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Abstract. Let M be a manifold and let L be a sufficiently smooth second
order elliptic operator in M such that (M,L) is a transient pair. It is first
shown that if L is symmetric with respect to some density in M , there exists
a positive L-harmonic function in M which dominates L-Green’s function at
infinity. Other classes of elliptic operators are investigated and examples are
constructed showing that this property may fail if the symmetry assumption is
removed. Another part of the paper deals with the existence of critical points
for certain L-harmonic functions with periodicity properties. A class of small
perturbations of second order elliptic operators is also described.

§0. Introduction

In this paper, we consider three questions about the Potential theory

with respect to second order elliptic operators. These questions are essen-

tially different in character and apart from the introduction the exposition

of the related results will be kept independent.

The first question is due to Y. Pinchover ([Pi2], see also [Pi3], [Pi4]

where this property appears). Let Ω be a domain in R
d (or a Riemannian

manifold), let L be a locally well-behaved second order elliptic operator in

Ω which admits a (non-negative) Green’s function in Ω and let g denote

the L-Green’s function with respect to Ω and some given pole P ∈ Ω. It is

then asked if there necessarily exists an L-harmonic function u in Ω which

dominates g in the sense that g(m) = o(u(m)) when m tends to the point
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at infinity in Ω. It will be shown that if L is symmetric with respect to

some smooth density in Ω (or more generally if L is quasi-symmetric in an

appropriate sense), then Pinchover’s question admits a positive answer. See

Sections 1–2. In Section 5, using some ancillary results from Sections 3–4,

–in particular the triviality of the Martin boundary of some perturbations

of the Laplacian in R
d, d ≥ 3, (Proposition 3.1)–, we construct an example

–with Ω = R
d, L = ∆+V.∇. where V is a smooth vector field in R

d– which

shows that the answer is no in general. There are even counter-examples

with a Riemannian manifoldM of bounded geometry and an operator in the

form L = ∆M +V.∇, where ∆M is the Laplace-Beltrami operator in M and

V is a bounded drift (See Section 10). However, in the hyperbolic setting of

[An2] and with L in one of the classes of weakly coercive elliptic operators

considered therein, the answer is again yes, in spite of the apparent lack of

symmetry (Proposition 1.3).

In Sections 6–8, we consider a question raised by G. Benarous and

H. Owhadi about the behavior of certain harmonic functions with respect

to an elliptic operator when the operator and the function satisfy some

periodicity conditions. An equivalent form of their question asks whether

a smooth function u in T d−1 × R (where T = R/Z is the torus) such that

u(x, t + 1) = u(x, t) + 1 and such that ∆u − ∇ϕ.∇u = 0 for some smooth

function ϕ on T d may admit a critical point. It will be shown that the

answer is no if d = 2 (see Section 7) but that there are examples with

critical points when d ≥ 3 (see Section 8). Perhaps the method could be

useful in constructing other counter-examples involving critical points.

Finally we mention in Section 9 a stability property of Green’s func-

tion with respect to some perturbations of elliptic operators (Theorem 5)

which is shown to follow from [An4]. In the form of Corollary 9.1, this was

conjectured by Y. Pinchover (in a slightly different form) ([Pi2], see also

[Pi3]).

§1. Domination of Green’s function by harmonic functions: state-
ment of the results

Let M be a connected non compact Riemannian manifold and let L
denote a second order (strictly) elliptic operator in M . We assume that L
is in divergence form L = div(A(∇•)) + D.∇ • + div(•D′) + γ• where A
is a bounded Borel measurable section of the bundle End(T (M)) which is

locally uniformly accretive, D and D′ are Borel measurable vector fields in
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M of class Lploc and γ is a Borel measurable function in M of class L
p/2
loc

for some p > dim(M). It will be clear from the exposition that Theorem 1

below extends to other standard classes of second order elliptic operators

(provided that the symmetry assumption in Theorem 1 is satisfied).

Associated to (M,L) there is a well defined local Potential theory

(ref. [Sta], [H-H], [Bre], [Her]; see also [An2], [An3] and references therein)

and we shall assume that the reader is familiar with the basic related no-

tions. Recall that the pair (M,L) is said to be of the transient type if

the cone of positive L-supersolutions is neither empty nor one-dimensional.

Equivalently, there exists a Green’s function G(x, y) with respect to L over

M , that is: for each y ∈M , Gy : x 7→ G(x, y) is a positive L-superharmonic

function such that: (i) L(Gy) = −δy in the weak sense (and w.r. to the

Riemannian measure σ in M) where δy is the Dirac measure at y ∗, (ii) the

function Gy has no positive L-harmonic minorant.

We say that L is quasi-symmetric if moreover for some reference point

O ∈M , the related Näım kernel θ(x, y) = G(x, y)/G(x,O)G(O,y) satisfies:

θ(x, y) ≤ Cθ(y, x) for all pair (x, y) in (M \ {O})2 and some C ≥ 1. It is

easy to see that this property is then valid with respect to any reference

point with the constant C3 instead of C. This property is also invariant

under smooth changes of metric or relativisations (but we do not need these

facts) and it obviously implies the quasi-symmetry of the formal adjoint L∗

of L. (See Remarks 1.2 below.)

Theorem 1. Assume that the pair (M,L) is transient and that L is

quasi-symmetric. Then, there exists a positive L-harmonic function u in

M such that, for each y ∈M ,

lim
x→∞M

G(x, y)

u(x)
= 0.

We have denoted ∞M the point at infinity of M . Notice that the

completeness of M is not required.

Remark 1.1. (i) The proof will show that u may be taken as the sum
of a series of minimal L-harmonic functions. (ii) Note that even if L is
Markovian (i.e. constants are L-harmonic) it is not necessarily the case
that limx→∞M

G(x, x0) = 0 for some x0 ∈M .

∗Every L-superharmonic function u 6≡ ∞ is in H1,q
loc

(M) for all q < N/(N − 1), N =
dim(M), and “µ = −L(u) in the weak sense” defines a positive Radon measure µ in M .
See [Sta], [H-H].
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Remarks 1.2. Assume L is transient and (for simplicity of proof and
statement) sufficiently smooth, say A is C1, D and γ are locally bounded
and D′ = 0. Fix also a reference point O ∈M . A. The following properties
are equivalent: (a) There is a measurable function f , positive and locally
bounded in M , such that

∫
L(u)vf dσ =

∫
uL(v)f dσ for u, v in C∞

0 (M),
(b) (x, y) 7→ G(x, y)h(x) is symmetric for some positive function h in M ,
(c) the Näım kernel is symmetric. Moreover f in (a) and h in (b) must be
proportional. B. If L ≡ ∆M• +D.∇• + γ•, the Näım kernel is symmetric
iff D = ∇ϕ for some ϕ ∈ C0,1(M).

Remarks 1.2 are proved in Section 11. It should be stressed here that

if L is a second order elliptic operator in R
d, say in divergence form, locally

uniformly elliptic, with locally bounded coefficients and such that L(1) ≤ 0,

and if we take for M a bounded region in R
d, then Theorem 1 follows

quickly from the fact that the set of Dirichlet-irregular boundary points is

polar. Theorem 1 and the next Theorem 2 deal with the case where Ω is

unbounded, or stated differently, with the case where L degenerates near

the boundary.

In contrast with Theorem 1, we shall see that for general non self-adjoint

elliptic operators its conclusion may fail even when the Martin boundary is

reduced to a single point.

Theorem 2. For each d ≥ 3 there exists a smooth vector field V in

R
d such that for L = ∆ • +V.∇•, the pair (Rd,L) is transient, positive

L-harmonic functions are constant, but the L-Green function with pole at

some P ∈M does not vanish at infinity.

We have denoted above ∆ the Laplace operator in R
d. A proof of

Theorem 2 is given in Section 5 after some preliminaries in Sections 3 and 4.

Theorem 2 extends to the case d = 2 (see 5.7) but our proof of this involves

extra technicalities and details will be omitted here.

A variant of the construction leads also to the following.

Theorem 2′. There exists a complete Riemannian manifold M of di-

mension 2, with bounded curvatures and injectivity radius bounded from be-

low, a smooth bounded vector field V in M such that for L = ∆M •+V.∇•,
the pair (M,L) is transient, positive L-harmonic functions are constant, but

the L-Green function with pole at some P ∈M does not vanish at infinity.
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The proof of Theorem 2′ (and of its discrete version) is sketched at the

end in Section 10.

However, there are classes of operators L over complete Riemannian

manifolds which might seem far from formally self-adjoint but to which

Theorem 1 applies. We shall see this for the divergence type elliptic oper-

ators considered in [An2] as an application of Theorem 1.

Assume now that M is complete and that the coefficients of L are such

that for some p > dim(M) and some θ > 1,

θ−1|ξ|2 ≤ 〈Aa(ξ), ξ〉 ≤ θ|ξ|2,
‖Aa‖End(Ta(M)) + ‖D‖Lp(Ba) + ‖D′‖Lp(Ba) + ‖γ‖Lp/2(Ba) ≤ θ,

when a ∈M and ξ ∈ Ta(M) and where Ba = B(a, 1).

Proposition 1.3. Assume moreover that M is a Cartan-Hadamard

manifold with pinched negative sectional curvatures and that L is weakly

coercive. Then, L is quasi-symmetric.

Recall that L is called weakly coercive if L + εI admits a positive

supersolution for some ε > 0. This implies the existence of a Green’s

function for L.

Remark 1.4. The proof (see Section 2.D) is easily extended to the case
of a Gromov hyperbolic manifold M with bounded geometry (See [An3]).
It extends also to the classes of non divergence type elliptic operators con-
sidered in [An2].

