSf.

Now (8.2) and (8.3) immediately give corresponding statements in which £„, is
replaced by multiplication by the Euler class y(t,, 1) in stable cohomotopy or in integral
cohomology. We record these as:

Corollary 8.6. Let m<n. Then

is an isomorphism for j<2n — 2m—l, an epimorphism for j^2n — 2m—l.

Corollary 8.7. Letm<n. Then

is an isomorphism for j<2n — 2m—l, an epimorphism for j^2n — 2m—l.
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Since d:HJ+1(CrS£,rSZ)-*HJTSi) is an isomorphism, (8.7) shows that we can
express Hj(Ts£) as H~U+1\X; -£) provided 0<j<2n-2m-l. (This of course follows
from (5.1) in the special case n^.2m+ 1.)

Remark 8.8. A symmetry g in 'S acts on H~U+1)(X; —£) as multiplication by the
degree of g in H°(X). In particular if g is orientation-preserving (that is, of degree +1)
then it acts trivially on Hj(rS£) for j<2n — 2m—l, since everything involved in the
isomorphism of H/TSQ with H~u+l)(X; -<!;) is natural with respect to g.

9. A "Gysin sequence"

Our immediate goal is a bundle version of (8.7), from which we shall deduce a kind of
Gysin sequence for a bundle with fibre FSt; (Corollary 9.4). We conclude the section
with some applications, including an alternative proof of Theorem 2.13 in [3].

Suppose that p:E-*B is a locally trivial bundle over a finite CW-complex B, and that
for each point b in B the fibre Eb over b is homeomorphic to X. Suppose that p is a real
(n + l)-plane bundle over E equipped with a Riemannian metric. Write pb = p\Eb. We
assume that m < n, so that the space of sections TSpb, or Ffc for short, is non-empty and
connected. The r6 can be assembled as the fibres of a locally trivial bundle n:T-*B. Let
CBn:CBT-*B be the cone over B of n. Thus F £CBF and the pointed space CBT/T is the
mapping cone of n. This gives an exact sequence in homology (and likewise in stable
homotopy):

Using (8.7) we shall compute Hj+l(CBT,F) for j<2n — 2m—l and thus obtain an exact
sequence which can be applied to the calculation of the groups H/F) in this range.

Let SBF be the fibre suspension of F; its fibre over a point b of B is STb = CTJTb. Let
R be the stable bundle over B with fibre over b the stable Thom space Rb = Eb~

Pb); then
R/B is the stable Thom space E~p. (To work with genuine spaces, one chooses a
trivialization of p © a for some vector bundle a over E and considers the bundle with
fibre at b the Thom space of a | Eb.)

The computation of HJ+l(CBr,r) is an exercise in homotopy theory over B and in
essence it is straightforward. Suppose that Ab is a (stable) dual of Rb. Then y(pb, 1) in
co°("(Crb,rb)"xEb;-pb) can be regarded as a stable map 0t:"Sr6"-»A6, which,
according to (8.7), induces an isomorphism HJ+l(Srb)-*Hj+1(Ab) for j<2n — 2m— 1, an
epimorphism for j^2n — 2m—l. Now suppose that we could assemble the spaces
A,,, b e B, into a locally trivial (stable) bundle over B, S-dual over B to the bundle R, and
the 6b into a stable map 0:"SBr"-fA over B. Then 0,:HJ+1(SBr/B)-»HJ+1(A/B) would
be an isomorphism in the same range j<2n — 2m — l, an epimorphism for j%2n — 2m—\.
This is the substance of the computation. However, we do not wish to discuss general
duality theory over B and shall, therefore, proceed slightly differently.

For simplicity we assume that B is a closed manifold with tangent bundle T. (NO
doubt the theory can be carried through without this restriction, but we have not done
so.) Here is the result. In the statement D denotes the canonical duality isomorphism.
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Proposition 9.2. There is a natural map 9 making the following diagram commute:

Hj+l{cBr,r)

e
; -P-P**)-

p* y(p)

Moreover, 6 is an isomorphism for j<2n — 2m—l, an epimorphism for j^2n — 2m—l.

Note that if B is a single point then (9.2) reduces to (8.7). We shall in fact prove a
stable homotopy version of the proposition (from which the isomorphisms in the
homology version follow by the usual Whitehead argument). For this we need the
following result from fibre homotopy theory. It is proved in the appendix.

