THE EMPIRICAL PERIOD-RADIUS RELATION FOR PULSATING STARS : A SYNTHESIS BASED ON PHOTOMETRIC AND RADIAL VELOCITY MEASUREMENTS

G. Burki Observatoire de Genève, Switzerland

The relation existing between the radius and the period for the pulsating stars of a given class constitutes a powerful test for the theory of stellar evolution and for the identification of the pulsation modes. In recent years, several authors have determined the mean radius of a lot of pulsating stars of various classes by applying the Baade-Wesselink method. Fig. 1 presents the resulting general logP - logR diagram grouping these determinations. The sources for the radii are given by Burki and Meylan (1986). The variable stars in known binaries have been excluded since the presence of a companion biases the radius calculation (Burki, 1984). The determinations marked by arrows are based on the radial velocities by CORAVEL (1m telescope at the Haute-Provence Observatory, France) or/and on the photometry in the Geneva system (40cm and 70cm telescopes at La Silla Observatory, Chile).

For the <u>classical cepheids</u>, two linear regressions have been calculated:

logR =	1.16 +	0.72	logP	P<10d	(1)
logR =	1.03 +	0.77	logP	P>10d	(2)

The difference between these two relations, if really significant, could be due to the mass loss process affecting the evolution of massive stars (Burki, 1985). For the cepheids with P<10d, the various theoretical models yield a mean relation logR = 1.18 + 0.69 logP (Fernie,1984), which is quasi-identical with (1). This allows one to derive, from the definition Q = $P(\overline{\rho}/\overline{\rho_0})^{1/2}$, an equation relating Q, R and M (mass) : Q = 0.0238 M^{0.5} R^{-0.1} P<10d (3)

For the <u>population II cepheids</u> (BL Herculis and W Virginis stars), the relation is:

 $\log R = 0.87 + 0.54 \log P$ (4)

and it is remarkable to see that this relation satisfies globally well the RR Lyrae, δ Scuti and SX Phoenicis stars. By adopting 0.6 M_o for the typical mass of the <u>population II cepheids</u> and RR Lyrae stars (Harris, 1985), the following relation can be deduced :

J. B. Hearnshaw and P. L. Cottrell (eds.), Instrumentation and Research Programmes for Small Telescopes, 273–274. © 1986 by the IAU.

$$\log Q = -1.4 + 0.2 \log P$$

(5)

In Fig. 1 is also shown the location of FG Sge, the nucleus of a planetary nebula for which Mayor and Acker (1980) derived a value of the mean radius for the years 1978-1979.

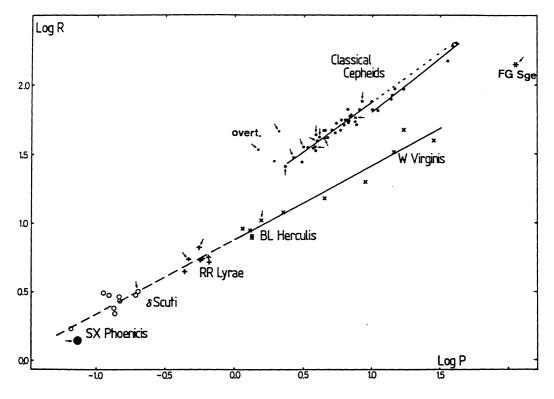


Figure 1. The logR - logP relations for pulsating stars.

REFERENCES

Burki, G.: 1984, Astron. Astrophys. <u>133</u>, 185
Burki, G.: 1985, Duplicity, Mass Loss and the Cepheid Mass Anomaly, in Cepheids: Observations and Theory, IAU Coll. no 82, Ed. B.F. Madore, Cambridge Univ. Press, Cambridge, p. 71
Burki, G., Meylan, G. : 1986, Astron. Astrophys., in press.
Fernie, J.D.: 1984, Astrophys. J. <u>282</u>, 641
Harris, H.: 1985, Population II Cepheids, in Cepheids: Observations and Theory, IAU Coll. no 82, Ed. B.F. Madore, Cambridge Univ. Press, Cambridge, p. 232
Mayor, M., Acker, A.: 1980, Astron. Astrophys. 92, 1