Example 1.5. 1. Proposition 1.3 applies to every operator L = ∆ +
D.∇ with D a Borel vector field in the hyperbolic space M = HN (−1) if

|D| ≤ C0, C0 < N − 1. (Check the weak coercivity by using u(x) = xβN
in the half-space model M = {x ∈ R

N ; xN > 0} of HN (−1) with β > 0
small.) By Remarks 1.2, the corresponding Näım kernel is quasi-symmetric
but not symmetric if moreover D is not a gradient. 2. From Proposition 1.3,
various classes of elliptic operators over regions in R

d for which Pinchover’s
question admits a positive answer may be deduced (see [An2], §8). Let
us only mention here the case of a bounded Lipschitz domain Ω (some
more general domains are admissible too) equipped with an elliptic operator
in the form L = div(A∇.) + B.∇. − γ. with |B(x)| = o(1/d(x, ∂Ω)) for
d(x, ∂Ω) → 0, γ ≥ 0, |γ(x)| ≤ c/d(x, ∂Ω)2 and a uniformly bounded and
coercive matrix A(x). Proposition 1.3 says that the Näım kernel of L is
quasi-symmetric.
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§2. Proof of Theorem 1 and Proposition 1.3

The argument will combine an extension to the present framework of

results of L. Näım [Näı] with some abstract Potential theoretic results about

extended versions of Fekete’s transfinite diameter (ref. [Ev], [Cho], [Ni]).

For the needed facts from Martin’s boundary theory, we refer the reader to

[An3] and references there.

We fix a point O ∈ M and denote Kx(y) = G(y, x)/G(O,x), y ∈ M ,

x ∈M \{O}, the related L Martin kernel. In general a star in the notations

to follow refers to the adjoint L∗ of L. So K∗
x(y) = G(x, y)/G(x,O), x ∈

M \ {O}, y ∈ M , is the adjoint Martin kernel. As before, we set θ(x, y) =

G(x, y)/G(x,O)G(O,y) for x, y in M \ {O}.
2.A.

We require the compactification of M (i.e. a compact topological space

containing M as a dense open subspace) which is in some sense the smallest

containing both the L Martin compactification and the L∗ Martin compact-

ification of M . This is the (unique up to equivalence) metrizable compact-

ification M = M ∪ ∂M of M having the following property: if {xn} is a

sequence converging to the point at infinity in M , then {xn} converges to

some point ζ in ∂M if and only if both sequences {Kxn} and {K∗
xn
} con-

verge pointwise in M . If ζ ∈ ∂M is the limit point in M of such a sequence

{xn}, we define Kζ = limn→∞Kxn and K∗
ζ = limn→∞K∗

xn
. (Of course Kζ

and K∗
ζ depend only on ζ not on the specific sequence.)

Clearly ∂M projects on each of the Martin’s boundaries ∂̂M and ∂̂∗M

corresponding to L and L∗. Moreover if we restrict to the minimal bound-

aries we have natural one to one maps.

Lemma 2.1. Let ζ ∈ ∂M . The kernel function Kζ is a minimal posi-

tive L harmonic function if and only if K∗
ζ is L∗ minimal. Moreover if Kζ

is L minimal, then a sequence {xn} in M converges to ζ in M iff {Kxn}
converges pointwise to Kζ .

Proof. Set Φ(O) = 1 and Φ(x) = G(O,x)/G(x,O), for x ∈ M \ {O}.
For every ζ ∈M \ {O}, we have by the quasi-symmetry assumption

C−1Φ(x)Kζ(x) ≤ K∗
ζ (x) ≤ CΦ(x)Kζ(x), x ∈M,(2.1)

where C is a quasi symmetry constant for L. Using Martin’s integral rep-
resentation of positive L (or L∗) harmonic functions, it follows that for
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each non-negative L harmonic function h in M there is a (non-unique) L∗

harmonic function h∗ such that

C−1Φ(x)h(x) ≤ h∗(x) ≤ CΦ(x)h(x)(2.2)

in M (and vice-versa). From these facts the first claim follows immediately.

The second claim is then easily checked: if Kxn → Kζ and if Kζ is
L-minimal, then by (2.1) any function h∗ which is a limit of a subsequence
of {K∗

xn
}, must satisfy C−2K∗

ζ ≤ h∗ ≤ C2K∗
ζ and since K∗

ζ is minimal and
h(O) = 1, we have h∗ = K∗

ζ .

In other words if we set ∂1M = {ζ ∈ ∂M ; Kζ is L minimal}, M ∪
∂1M (as a subspace of M) is homeomorphic to the minimal Martin space

M ∪ ∂̂1M (as a subspace of the L Martin’s compactification M̂L) and also

to M ∪ ∂̂∗1M (as a subspace of M̂L∗). We collect two other easy facts.

Lemma 2.2. Let ζ ∈ ∂1M and let A ⊂ M . The set A is minimally

thin at ζ with respect to L iff it is minimally thin at ζ with respect to L∗.

Proof. We may assume that O /∈ A. Recall that A is thin at ζ0,
if the réduite function R̂AKζ0

is a L-potential. That is, there exists a non-

negative measure µ in M such that O /∈ supp(µ) and: (i) Gµ(O) is finite (ii)
Gµ ≥ Kζ0 in A. Setting ν(dY ) = G(O,Y )µ(dY ), it is seen that A is thin at
ζ0 if and only if there exists a non-negative Borel measure ν in M such that
O /∈ supp(ν), θν ≥ θ(., ζ0) in A and θν 6≡ ∞ (i.e. ν(M) <∞). Here we have
let θν =

∫
M\{O} θ(., y) dν(y) and θ(., ζ0) = limy→ζ0 θ(., y) = Kζ0(.)/G(.,O).

Applying this also to L∗, the lemma follows from the quasi-symmetry.

Let η ∈ ∂M and let λη (resp. λ∗η) denote the Martin’s representing

measure of Kη (resp. K∗
η ) on ∂1M , i.e. Kη(.) =

∫
∂1M

Kζ(.) dλη(ζ) and

K∗
η (.) =

∫
∂1M

K∗
ζ (.) dλ

∗
η(ζ).

Lemma 2.3. We have C−1λη ≤ λ∗η ≤ Cλη for some constant C ≥ 1.

Proof. This is a consequence of the uniqueness of Martin’s integral
representation by minimal functions, together with Lemma 2.1 and (2.1),
(2.2).
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2.B.

We may now define the Näım kernel for our setting. Simple adaptations

of the arguments in [Näı] shows the following. Let {Lj} be an exhaustion

of M by an increasing sequence of relatively compact regions containing O.

For j ≥ 1 and η ∈ M \ {O}, let νηj (resp. ν∗ηj ) denote the positive measure

in M such that Gνηj = R
Lj

Kη
(resp. G∗(ν∗ηj ) = ∗R

Lj

K∗

η
). We may then set, for

(ζ, η) ∈ (M \ {O})2:

θ(ζ, η) = sup
j≥1

∫
K∗
ζ (z) dν

η
j (z) = sup

j≥1

∫
Kη(z) dν

∗ζ
j(z).

This defines a positive l.s.c. kernel θ in M \ {O} such that θ(., η) =

Kη(.)/G(.,O) in M \ {O}, θ(ζ, .) = K∗
ζ (.)/G(O, .) in M \ {O}. Moreover,

for every positive measure µ in M \{O} and every ζ ∈ ∂1M , the θ potential

θµ(.) =
∫
θ(., η) dµ(η) satisfies:

θµ(ζ) = lim inf
x∈M,x→ζ

θµ(x) = f∗ lim
x→ζ

θµ(x) = f lim
x→ζ

θµ(x),(2.3)

where f limx→ζ (resp. f∗ limx→ζ) denotes a fine limit at ζ w.r. to L (resp.

w.r. to L∗). (See [Näı, pp. 226–227] for the first two equalities and note that

the third follows by Lemma 2.2.)

It follows also easily from the definitions that for x and y in ∂M , –recall

λ∗x (resp. λy) is the adjoint representing measure of x in ∂1M (resp. the

representing measure of y in ∂1M)–

θ(x, y) =

∫
θ(ζ, y) dλ∗x(ζ) =

∫
θ(x, η) dλy(η).(2.4)

In particular, the following holds.

Lemma 2.4. The kernel θ is quasi-symmetric in ∂M × ∂M (i.e.
θ(ζ, η) ≥ Cθ(η, ζ) for some constant C ≥ 1). The θ-energy θ(µ, µ) =∫∫

θ(ζ, η) dµ(ζ)dµ(η) of every probability measure µ in ∂M is infinite.

Proof. The first claim follows from (2.3) (and its adjoint version),
(2.4) and Lemma 2.3. By (2.4) and Fubini, we have the identity θ(µ, µ) =
θ(ν ′, ν ′′) where ν ′ =

∫
λx dµ(x), ν ′′ =

∫
λ∗x dµ(x). By the general Fatou-

Doob-Näım theorem and (2.3), we have that for every positive measure ν
in ∂M , θν(ζ) = +∞ at ν a.a. ζ in ∂1M . Using Lemma 2.3 again, the result
follows.