Lemma 9.3. Let Z be a finite pointed CW-complex, p:Q-^B a locally trivial bundle of
pointed finite CW-complexes. Then there is an isomorphism

OC:CO*{Z;Q/B}^OJ%{BXZ;X + A BQ},

which is natural in Z and Q and which reduces when Z = S° and Q = BxS° to the
canonical duality isomorphism of

ft)_j,(B) = (B*{S0;(BxSl))/B} with co*(B; - T ) = O J | { B X S ° ; T + }.

Proof of the stable homotopy version of (9.2). By (9.3) we can identify co_#(CBr,r) =
a)*{S°;SBr/B} with CO^{BXS0;T+ ABSBT}. Note also, from the definitions, that

Now consider the relative Euler class y(p, 1) in

co°("(CBr,T)" x BE; -p) = co°B{"SBr" ABR;0+}.

Multiplication by y(p, 1) gives a homomorphism 6:

coJ+1(CBr,r)-+co-u+1\E; -p-p*x)

or

according to our point of view.
At the fibre level, (8.6) tells us (in view of the identifications noted above) that

06:aru+1){O+;T6
+ ASr6}-»aj"u+1){/?j,;T6

+} is an isomorphism for ; < 2 n - 2 w i - l + d i m B ,
an epimorphism for j g 2n — 2m — 1 + dim B. It follows that 0 is an isomorphism or
epimorphism in the range claimed. (If B has the structure of a finite CW-complex then it
is easy to argue by induction over the cells, using the exact sequence relating stable
homotopy over B, over a subcomplex A and over (B, A).)
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Finally, we see from (9.3) that k:a>j+l(B)-KoJ+l(CBr, F) corresponds under a to the
map from COBO+1){0+;T + } to O)B~U+1){0+;T + A B S B F} induced by the inclusion of B in
SBr as the vertex of the cone. Then composition with 6 gives multiplication by the
Euler class y(p). This completes the proof.

Bundles of the type we have been discussing arise in the following way. Ley 3V £ <& be
the subgroup of orientation-preserving symmetries of ^. Suppose that P is the total
space of a (locally trivial) principal J?-bundle over B, and let E = BxX, with
p:BxX-*B the projection, and p = Px#,£. (See Example 9.7 below for a specific
example of the type we have in mind.) Write q:BxX-*X for the projection onto X'.
Since Jf is orientation-preserving the orientation bundle of p is identified with that of
q*%, and we have a Thom class w, say, in H°(BxX;p — q*^).

In applying (9.2), it is convenient to use the following notation in cohomology, by
analogy with stable cohomotopy: for finite pointed CW-complexes ZQ,Z± we write
H*{Z0;Zl} for the group of chain homotopy classes of chain maps from the reduced
chain complex C^(Z0) to C^ZJ. (Thus, HJ{Z0;S

0} is cohomology H'{Z0) and
//J{S°;Z1} is homology flL/Zj). Ha{Z^,Z^\ should be thought of as the morphisms
from Zo to Zx in the "homology category". In the context of general duality theory
described in [4], it is transparent that H*{ZO;ZX} can be identified with H*(Z0 A D{Zl)),
where D{Z^) is an S-dual of Zx. We shall use this identification in the proof of (9.4)
below. For the computation of H*{Z0;Zl} one has a (split) short exact sequences:

0-+Ext(H,(Zo),H!|t(Z1)Htf*{Zo;Z1} -+Hom(//!)!(Z0), tf^ZJHO,

or its analogue involving the cohomology groups of Zo and Zt.)
Now let e be the Euler class y(p)-u in fl°(fixl; -p*0- We write B+ for the disjoint

union of B with a basepoint.

Corollary 9.4. With notation as above, there is an exact sequence:

for j<2n — 2m-\.

Proof. By standard considerations it is enough to assume that B is a closed
manifold. (In general, a finite complex B is a retract of a closed manifold.) The result
now follows from (9.1) and (9.2). For by (9.2) HJ(CBT, T) is isomorphic via 6 to
H~*(BxX; -p-p*z), which in turn is identified with H~*(BxX; -p*r-q*£.) via the
Thom isomorphism (multiplication by u). Now this last group is, by definition,
H~*{B~TKX~% which is identified by the canonical duality between B~z and B+ with
H-*{X-t;B+}. The map Jfc in (9.1) passes to multiplication by e when H~iJ+1){X-i;B+}
is substituted for H,+1(CBF,F). This establishes (9.4).

Remark 9.5. In (9.4) we can allow B to be an arbitrary CW-complex. For then it is
a direct limit of its finite subcomplexes and (9.4) is compatible with the direct limit
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process. We can also replace Jf by an arbitrary subgroup ^ f ' s Jf. For if P'-*B is a
principal ^"-bundle we can extend it to P = P ' x r / ^ B and then Fx

Remark 9.6. Using homology with F2-coefficients, we get a result like (9.4)-(9.5) with
replaced by (S. Notice that for field coefficients H*{ZQ,Z^\ is just
^ J Z o ^ H J Z i ) ) . So H-U+1){XS;B+} is easy to compute in this case.

Example 9.7. Suppose that X is a connected oriented closed even-dimensional
manifold, of dimension m = 2r, and that £ is a complex s-plane bundle (with Hermitian
metric) over X with n = 2s— 1 and r<s. We take Jf = S1 (as in (9.5)) acting on £, by
complex scalar multiplication and P-+B the universal S^bundle SCO-*CP'X'. Then p, in
the proof of (9.4), is H <g> c£, where H is the Hopf line bundle over CP°°. Because S1 acts
freely on FSt;, we have an isomorphism: H^S™ x^rS^-vH^rS^/S1). A routine
calculation using the exact sequence of (9.4) now yields:

where cr£ is the rth Chern class and [X] the fundamental homology class.

From Section 8 of [3] (especially Lemma 8.2) it follows that if H1(X;Z) = 0 then
is homotopy equivalent to a certain space N£ of sections of the projective

bundle CP£. The above calculation therefore gives an alternative proof of Theorem 2.13
of [3] (for m<ri). Other results first proved by Moller in [11], [12], [13] can be
obtained similarly from (9.4).

Example 9.8. (cf. Moller [12] (3.4).) Suppose that X is a connected closed m-manifold
and £ a real (n + l)-plane bundle with m^n. We may take 'S = Z/2 in (9.6), acting on £
as multiplication by {±1}, and P-*B the universal Z/2-bundle. Again the action on
is free, and we obtain:

); F2) = F2 © (F2/

where wm£, is the wth Stiefel-Whitney class.

Remark 9.9. In this and the preceding section we have dealt only with stable
homotopy and classical cohomology. There are corresponding results for any connective
(multiplicative) homology theory. For example, suppose that ^ is a complex (Hermitian)
bundle, JC the unitary subgroup of 0. Then we can replace H in (9.4) by connective
complex K-theory.

Appendix: stable homotopy over a base space

We shall be doing homotopy theory over a fixed finite CW-complex B. Let p:Q-*B be
a locally trivial bundle of pointed finite CW-complexes. Then Q is a sectioned space
over B and we shall sometimes regard the section as an inclusion BQQ. Let Z be a
pointed finite CW-complex, and consider the product bundle BxZ->B. There is an
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evident correspondence between fibrewise pointed maps Q^BxZ over B and pointed
maps Q/B->Z. This observation leads easily to the well known lemma:

Lemma 9.10. There is a canonical isomorphism between oo%{Q;BxZ} and a>*{Q/B;Z}.

In particular, co%{Q;BxS0}, which one might call the "stable cohomotopy of Q over
B", is equal to &*{Q/B), the stable cohomotopy of Q/B. It is natural to ask for a similar
interpretation of the "stable homotopy of Q over B", (o%{B x S°;Q}. The purpose of this
appendix is to give such an interpretation, at least if, as we now assume, B is a closed
smooth manifold. We write T for the tangent bundle of B.

Lemma 9.11. With the above notation, there is a natural isomorphism

a:<u*{Z;((-T)+ A BQ)IB}^CO*B{BXZ;Q}.

If we fix a trivialization T ® V-*UN, for some normal bundle v, then we can express
the group on the left in more concrete terms as co*~N{Z;(v+

 A BQ)/B}. The equivalence a
here is essentially the same as that in (9.3); we can go from (9.3) to (9.11) by substituting
v+ ABQ for Q. The remainder of this appendix is concerned with the proof of (9.3).
Although we know of no reference, the result is more or less standard. We therefore
only indicate the main steps of the proof here.