In particular θ is infinite on the diagonal of (M \ {O})2.

https://doi.org/10.1017/S0027763000008187 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008187


165-08 : 2002/3/11(17:59)

HARMONIC AND GREEN’S FUNCTIONS BEHAVIOR 131

2.C. Conclusion

We are now in good position to apply the results in [Cho] to the sym-

metric kernel N(x, y) = θ(x, y) + θ(y, x) over the compact space ∂M . Fol-

lowing [Cho], define the Fekete constant δ(A) of the set A ⊂ ∂M (w.r. to the

kernel N) as follows. For each finite subset X of A consisting of n points,

set N(X) = 1
n(n−1)

∑
x,y∈X2, x6=yN(x, y) and let δn(A) = inf{N(X) ; |X| =

n, X ⊂ A}. The Fekete constant of A is then δ(A) = supn≥1 δn(A). So

δ(A) = +∞ if A is finite.

Now N is a non-negative lower semicontinuous kernel on the compact

space ∂M which is infinite on the diagonal. Moreover, theN -energy of every

probability measure µ on ∂M is infinite. It follows then that δ(∂M) = +∞
(i.e. ∂M has zero N -transfinite diameter) –see Lemme 2 in [Cho]–. Next,

Proposition 1 in [Cho] ensures the existence of a probability measure µ

on ∂̂M of the form µ =
∑

n≥1 αnδζn –where αn ≥ 0, and δζn is Dirac

measure at ζn– such that Nµ(ζ) = +∞ for every ζ ∈ ∂M , which means

that θµ = ∞ in ∂M . Since θµ is lower semi-continuous, we must then

have limy∈M, y→ζ [Kµ(y)/G(O,y)] = +∞ for all ζ ∈ ∂M . In other words,

limy→∞M
[Kµ(y)/G(O,y)] = +∞ and Theorem 1 is proven.

2.D. Proof of Remark 1.1 (i)

We have seen that δ(∂M) = ∞ and since ∂1M ⊂ ∂M it follows that

δ(∂1M) = +∞. By Proposition 1 from [Cho] (where no topological assump-

tion is made on the set A) there is a probability measure µ =
∑∞

n=1 αnδζn
with ζn ∈ ∂1M and αn ≥ 0 such that Nµ(ζ) = +∞ for ζ ∈ ∂̂1M . It follows

by (2.4) that θµ = +∞ on ∂M . Whence the remark by the end of the proof

above.

2.E. Proof of Proposition 1.3

The main point in the assumptions of Proposition 1.3 is that they imply

the following boundary Harnack inequalities (ref. [An2], [An3]):

C−1G(X,Y )G(Y,Z) ≤ G(X,Z) ≤ CG(X,Y )G(Y,Z)(2.5)

for all X, Y , Z in M with d(X,Y ) ≥ 1, d(Y,Z) ≥ 1 and Y in the geodesic

segment XZ. Here C is a constant depending only on L. Recall also that

(for another constant C = C(L)) C−1 ≤ G(X,Y ) ≤ C for all X, Y in

M with d(X,Y ) = 1. By standard local results for second order elliptic

operators it follows that

C−1ϕ(d(X,Y )) ≤ G(X,Y ) ≤ Cϕ(d(X,Y ))(2.6)
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for d(X,Y ) ≤ 10 where ϕ(t) = t2−N if N = dim(M) ≥ 3 and ϕ(t) =

1 + log(10/t) if N = 2.

By Harnack inequalities and (2.6), to prove the quasi-symmetry of θ it

is enough to consider the case where X ∈ M \ B(O, 4), Y ∈ M \ B(O, 4)

and d(X,Y ) ≥ 4.

Let H denote the point nearest to O on the geodesic segment XY with

the convention that if this minimizing point is in B(O, 1) (resp. in B(X, 1),

or in B(Y, 1)) we take H = O (resp. H = X, H = Y ) instead. By (2.5) and

if H 6= X and H 6= Y , we have

C−1G(X,H)G(H,Y ) ≤ G(X,Y ) ≤ CG(X,H)G(H,Y ).

If H = O (i.e. d(O, [X,Y ]) ≤ 1) this means that C−1 ≤ θ(X,Y ) ≤ C and

so θ(X,Y ) ≤ C2 θ(Y,X). Assume now H 6= O (and H 6= X, H 6= Y ). By

the assumptions on M , the distance of H to each geodesic segment OX,

OY is bounded by a constant (see e.g. [An3, 2.6, p. 82]). Thus by (2.5) and

Harnack inequalities, we also have

C−1G(X,H)G(H,O) ≤ G(X,O) ≤ CG(X,H)G(H,O)

and similar inequalities for G(Y,O). Whence,

C−3

G(O,H)G(H,O)
≤ θ(X,Y ) ≤ C3

G(O,H)G(H,O)
.(2.7)

Moreover it is easily checked that this holds also if X = H or Y = H. The

proposition follows.

Remark 2.5. Using (2.7) one may also show that dθ(x, y) = θ(x, y)−1

satisfies the quasi-metric inequality considered in [K-V] (see Section 7, in-
equality (7.6) there). A proof of the quasi-metric property conjectured by
Kalton-Verbitsky ([K-V, p. 3488, top]) follows. Details and extensions will
hopefully appear elsewhere.

We next turn to the proof of Theorem 2. The first step describes a set

of perturbations of the Laplacian in R
d having trivial Martin boundaries.
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§3. Triviality of the Martin boundary of some diffusions in R
d

Until the end of Section 5, d is a fixed integer ≥ 3. The origin in R
d

is denoted O and a point x = (x1, . . . , xd) in R
d will often be written as

(x1, x
′), with x′ = (x2, . . . , xd) ∈ R

d−1. Denote Λ(Rd) the set of all second

order (strictly) elliptic operator L in R
d with smooth coefficients and such

that L(1) ≤ 0 and let ∆ denote the standard Laplacian in R
d.

In the next statement, we set An = (−2n, 0, . . . , 0).

Proposition 3.1. Let Φ ⊂ R
d be a closed subset of the half-space

{(x1, . . . , xd) ∈ R
d ; x1 ≥ 1} which is thin at infinity w.r. to ∆. Let L ∈

Λ(Rd) be such that L = ∆ outside Φ. Assume moreover that there exists

a positive constant c1 such that for every integer n ≥ 0, every positive

L-harmonic function u in B(0, 2n+1) and every x ∈ B(O, 2n), we have

u(x) ≤ c1 u(An).

Then, L admits a Green’s function in R
d and the Martin boundary of R

d

w.r. to L is reduced to a single point.

Remark 3.2. 1. The proof (or a simple direct argument) shows that
the minimal L-harmonic function normalized at O is bounded in R

d and
has a positive lower bound in {(t, x′) ; t ≤ 0, x′ = 0}. 2. There exists a
complete Riemannian manifold M of bounded geometry admitting a non
trivial Martin boundary and a (minimizing) geodesic ray γ : [0,∞) → M ,
such that for some constant C ≥ 1, one has u(x) ≤ Cu(γ(t)) for t ≥ 1, x ∈
B(γ(0), t) and u positive harmonic in B(γ(0), 2t). An example is obtained
by glueing, along its boundary circle, a flat half cylinder C to a Z

3 cover
N of a compact Riemannian surface (after removing a disc in N) and on
taking for γ a fixed ray in C.

Proof of Proposition 3.1. The proof is expounded in four simple steps.
By adding a ball to Φ, we may assume that Φ has nonempty interior.

Step 1. The thinness assumption means that the réduite function
(ref. [Bre]) v = R̂Φ

1 with respect to ∆ is a ∆ potential (and thus v 6≡ 1).

Clearly, v is also the réduite R̂Φ
1 w.r. to L and hence L-superharmonic. Since

v and 1 are not proportional, (Rd,L) is transient. (If L(1) 6≡ 0 the transient
character of L is immediate.)

Step 2. We show that there exists a constant c2 > 0 depending on
L and such that for every integer n ≥ 0 and every positive L-harmonic
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function u in Bn+1 := B(O, 2n+1), we have, if e1 denotes the unit vector
(1, 0, . . . , 0) in R

d,

min{u(−te1) ; 0 ≤ t ≤ 2n} ≥ c2u(An).(3.1)

By Harnack inequalities (for ∆) we have u(x) ≥ c u(An) for x ∈ B(An, 2
n−1)

and some c = c(d) > 0. On the other hand, u = u1 + u2 in Un = Bn \ Φ,
where u1 (resp. u2) is the bounded ∆-harmonic function in Bn (resp. in
Un) such that u1 = u on ∂Bn (resp. u2 = 1Φ(u − u1) on ∂Un). By the
first sentence of the paragraph and by Poisson integral formula, there is a
constant c′ = c(d) such that u1 ≥ c′c u(An) in B(An−1, 2

n−1) and, by the
assumption, u1(x) ≤ c1 u(An) in Bn. Whence,

u(x) ≥ u(An)(c
′′ − c1v(x)), x ∈ B(An−1, 2

n−1).

where c′′ = c′′(d) > 0 and, as above, v = R̂Φ
1 .

Thus, estimate (3.1) with t restricted to [t0, 2
n] holds if v(−te1) ≤

c′′/2c1 for all t ≥ t0. But this condition holds for t0 large enough since
v(O) < ∞ and v(−te1) =

∫
Φ |(−te1) − y|−(d−2) dµ(y) → 0 for t → +∞ by

the Lebesgue dominated convergence theorem.

Once we have chosen and fixed t0 (depending on Φ), the bound u(−te1)
≥ c2 u(An), 0 ≤ t ≤ 2n, follows from Harnack inequalities for the compact
set {−te1 ; 0 ≤ t ≤ t0} and the domain R

d \ Φ. This proves (3.1).

Step 3. Let u be a positive L-harmonic function in R
d. By the above

and Harnack inequalities, we have that u(x) ∼ u(An) ∼ u(O) for x ∈ Dn :=
B(−2ne1, 2

n−1), where A ∼ B means that α−1 ≤ A/B ≤ α for some real
α ≥ 1 depending only on L.