We need to recall the general construction of the Umkehr map. Suppose first that
f:X-*Y is a smooth map between closed manifolds X and Y with tangent bundles
TX,TY. Let R->7 be a locally trivial bundle of pointed finite CW-complexes over Y, and
f*R-*X its pull-back over X. Then there is a natural stable map (depending only on
the homotopy class of / )

f':((-zY)+ A YR)/Y^((-zX)+Axf*R)/X (9.12)

which we shall call the Umkehr map. (It has many names.) The construction is easiest
to describe if / is an embedding of a submanifold X £ y with normal bundle v. We
write Dv for the unit disc bundle and identify its interior Dv —Sv with v in the usual
way. Choose a tubular neighbourhood Dv £ Y of X and identify the restriction R | Dv with
the pull-back (Dv) x X(R \ X) by an isomorphism restricting to the identity on X. Now
we generalize the standard Pontrjagin-Thom construction. Collapsing (i?|(7—v))uF
in R and ((Sv) x x(R\X))vDv in (Dv) x X(R\X) to points, we obtain a map

f':R/Y^(v+Axf*R)/X. (9.13)

Substituting (—xY)+AYR for R, we obtain the more symmetrical form (9.12). In
general, if / is not an embedding one chooses an embedding i:X-*V of X in some
Euclidean space V and applies the above Pontrjagin-Thom construction to
(fjy.x^Yxv.

The construction carries through, virtually unchanged, over B. Let p:E->B, q:F-*B be
locally trivial smooth fibre bundles over B with fibres closed manifolds. Write x(p), i(q)
for the bundles of tangents along the fibres. (In fact we do not need a differentiable

https://doi.org/10.1017/S0013091500017831 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017831


THE SPACE OF SECTIONS OF A SPHERE-BUNDLE I 401

structure on B; it is enough that E, F be manifolds over B.) Let / now be a smooth map
E-*F over B and R-*F a locally trivial bundle of pointed finite CW-complexes over F.
Then we have a stable map over B

f:((-z{q)r AFR)/BF^((-x(p))+ AEf*R)/BE, (9.14)

where /B is the quotient over B (see [9]) collapsing a subspace to a point in each fibre.

Sketch proof of (9.3). Recall first how the canonical duality between J5+ (the one-
point-compactification of B, with basepoint at oo) and B~z is defined. It will be
convenient to denote a point by 0, so that 0+ is the pointed space S°. We require two
structure maps X:B+

 A B~Z-*0+, / I : 0 + - > B + A B~Z satisfying certain identities. Let
&:B->B x B be the diagonal and n.B->0 the constant map. We write n1,n2:B x B->B for
the projections onto the first and second factor, so that B+ AB~Z =(Bx B)~*2*z.

Then X is the composition

(BxBy2'z-^B+—2->0+ (9.15)

and dually n is

O+^UB-'-^^XB)-'2 '1 . (9.16)

For A! we take R = nl*x+ in (9.12). We identify A*ni*x and A*7T2*T with T. One verifies
that A, \i are duality maps by an essentially formal argument using the properties of the
Umkehr construction.

We shall define the transformation a in a rather similar way. It is enough to consider
the case Z = Q/B and define a(l), where 1 in a>°{Q/B;Q/B} is the identity map. (For
then, in general, if x is in OJ°{Z; Q/B} we can set a(x) = (l x x)*a(l).) We use the notation
of (9.14). Take V.B->B for p and n^.BxB^B for q. Then / will be A and R will be
7T2*(T+ A RQ). Thus:

1\

B (9.17)

From (9.14) we get A!e(oB'{Bx(Q/B);T+ ABQ], because t(p)=0 and z{q) = n2*x. We
define <x(l) to be the Umkehr map A!.

To show that a is an isomorphism we construct an inverse p. It is convenient to
identify cu|{( —T)+ A B(BXZ);Q\ with co%{BxZ;x+

 A BQ] by the fibrewise suspension
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(product with the identity map on T+) and define /? as a composition:

^ { ( - T ) + A B(B X Z ) ; Q } - ^ co*{B~* A Z; Q/B}-^CO*{Z;Q/B}.

Here c collapses the section B to a point, and n^. is composition with n:0+->B~*.
The proof is completed by what is again a rather formal verification that a and /? are

inverse to one another.

Remark 9.18. There is one case in which one can give a rather simpler proof, namely
when Q->B is the fibrewise one-point compactification of a locally trivial smooth fibre
bundle p:E->B with closed fibre. Then one can use duality over B to identify
<x>%{BxZ;x + A BQ] with CO${ZX((-TE)+/BE);0+}, since zE is the direct sum TB©T(P).
This group is, by (9.10), a>*(Z A E~ZE), which by ordinary duality is co*{Z;E+}. And
finally, E+ is Q/B.
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