For n ≥ 1, let Hn denote the réduite function (with respect to L and
over R

d) Hn = RDn
1 where Dn = B(−2ne1, 2

n−1) as before. By the above
and by the very definition of Hn, we have Hn ≤ c u/u(O) in R

d (where c
does not depend on n or on u). Thus if H is a cluster value of {Hn} for
n→ ∞, then H ≤ cu/u(0) in R

d. Notice also that H ≤ 1.

On the other hand, at x ∈ R
d \Dn, the harmonic measure of Dn in R

d

–w.r. to ∆– is (2n−1/|d(x,An)|)d−2 and so is larger than c3 = 2−d+2 for x =
−te1, 0 ≤ t ≤ 2n−1. By comparison with the harmonic measure within the
region R

d \Φ, it follows that for such t we have Hn(−te1) ≥ c3−v(−te1), so
that for t fixed sufficiently large Hn(−te1) ≥ c3/2 when n ≥ log(t)/ log(2).
Thus, H(−te1) > c3/2 and the function H is positive.
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Step 4. Conclusion. If u is taken to be minimal in R
d normalized at

0 (by Step 1 there is at least one such u) H must be proportional to u.
Hence, u is unique which means that all positive L-harmonic functions are
proportional to H and the Martin boundary consists in exactly one point.
Remark 3.2.1 follows now from the boundedness of H, Harnack inequalities
and the estimate from below of H(−te1), for t positive and large, in Step 3.

§4. Other preliminaries to the proof of Theorem 2

4.1.

We first recall an estimate of the Harnack-near-the-boundary type

which will be used to check that the basic assumption in Proposition 3.1 is

fulfilled by our construction.

Proposition 4.1. ([An1]) Let Ω be a domain in R
d with Green func-

tion G (with respect to the Laplace operator ∆) and let B = B(A,R) be an

open ball contained in Ω. Then, for every P ∈ B \B(A, 3
4R), we have

sup{G(P,Q) ; Q ∈ Ω \B(P,R/2)} ≤ cG(P,A)

where c is a positive constant that depends only on the dimension d.

These estimates will be used as follows. Let f : [1,∞[ → R+ be a

non-negative nonincreasing C2 function such that f(1) ≤ 1/10, |f ′(t)| ≤ 1

and |f ′′(x)| ≤ c0/t for t > 0 and some positive constant c0. Let Φ denote

the closed set of R
d, Φ = {(t, x′) ; t ≥ 1, x′ ∈ R

d−1, |x′| ≤ f(t)}. Set

Ωn = {x ∈ R
d ; 2n < |x| < 2n+2} \ Φ, n ≥ 0. Proposition 4.1 ensures that

there exists a positive constant c that depends only on d and c0 such that

for every integer n ≥ 0 and every positive ∆-harmonic function u in the

region Ωn that vanishes on ∂Ωn ∩ Φ, one has

u(x) ≤ c u(An), ∀x ∈ Ωn ∩ ∂B(0, 2n+1).(4.1)

Proof. Set F = {x ∈ Ωn ; |x| = 2n+1(1 ± 1
4)}. The réduite R̂Fu

with respect to Ωn is the Green potential in Ωn of a non-negative measure
supported by F . By this integral representation of u and by homogeneity,
it suffices to show that the Green function G of Ω0 satisfies the following
inequalities: for each P ∈ Ω0 ∩ ∂B(0, 2(1 ± 1

4)),

G(Q,P ) ≤ cG(A0, P ), Q ∈ Ω0 ∩ ∂B(0, 2)
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with a constant c depending only on d and c0. For P sufficiently near to
Φ, this follows from Proposition 4.1 and the geometrical assumptions on Φ
(using balls B ⊂ Ω0 tangent to Φ). For other P in Ω0 ∩ ∂B(0, 2(1± 1

4)) the
desired result follows from Harnack inequalities.

4.2.

We also require the following lemma (with its corollary) about zero

order perturbations of elliptic operators. Let Ω be a domain in R
d, let U

be an open relatively compact subset of Ω that is unthin at each point of

∂U and such that Ω′ = Ω \ U is connected and contains O. Let L ∈ Λ(Ω)

(see beginning of Section 3).

Lemma 4.2. Let {ϕn}n≥1 be an increasing sequence of non-negative

functions in C∞
0 (U) such that limn→∞ ϕn(x) = +∞ in U . For each n ≥

1, let fn be a given positive (L − ϕn1)-harmonic function in Ω satisfying

fn(O) = 1. Then, fn → 0 uniformly in U , and for every subsequence {fkn}
converging pointwise in Ω′, the limit f = limn→∞ fkn is a non-negative L-

harmonic function in Ω′ vanishing on ∂Ω′ ∩ U ⊂ ∂U . Moreover fkn → f
uniformly on each bounded subset A of Ω′ such that A ⊂ Ω.

Proof. Fix an open relatively compact subset U ′ of Ω which contains U .
By the Harnack inequalities fn is bounded by a constant C independent of
n on ∂U ′ (and hence also in U ′). Let gn denote the solution to the Dirichlet
problem L(gn) − ϕngn = 0 in U ′ and gn = C on ∂U ′. The functions gn
are smooth in U ′ and by the maximum principle, the gn are decreasing and
0 ≤ fn ≤ gn. Clearly, w = inf{gn ; n ≥ 1} is (L − ϕn.)-subharmonic (and
u.s.c.) in U ′ for every n ≥ 1; thus ϕn.w is bounded in L1(U) and w = 0
a.e. in U . The function w being finely continuous (ref. [Her], Bre]) in U ′

(the L-fine topology and the ∆-fine topology coincide [Her]) it follows that
w = 0 in U . This implies that fn → 0 uniformly in U and from that point
the other assertions of the lemma are clear.

Corollary 4.3. Let Ω, L, U and Ω′ be as above. Let A ⊂ Ω′ be

such that A ⊂⊂ Ω and let ϕ ∈ C∞
0 (Rd) be ≥ 0 and such that {ϕ > 0} = U .

Assume that for each positive L-harmonic function u in Ω′ vanishing on ∂U
we have u ≤ c0 u(O) in A for some constant c0 > 0. Then for λ sufficiently

large one has, for each positive L− λϕ-harmonic function in Ω,

u(x) ≤ (1 + c0)u(O)

when x ∈ A ∪ U .
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4.3.

Finally we record two simple facts about perturbations of the first order.

Lemma 4.4. Let ω = {(x1, x
′) ∈ R

d ; a < x1 < b, |x′| < f(x1)} where

a < b and f : [a, b] → R+ is > 0 and continuous. Let a′, b′ be reals such

that a ≤ a′ < b′ ≤ b. For ϕ ∈ C(Rd), denote uϕ the harmonic measure in

ω of ∂ω ∩ {x1 = b} with respect to ∆ − ϕ ∂
∂x1

and let K = {x ∈ ω ; x1 =
(a′ + b′)/2}. Then for each ε > 0, there is a C ≥ 0 such that whenever

ϕ ≥ 0 in ω and ϕ ≥ C in {x ∈ ω ; a′ < x1 < b′}, we have uϕ ≤ ε in x ∈ K.

Proof. To prove this lemma, we may assume that b′ = b (by maximum
principle). Consider the function v in R

d such that v(x) = x1 − a for
x1 ≤ a′ and v(x) = C−1

[
eC(x1−a′) − 1

]
+ a′ − a for x1 ≥ a′. This function

v is positive and superharmonic in ω with respect to ∆ − ϕ ∂
∂x1

if ϕ and C
are as in the statement (with b′ = b) and, for x1 = b, v(x) ≥ ma,b(C) :=
C−1

[
eC(b−a′) − 1

]
. Hence, uϕ(x) ≤ ma,b(C)−1v(x) in ω and the lemma

follows.

The next lemma is similar in character.

Lemma 4.5. Let ω = {x ∈ R
d ; x1 > 1, |x′| < f(x1)} where f :

[1,+∞[ → R+ is > 0 and continuous and let F = ∂ω ∩
{
x1 = 1, |x′| ≤

1
2f(1)

}
. Consider operators of the form L = ∆−V ∂x1

with V non-negative

in ω. For each α ∈ (0, 1), there exists a smooth non-negative function V0

in R
d vanishing outside ω and such that, whenever V ≥ V0 in ω, the L-

harmonic measure of F in ω at (t, 0, . . . , 0) ∈ R
d is larger than α for all

t ≥ 1.

Proof. By maximum principle, we may assume that f is strictly de-
creasing. It suffices then to see that in the region

Un =
{
x ∈ R

d ; n < x1 < n+ 2, |x′| < 1
2f(n+ 2)

}

the ∆−Cn∂x1
.-harmonic measure of Fn =

{
(x1, x

′) ; x1 = n, |x′| < 1
2f(n+

2)
}

is larger than 1 − εn on Fn+1 ∪ {te1 ; n < t ≤ n + 1}, where εn =
(1−α)/2n, for Cn large enough. This will follow from a standard comparison
argument (but is also clear by a probabilistic argument using Girsanov
formula). Fix a smooth positive function θn in the ball B(0, 1

2f(n+ 2)) of
R
d−1, θn being harmonic outside some ball B(0, rn) with rn <

1
2f(n + 2)

and such that: 0 < θn ≤ 1, θn = 1 in a neighborhood of B(0, 1
2f(n + 3)),
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and θn = 0 on ∂B(0, 1
2f(n + 2)). Let λn > 0 be such that ∆θn ≥ −λnθn

and consider

un(x) =
(
e2β − eβ(x1−n)

)
θn(x

′), x ∈ Un.

The function un is ∆−Cn∂x1
.-subharmonic in Un if −(λn + β2)(e2β − 1) +

Cnβ ≥ 0. The largest solution β = β(λn, Cn) tends to +∞ as Cn → ∞,
and for this value of β the ∆ − Cn∂x1

.-harmonic measure of Fn in Un is
larger than un/(e

2β − 1). The result follows.

§5. Proof of Theorem 2

5.1.

Let Φ = {(t, x′) ; t ≥ 1, x′ ∈ R
d−1, |x′| ≤ α e−t} with say 0 < α ≤ 1/10.

From Wiener’s criteria and a Kelvin transform, it follows that Φ is thin at

infinity w.r. to ∆. Let U0 = {(t, x′) ; t ≥ 1, x′ ∈ R
d−1, |x′| < αe−t/2}.

By Lemma 4.5 above, we can construct and fix a smooth non-negative

function V0 vanishing outside U0 and such that for each elliptic operator

∆ − V ∂x1
with V smooth and V ≥ V0, the harmonic measure of ∂U0 ∩

B(e1, α/4e) in U0 is larger than 1/2 on the axis of U0.

5.2.

Define for each integer n ≥ 1:

Tn =
{
(t, x′) ∈ Φ ; (1 − 1

9)2n ≤ t ≤ (1 + 1
9)2n

}
,

T in =
{
(t, x′) ∈ U0 ; (1 − 1

16)2n < t < (1 + 1
16)2n

}
,

T en =
{
(t, x′) ∈ Φ ; α2 e

−t ≤ |x′| ≤ αe−t, (1 − 1
8)2n ≤ t ≤ (1 + 1

8 )2n
}
.

We will construct an elliptic operator in the form L = ∆ − V ∂
∂x1

− γ.

where V and γ are smooth non-negative functions in R
d such that V ≥ V0,

V = V0 outside the “cells” Tn and γ = 0 outside the “skins” T en. Moreover

L should satisfy the assumptions of Proposition 3.1.

5.3.

We first choose V in the cell Tn, n ≥ 1, such that for every positive

(∆ − V ∂
∂x1

. − γ.)-harmonic function u in ωn =
{
x ∈ R

d ; |x| < (1 −
1
8)2n+1, x /∈ T en

}
vanishing on ∂T en, –and independently from the choices of

V (resp. γ) in the Tk (resp. T ek ) k < n–, we have

u(x) ≤ C u(An), x ∈ ∂B(O, 2n) ∩ ωn(5.1)
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for some constant C ≥ 1 independent from n and u. (Recall that V0 is

fixed, that V ≥ V0 and that V = V0 outside Tm, m ≥ 1.)

Let u be such a function. By Section 4 above –see (4.1)–, there is a

constant C1 = C(d) such that

u(x) ≤ C1 u(An)(5.2)

when x ∈ ∂B(0, 2n)\Φ. On the other hand, if x ∈ ∂B(0, 2n)∩T in, it follows

from the maximum principle applied in the region ω′
n = (B(0, 2n) \ T en) ∪

(U0 ∩
{
x1 < (1 + 1

8)2n
}

that

u(x) ≤ C1 u(An) + ψ(x)max{u(z) ; z ∈ Fn}

where Fn =
{
z = (z1, z

′) ∈ U0 ; z1 = 2n(1 + 1
8)

}
and ψ(x) is the harmonic

measure of Fn with respect to L = ∆ − V ∂
∂x1

.− γ. and the domain ω′
n.

Let A′
n = (1+ 1

8 )2n. By standard boundary Harnack inequalities [An1],

we have that u(x) ≤ c′nu(A
′
n) in Fn for a constant c′n depending on n (in

fact c′n depends on the choice of V0 in B(A′
n, 1) but not on the choice of

V in the cells Tk, k ≥ 1). On combining this with standard local Harnack

inequalities for ∆ − V0
∂
∂x1

, we get

u(x) ≤ [C1 + cnψ(x)]u(An)

where cn depends solely on n and the dimension d.

Now by Lemma 5.1 below, if we choose (and fix) V = V0 +Wn in Tn
with Wn ∈ C∞

0 (Tn) non-negative and sufficiently large in T in we shall have

ψ(x) ≤ C1/cn. Thus u(x) ≤ 2C1u(An) and (5.1) follows.

Lemma 5.1. Let ψW denotes the harmonic measure of Fn in ω′
n with

respect to the operator LW = ∆ − (V0 + W ) ∂
∂x1

, where W is a smooth

non-negative function supported by Tn. Then, mW (x) = sup{ψW (x) ; x ∈
T in, x1 = 2n} → 0 as min{W (x) ; x ∈ T in} → ∞.

Proof. Let f be the ∆ − V0
∂
∂x1

harmonic function in Ũ =
{
x =

(x1, x
′) ∈ U0 ; (1 − 1

8)2n < x1 < (1 − 1
9)2n

}
defined by the boundary

values f(x) = 0 for x ∈ ∂Ũ ∩ ∂U0 and f(x) = 1 in ∂Ũ ∩ U0. Standard
barrier arguments (and Harnack inequalities) shows that

sup
{
f(x) ; x ∈ Ũ , x1 = (1 − 1

8 + 1
144)2n

}
≤ 1 − δn
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where δn > 0 depends on the choice of V0. In particular, using again
maximum principle,

sup
{
ψW (x) ; x ∈ U0, x1 = (1 − 1

8)2n} ≤ (1 − δn)mW .

Let πW denotes the LW -harmonic measure of
{
x1 = 2n(1+ 1

8)
}

in the region

T̃n =
{
x ∈ U0 ; (1 − 1

8 )2n < x1 < (1 + 1
8)2n

}
. Clearly, πW = ψW − HψW

where HψW
is LW -harmonic in T̃n, HψW

= πW in ∂T̃n ∩
{
x1 = (1 − 1

8)2n
}

and vanishes elsewhere in ∂T̃n. Thus (using again the maximum principle)
we have mW ≤ supF ′

n
πW + (1− δn)mW where F ′

n = {x ∈ U0 ; x1 = 2n}, or

mW ≤ 1

δn
sup{πW (x) ; x ∈ F ′

n}.

The lemma follows now from Lemma 4.3.

5.4.

Finally we choose the killing term γ in T en: we just need to observe that

by Corollary 4.3 and the above construction, if γ is chosen sufficiently large

in T en we shall have u(x) ≤ 3C u(An) for x ∈ ∂B(0, 2n) for all u positive and

L-harmonic in B(0, 2n+1) (regardless to the choice of γ in T ek for k 6= n).

5.5.

We have now constructed an elliptic operator L = ∆−V ∂
∂x1

.−γ., with

V and γ non-negative and smooth, vanishing outside Φ; moreover, we have

in U0, γ = 0, V ≥ V0 and L satisfies the assumptions of Proposition 3.1.

Whence:

a) By Proposition 3.1, (Rd, L) is a transient pair (thus, there exists a

Green’s function GL for L over R
d) whose Martin boundary is reduced to

a point, i.e. there exists a positive L-harmonic function h on R
d and h is

unique up to a multiplication by a positive constant. Moreover h is bounded

in R
d.

b) By a standard maximum principle, GL(x,O) ≥ c v(x) where v(x) is

the L-harmonic measure, inside U0 and at x, of B(e1, α/4e) ∩ ∂U0. Hence,

by the choice of V0 and V , it follows that inf{GL(te1, 0) ; t > 0} > 0.

5.6. End of proof of Theorem 2

Using a standard relativisation procedure, we introduce now the oper-

ator L ∈ Λ(Rd) such that L(u) = h−1L(uh) for u ∈ C2(Rd). Clearly this

operator is in the form L = ∆. + D.∇ where D is a smooth vector field
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in R
d. Moreover, it follows from what has been established for L that: (i)

the pair (M,L) is Greenien (and GL(x, y) = h(y)
h(x)GL(x, y)), (ii) the func-

tions x 7→ GL(x, y) do not vanish at infinity, but (iii) positive L-harmonic

functions in R
d are the positive constant functions.

5.7.

Theorem 2 and its proof can be extended to the case d = 2. To show

this, one may adapt the above construction on starting with an elliptic

operator L0 = ∆. +D0.∇. (rather than L0 = ∆) where D0 = (D0,1,D0,2)

is a Lipschitz continuous vector field in R
2 such that: D0(x) = x/|x|2 if

|x| ≥ 1 and x1 < 0, D0(x) = x−1
2 (0, 1) if |x| ≥ 1, x1 ≥ 0 and e−x1/10 ≤ |x2|.

It is also required that D0,1(x1, x2) = D0,1(x1,−x2) = 0 and D0,2(x1, x2) =

−D0,2(x1,−x2) ≥ 0 when x2 ≥ 0 and x1 ≥ 1. It can be shown that L0

is transient, that it satisfies (as the standard Laplacian) uniform Harnack

inequalities on large balls (thus, L0 Martin’s boundary is reduced to one

point) and that the set Φ (defined as above) is L0 thin at infinity. But we

shall not discuss further the construction here.

§6. Critical points of certain harmonic functions with periodicity
properties

In this section we specify the second question –due to G. Benarous and

H. Owhadi– which will be considered in this paper. Let d denote an integer

≥ 1 and let ϕ be a real C∞ function in R
d which is Z

d-periodic, i.e. such

that ϕ(x + ei) = ϕ(x) for x ∈ R
d and every vector ei, 1 ≤ i ≤ d, from the

canonical basis of R
d. Then, as explained below, for each i ∈ {1, . . . , d},

there exists a unique function Fi in R
d, satisfying Fi(0) = 0, Fi(x + ej) =

Fi(x) + δi,j for x ∈ R
d, j ∈ {1, . . . , d}, and

∆Fi −∇ϕ.∇Fi = 0.

The question raised by G. Benarous and H. Owhadi reads then as fol-

lows.

(Q) : is the map F : x 7→ F (x) = (F1(x), . . . , Fd(x)) a diffeomorphism of

R
d onto itself?

Remark 6.1. 1. The functions Gi(x) = xi−Fi(x) are periodic and thus
bounded. So lim‖x‖→∞ ‖F (x)‖ = +∞. Since R

d is simply connected, this

means that F is a diffeomorphism of R
d onto R

d if and only if the Jacobian
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of F is non degenerated at every x ∈ R
d. 2. If F is a diffeomorphism of

R
d, it is easily seen, using the relation F (x + z) = F (x) + z for z ∈ Z

d,
that ‖F (x) − F (y)‖ ≥ C‖x − y‖ for some constant C > 0 and all x, y
in R

d. Conversely, if for a given dimension d it is true that for every F
(constructed as above from some ϕ smooth and Z

d-periodic in R
d) one has

‖F (x)‖ ≥ C‖x‖, x ∈ R
d, for some C > 0, then every such F : R

d → R
d is a

local diffeomorphism at every a ∈ R
d (using x 7→ F (x+a)−F (a)). In fact,

the original question of G. Benarous and H. Ohwadi was: is it true that F
must satisfy ‖F (x)‖ ≥ C‖x‖, x ∈ R

d, for some C = Cϕ > 0 ?

To justify existence and uniqueness of Fi, it suffices –setting Fi(x) =

xi − Gi(x)– to show existence and uniqueness of Gi : R
d → R smooth,

Z
d-periodic and such that

∆Gi −∇ϕ.∇Gi = −∂iϕ

in R
d. By the strong maximum principle, the periodic solutions u of

∆u − ∇ϕ.∇u = 0 are the constant functions, whence the uniqueness of

Gi. On the other hand, if we set v = u exp(−ϕ/2) and ψ = exp(−ϕ/2),

the equation ∆u − ∇ϕ.∇u = −∂iϕ is equivalent to the equation (with

smooth and periodic coefficients) ∆v− v∆ψ/ψ = 2 ∂iψ. The elliptic opera-

tor v 7→ ∆v−v∆ψ/ψ is self-adjoint on the torus T d = R
d/Zd and its kernel

is reduced to the multiple of ψ (since periodic solutions u of ∆u−∇ϕ.∇u = 0

are constant). Moreover the right hand side 2 ∂iψ is orthogonal in L2(T d) to

ψ:
∫
T d ψ(x)∂iψ(x) dx = 1

2

∫
[0,1]d ∂i(ψ(x)2) dx = 0. Thus Fredholm’s theory

provides the existence of Gi.

§7. The case d = 2

In this section, it is shown that for d ≤ 2, question (Q) above always

admits a positive answer. The case d = 1 is elementary.

Theorem 3. If d = 2, the map F : R
2 → R

2 defined in Section 6 is a

diffeomorphism of R
2 onto R

2.

It suffices to show that for each u ∈ R
2, ‖u‖ = 1, the function Fu(m) =

F1(m)u1 + F2(m)u2, m ∈ R
2, has no critical point. This function is ∆ −

∇ϕ.∇ harmonic and satisfies Fu(m + ke1 + `e2) = Fu(m) + ku1 + `u2 for

(k, `) ∈ Z
2. We shall see that such a function has no critical points.

To begin with, observe that in a strip TR = {m ∈ R
2 ; |m.u| ≤ R},

Fu is bounded: each point m in TR is within a distance ≤
√

2/2 to a point
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m′ = (p, q) ∈ Z
2 and |m′.u| ≤ R+

√
2/2; so Fu(m) = Fu(m−m′) +m′.u is

bounded.

This also shows that m.u − C ≤ Fu(m) ≤ m.u + C, m ∈ R
2, for

some C > 0. Thus, Fu is positive with linear growth in the half-plane

{m ; m.u > C}.
For each t ∈ R, the set U = {Fu < t} is connected: otherwise, since by

the above U contains a half-plane {m ∈ R
2 ; m.u < s} and is contained in

another half-plane {m ∈ R
2 ; m.u < s′}, there exists a component U ′ of U

contained in a strip TR and Fu = t on ∂U ′. Lemma 7.1 below implies that

Fu is then constant in U ′ and hence constant in R
2 by unique continuation

for smooth elliptic equations ([Aro], [Hör, p. 14]), a contradiction. Thus,

by Lemma 7.2, we have ∇Fu 6= 0 in ∂U .

Finally, t being arbitrary, we must have ∇Fu(m) 6= 0 at every m ∈ R
2.

Lemma 7.1. Let f be a real bounded continuous function in a strip

{x ; −A ≤ x.u ≤ A}, which is nonpositive for x.u = ±A and ∆ − ∇ϕ.∇-

subharmonic in WA = {x ; −A < x.u < A}. Then, f(m) ≤ 0 in WA.

Proof. Denote u⊥ the unit vector in R
2 which is directly orthogonal

to u. Let m ∈ WA and let ω(m,R) be the harmonic measure at m, of
WA ∩ {x ; |x−m.u⊥| = R}, in the region

WA,R = {x ∈ R
2 ; −A < x.u < A, m.u⊥ −R < x.u⊥ < m.u⊥ +R}

and with respect to ∆ −∇ϕ.∇. A standard argument involving maximum
principle and an iteration procedure shows that ω(m,R) ≤ C exp(−αR) for
R ≥ 1 and constants C > 0 and α > 0. Since f(m) ≤ ‖f‖∞ ω(m,R), we
have f(m) ≤ 0 by letting R→ ∞.

Lemma 7.2. Let f : R
2 → R be a ∆ −∇ϕ.∇.-harmonic function and

let t be a real. If the set W = {m ∈ R
2 ; f(m) < t} is connected, then

∇f 6= 0 in ∂W .

Proof. Assume as we may t = 0, f non constant, and, arguing by
contradiction, that ∇f (m0) = 0 for some point m0 ∈ ∂W . The argument
is then broken into two steps.

a) Consider the Taylor series of f(.) = f(.) − f(m0) at m0. As well-
known this series is not identically zero ([Aro], [Hör]); thus, f(m) = Q(m−
m0) + ‖m−m0‖p ε(m) where Q is a non zero homogeneous polynomial of
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degree p ≥ 2 and where ε is such that limm→m0
ε(m) = 0. It is easily seen

that Q is ∆-harmonic: for, if λ > 0, the function u : ξ 7→ λ−pf(m0 + λξ)
solves ∆u(ξ)−λ∇ϕ(m0+λξ).∇u(ξ) = 0 and for λ→ 0 this function tends to
Q, uniformly on compacts. This provides the result (using also Schauder’s
interior estimates).

b) Thus, Q(z) = Re(czp), with c ∈ C
∗, p ≥ 2. It follows that we

may construct four small segments m0m1, m0m2, m0m3 and m0m4, in the
clockwise order around m0 and such that: if F1 = [m0,m1] ∪ [m0,m3] and
F2 = [m0,m2] ∪ [m0,m4], the function f is > 0 in F1 \ {m0} and < 0
in F2 \ {m0}. Since W is connected, it follows that there exists a simple
(polygonal) closed curve through m0 in {f ≤ 0} separating {f > 0}. This
implies that {f > 0} has at least one bounded component U . But f = 0 in
∂U , and, by the maximum principle, f = 0 in U which is absurd.

§8. The case d ≥ 3

In this section we prove the following statement.

Theorem 4. For each d ≥ 3, there exists a non-negative function

ϕ ∈ C∞(Rd) which is Z
d-periodic and such that the associated function F1

in R
d (see Section 6) has critical points.

The case d ≥ 4 follows from the case d = 3 by adding dummy variables.

So we restrict to d = 3.

8.1. The regions V0 and V1

Let C denote the closed half-circle in R
3 consisting of all points (x, y, z)

∈ R
3 such that z = 0, x ≥ 0, and x2 + y2 = (1/3)2. Denote Γ the group of

translations of R
3 of the form ξ 7→ ξ +me2 + ne3, (m,n) ∈ Z

2. For γ ∈ Γ,

set Cγ = γ(C).

Let F denote the union of the plane x = 0 and of all the half-circles Cγ ,

γ ∈ Γ. For t ∈ ]0, 1/10[, set Ut = {m = (x, y, z) ∈ R
3 ; x > 0, d(m,F ) < t}.

Clearly, Ut is the union of the slice {0 < x < t} and of the open half-torus

Tγ , γ ∈ Γ, of soul Cγ and radius t around Cγ .

Set f(m) = d(m,F ) and let f̃ = f ∗ θ, be a regularization of f , where

θ ∈ C∞
0 (R3) is a decreasing function of the distance to the origin supported

by a ball of radius ε′ < 1/100. Set Ũt = {m = (x, y, z) ; x > 0, f̃(m) < t}
for t > 0. Clearly, Ũ1/16 ⊂ U1/8. By Sard’s theorem we may choose

ε ∈ ]1/32,1/16[, such that Ũε = {0 < f̃ < ε} ∩ {x > 0} have a smooth
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boundary (it consists of the plane x = 0 and of a Γ-invariant surface which

is close to ∂Uε ∩ {x > 0}).
Let V0 = Ũε and let V1 denote the image of V0 under the isometry

Φ : (x, y, z) 7→ (1
2−x, z, y). Note that V1 is disjoint from V0, that V0 contains

the half-circles Cγ deprived from their ends and that V1 contains the open

half-circles C ′
γ = γ(Φ(C)) with ends removed. Thus, the construction is

such that each half-circle Cγ is not homotopic in ([0, 1/2]×R
2) \C ′

γ , by an

homotopy with fixed ends, to a path contained in the plane x = 0.

8.2.

We now pause to state an approximation lemma which will be needed

to construct the function ϕ in our example. Let M be a smooth com-

pact Riemannian manifold with a boundary ∂M written as the union of

two disjoint nonempty compact subsets Σ0 and Σ1. Set M = M \ ∂M ,

δ(x) = d(x,Σ0) for x ∈M and fix a sequence {ϕj} of non-negative functions

in M of the form ϕj(x) = θj(δ(x)) where θj is a C2 non-negative and non-

increasing function in [0,∞[ such that: supp(θj) ⊂ [0, εj ], limj→∞ εj = 0,

limj→∞

∫ εj

0 exp(θj(τ)) dτ = +∞.

Then, the following holds.

Proposition 8.1. Let f ∈ C(Σ1; R) and let {uj} be a sequence of

continuous functions in M which are C2 in M and such that (i) ∆uj −
∇ϕj.∇uj = 0 in M (ii) uj = f in Σ1, and (iii) {uj} is uniformly bounded

in M . Then, as j → +∞, uj converges to the function ũ which solves

∆ũ = 0 in M , ũ = f in Σ1, ∂nu = 0 in Σ0, the convergence being uniform

on every compact subset of M ∪ Σ1.

We have denoted ∂nu the inner normal derivative of u along Σ0. The

proof of Proposition 8.1 is given in Section 8.5. Note that for our construc-

tion, we only require the first step of this proof i.e. the case f = 0.

8.3.

We also need the following elementary lemma whose proof is omitted.

Lemma 8.2. Suppose that ϕ ∈ C∞(R3) is Z
3-periodic and even with

respect to x1 (i.e. ϕ(x1, x2, x3) = ϕ(−x1, x2, x3) for x ∈ R
3). Then the

solution F1 of ∆F1 − ∇ϕ.∇F1 = 0 which is Z
2-periodic in (x2, x3), zero

at 0 and such that F1(x + e1) = 1 + F1(x), is odd with respect to x1:
F1(x1, x2, x3) = −F1(−x1, x2, x3) for x ∈ R

3.
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8.4. End of the example’s construction

We first choose a function ϕ : Y = [0, 1/2] × R
2 → R+, Γ-periodic,

smooth, with support in ]0, 1/2[ × R
2 and constant in Y \ (V0 ∪ V1). We

also require that in V0 (resp. in V1), ϕ(m) = θ(d(m,S0)) (resp. ϕ(m) =

θ(d(m,S1))) where S0 = ∂V0 ∩ {(x, y, z) ∈ R
3 ; 0 < x < 1/2} and S1 =

∂V1 ∩ {(x, y, z) ∈ R
3 ; 0 < x < 1/2}, where θ is smooth nonincreasing in

[0, 1], constant in a neighborhood of 0 and supported in [0, 1/100]. Replacing

θ(t) by λθ(λt) with λ large, Proposition 8.1 says that we may also assume

that with respect to the domain V0 (resp. V1) the ∆. − ∇ϕ.∇. harmonic

measure of the plane x = 0 (resp. of the plane x = 1/2) is ≥ 9/10 on the

Cγ (resp. the C ′
γ), γ ∈ Γ.

Extend ϕ by “symmetry” to Y1 = [0, 1] × R
2 by letting ϕ(x, y, z) =

ϕ(1 − x, y, z) for x ∈ [1/2,1], and then extend ϕ to R
3 by periodicity with

respect to the first coordinate, i.e. by letting ϕ(x, y, z) = ϕ(x − n, y, z) for

x ∈ [n, n + 1], n ∈ Z. Clearly ϕ is smooth, Z
3-periodic in R

3 such that

ϕ(1 − x, y, z) = ϕ(x, y, z), for (x, y, z) ∈ R
3.

In particular, ϕ is even in the first coordinate. By Lemma 8.2, the

corresponding function F1 vanishes in the plane x = 0, and hence is equal

to one in the plane x = 1. A symmetry argument shows that F1 = 1/2 on

the plane x = 1/2, and the choice of θ (and ϕ) ensures that F1 is less than

1/20 in Cγ and larger than 1/2 − 1/20 on C ′
γ , γ ∈ Γ.

It follows that F1 admits at least one critical value in the interval

[0, 1/4], since otherwise the plane x = 0 would be a retract of the set

{F1 ≤ 1/4} ∩ {0 ≤ x ≤ 1}. A fortiori, each Cγ would be homotopic in

{0 ≤ x < 1/2} \ C ′
γ to a curve in the plane x = 0, by an homotopy with

fixed endpoints. A contradiction. Theorem 4 is proven.

8.5. Proof of Proposition 8.1

The proof consists in two steps.

Step 1. Let wj denote the harmonic measure of Σ0 in M with respect

to ∆. − ∇ϕj .∇., i.e. wj is continuous in M , smooth in M and satisfies

∆wj −∇ϕj .∇wj = 0 in M , wj = 0 in Σ1, wj = 1 in Σ0. We will show that

wj → 0 uniformly on every compact subset of M ∪ Σ1. By the maximum

principle, it suffices to show that wj → 0 uniformly in every compact subset

of a region Mε = {m ∈ M ; 0 < d(m,Σ0) < ε} for some small ε > 0. We

choose and fix ε > 0 so small that (i) M2ε ∩ Σ1 = ∅ and (ii) the map

Σ0 × [0, 2ε] → M which associates to (x, t) the point at distance t from x
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on the geodesic segment emanating from x orthogonally to Σ0 induces a

diffeomorphism from Σ0 × (0, 2ε) onto M2ε.

Consider now the functions sj(x) = gj(δ(x)), x ∈ M ε where gj solves

g′′j (t) + g′j(t)(−C − θ′j(t)) = 0 in [0, ε], gj(0) = 1, gj(ε) = 0. A computation

(using that g′j ≤ 0) shows that if the constant C is chosen so that |∆δ| ≤ C

in M ε we have ∆sj −∇ϕj .∇sj ≤ 0.

Thus, gj is ∆. − ∇ϕj .∇. superharmonic in M ε and since sj(x) =(∫ ε
δ(x) exp(Cτ + θj(τ)) dτ

)
/
(∫ ε

0 exp(Cτ + θj(τ)) dτ
)
, we see that sj → 0

uniformly in M ε \Ms, ∀s > 0. This already proves the desired property for

the manifold M ε instead of M .

To conclude this step, observe that sj ≥ wj −Hj if Hj ∈ C(Mε) solves

∆Hj − ∇ϕj .∇Hj = 0 in Mε, Hj = wj in Sε = ∂M ε ∩M , Hj = 0 in Σ0.

For any given small t > 0, the harmonic measure of Σ1 in M \M t, with

respect to ∆. − ∇ϕj .∇., is larger than a constant η = η(ε) in Sε. Thus,

supSt
Hj ≤ supSε

Hj ≤ supSε
wj ≤ (1− η) supSt

wj (using Markov property

or maximum principle for the last inequality). So, wj ≤ η−1 supSt
sj in

M \Mt. The claim follows.

Step 2. By the first step, the conclusion of the proposition is proven

if f = 0 in Σ1. In general we may decompose uj as uj = u0
j + ũj where

ũj ∈ C(M,R) is smooth in M , satisfies ∆ũj−∇ϕj.∇ũj = 0 in M , ũj = f in

Σ1 and ∂nũj = 0 in Σ0 (this implies that ‖ũj‖∞,M ≤ ‖f‖∞,M ). By Step 1

and maximum principle, we are left with showing that ũj → ũ uniformly

on each compact subset of M \ Σ1.

An obvious perturbation argument shows that we may also assume

that ũj is smooth in M (i.e. f is smooth in Σ1). Moreover, since by the

Schauder estimates, the sequence {ũj} is bounded in C2,1(K) for every

compact K ⊂M \Σ0 we may assume that {ũj} converges to some function

u in C2(M \ Σ0), and we are left with showing that u = ũ.

Now, for every θ ∈ H1(M) with θ = 0 on Σ1

∫

M
∇ũj.∇θ dσ +

∫

M
θ∇ũj.∇ϕj dσ = 0

and if we let ψ = θeϕj we find that
∫
M e−ϕj∇ũj .∇ψ dσ = 0. Thus v = ũj

minimizes the Dirichlet norm
∫
M e−ϕj |∇v|2 dσ for v ∈ Vf = {v ∈ H1(M) ;

v = f in Σ1}.
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By Fatou’s lemma, it follows from the inequalities
∫
M e−ϕj |∇ũj |2 dσ ≤∫

M e−ϕj |∇v|2 dσ, v ∈ Vf , that
∫
M |∇u|2 dσ ≤

∫
M |∇v|2 dσ (we use the fact

that e−ϕj ≤ 1). Thus u ∈ H1(M), satisfies the Neumann boundary condi-

tion ∂nu = 0 and is harmonic in M . Hence u = ũ in M .

§9. A stability property for Green’s functions

In this section, we state a result –suggested by another question of

Y. Pinchover [Pi2] (see 9.2 below)– which in particular gives a sufficient

condition for two Schrödinger operators Li = ∆.− Vi., i = 1, 2, with large

potentials Vi to have equivalent Green’s functions. The result is mainly an

application of [An4] (see also [An5]).

9.1.

Let (M,g) be a complete non compact Riemannian manifold of class

C1, i.e. the manifold M is C2, the metric g is C1. It is also assumed that

(M,g) has bounded geometry in the sense that Assumption 1.1 in [An4]

are satisfied: there are positive reals r0 ≤ 1, c0 ≥ 1, and a family of charts

χx : B(x, r0) → R
n, x ∈ M , which are c0-bilipschitz (n = dim(M)). Let O

be some fixed reference point in M and let d denote the distance in (M,g).

We also fix a function V0 of class C1 in M such that V0 ≥ 1 and |∇V0| ≤
C0V

3/2
0 in M for some constant C0 > 0 (the reason for this assumption

appears below after Lemma 9.3) and consider two elliptic operators L1 and

L2 in M in the form

Lj(u) = div(Aj(∇u)) +Bj.∇u− Vju, j = 1, 2

where the Aj are bounded Borel and uniformly accretive sections of

End(T (M)), the Bj are Borel vector fields in M such that |Bj | ≤ C1V
1/2
0

and the Vj are Borel functions in M such that |Vj | ≤ C1V0 in M for j = 1, 2

and for some constant C1 > 0.

Finally we denote E = V0‖A1 −A2‖ +
√
V0 ‖B1 −B2‖ + |V1 − V2| and

set for t ≥ 0

Φ(t) = sup
{ E(x)

V0(x)
; d(O,x) ≥ t

}
.

Theorem 5. Assume that Vj ≥ C−1
1 V0 outside a compact subset of M

and that Lj admits a Green function Gj in M for j = 1, 2. If moreover
∫ ∞

0
Φ(R)max

{√
V0(x) ; d(O,x) = R

}
dR <∞,
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there exists a constant C such that for all x and y in M ,

C−1G1(x, y) ≤ G2(x, y) ≤ CG1(x, y).

Note that if Vj ≥ 0 for j = 1, 2, the existence of Gj follows from

the other assumptions. The next statement is a corollary of the proof of

Theorem 5. The definition of a small perturbation [Pi1] is recalled later

(see 9.5 below).

Corollary 9.1. Assume that V1 ≥ C−1
1 V0 in M . If

∫ ∞

0

max
{√

V0(x) ; d(0, x) = R
}

min{V0(x) ; d(0, x) ≥ R} dR <∞.

Then −1 is a small perturbation of L1.

9.2.

In particular, let H = ∆−V be a Schrödinger operator on Rd such that

V (x) = Q(|x|) for x ∈ R
d, with Q : [0,∞) → R

∗
+ of class C1, nondecreasing

and satisfying: Q′ ≤ CQ3/2 for some C > 0 and
∫ ∞
0 Q(t)−1/2 dt <∞. Then

−1 is a small perturbation of H. In this form (and with slightly different

assumptions on V and Q), Corollary 9.1 was conjectured by Y. Pinchover

[Pi2] who also noted that for Q(t) = t2+ε, ε > 0, the result is shown in

[Mur, Theorem 5.8]. As in [Mur], our proof (cf. 9.4 below) uses a change of

metric.

9.3.

The first step in the proof of Theorem 5 is the following elementary

lemma. Let g̃ be a C0-metric in M , conformal to g, i.e. g̃x(u, u) = K(x)2

gx(u, u), x ∈ M , u ∈ T 1
x (M), for some C0 function K in M . It is also

assumed that K ≥ 1. Denote d̃ the Riemannian distance in M correspond-

ing to g̃ and B̃(m, r) (resp. B(m, r)) the closed ball of center m ∈ M and

radius r ≥ 0 in (M̃ , g̃) (resp. in (M,g)). We need a simple estimate of the

derivative of the function

F (R) = sup
{
d̃(O,x) ; x ∈M, d(O,x) ≤ R

}
.

Clearly, F (R) is the smallest t ≥ 0 such that B(O,R) ⊂ B̃(O, t). The

function F is nondecreasing, continuous and even locally Lipschitz in R+.

https://doi.org/10.1017/S0027763000008187 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008187


165-08 : 2002/3/11(17:59)

150 A. ANCONA

For if C = max{K(x) ; x ∈ B(O;T )}, T > 0, and if 0 ≤ R ≤ R′ ≤ T , we

have for x ∈ B(O,R′) \B(0,R),

d̃(O,x) ≤ d̃(O,x′) + d̃(x′, x) ≤ F (R) +Cd(x′, x) ≤ F (R) + C(R′ −R)

where x′ is in the intersection of a g−geodesic segment Ox with ∂B(O,R).

It follows that F (R′) − F (R) ≤ C(R′ −R).

Using the same simple argument we may estimate the derivative F ′(R).

Let S(O,R) denote the sphere {x ; d(O,x) = R}, let S̃(O,R) = {x ∈ M ;

d̃(O,x) = R} and let S̃0(O, t) ⊂ S̃(O, t) denote the boundary of B̃(O, t) in

M . By the assumptions on M and K, S̃0(O,R) 6= ∅ but it may happen

that the set S(O,R) ∩ S̃(O,F (R)) is empty.

Lemma 9.2. Let R > 0 and let A(R) = S(O,R)∩ S̃0(O,F (R)). Then,

F is constant in some interval [R,R′[, R′ > R, if and only if A(R) = ∅.
For almost all R with A(R) 6= ∅,

F ′(R) ≤ sup{K(x) ; x ∈ A(R)}.

The first assertion is easily checked (by the continuity of R 7→ B(O,R)

and t 7→ B̃(O, t)).

Fix R > 0 with A(R) 6= ∅. For each R′ > R pick x ∈ B(O,R′)\B(O,R)

with F (R′) = d̃(O,x), then as before

d̃(O,x) − F (R) ≤ d̃(O,x) − d̃(O, y),

where y is chosen in the intersection of a minimizing g-geodesic γ joining O

to x with the sphere S(O,R). Thus F (R′)−F (R) ≤ d̃(x, y) ≤ (K(y)+ε(R′−
R))(R′ − R) where ε(τ) = sup{|K(z) −K(z′)| ; d(z, z′) ≤ τ, d(O, z) ≤ R}.
Whence

lim sup
R′↓R

F (R′) − F (R)

R′ −R
≤ sup{K(z) ; z ∈ A(R)}

and the lemma follows.

9.4. Proof of Theorem 5

Introduce the Riemannian metric g̃x = V0(x)gx, x ∈ M , in M . It

is easily checked that (M, g̃) is a complete Riemannian manifold with a

C1 metric (each g̃-ball, being contained in the g-ball with same radius

and center, is relatively compact in M). Moreover, the standard bounded

geometry assumptions ([An4, Section 1.1]) hold for (M, g̃) by the following

elementary lemma. Recall C0 is a constant ≥ 1 such that |∇V0| ≤ C0V
3/2
0 .
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Lemma 9.3. If m0 and m are such that d(m0,m) ≤ 1
8C0

V0(m0)
−1/2

then
1

2
V0(m0) ≤ V0(m) ≤ 2V0(m0).

Proof. If we have V0(m) > 2V0(m0), then we may find on some chosen
minimizing geodesic segment m0m a point m′ nearest to m0 such that
V0(m

′) = 2V0(m0). Then, V0(m0) = V0(m
′) − V0(m0) ≤ C0d(m

′,m0)
sup[m0,m′] V0(z)

3/2 = 23/2C0d(m
′,m0)V0(m0)

3/2.

Thus, 1/
√
V0(m0) ≤ 23/2C0d(m0,m) which contradicts the assumption.

This proves the second inequality in the lemma. The first one then follows:

|V0(m) − V0(m0)| ≤ C0d(m0,m) sup
z∈[m0,m]

|V0(z)|3/2

≤ 1

8
23/2V0(m0) ≤

1

2
V0(m0).

It follows from Lemma 9.3, that B̃(m0, r
′
0), the g̃ ball of center m0

and radius r′0 = r0/17C0, is contained in the g-ball B(m0, r(m0)), r(m0) =(
8C0V0(m0)

1/2
)−1

r0 ≤
(
8C0V0(m0)

1/2
)−1

. On taking χ̃m0
(z) =

√
V0(m0)

χm0
(z) (see 9.1) we obtain a chart χ̃m0

: B̃(m0, r
′
0) → R

n which is c1
bilipschitz w.r. to g̃ with c1 =

√
2 c0. So (M, g̃) has bounded geometry as

announced.

The gradient operator ∇̃ with respect to g̃ is given by the formula ∇̃. =
V0(x)

−1∇., and for the divergence operator we have d̃iv(.) = V0(x)
−n/2

div(V
n/2
0 .) (where ∇ and div are related to (M,g) and n = dim(M)). Thus,

for j = 1, 2,

Lj(u) = V
n/2
0 d̃iv

(
V

1−n/2
0 Aj∇̃u

)
+Bj .̃ ∇̃u− Vju

= V0

{
d̃iv

(
Aj∇̃u

)
+

[(
1 − n

2

)
V −1

0 A∗
j

(
∇̃V0

)
+

1

V0
Bj

]
.̃ ∇̃u− Vj

V0
u
}

where .̃ refers to the inner product with respect to g̃.

Set for j = 1, 2, L̃j := 1
V0
Lj = d̃iv

(
Aj∇̃.

)
+

[
(1 − n/2)V −1

0 A∗
j

(
∇̃V0

)
+

1
V0
Bj

]
.̃ ∇̃.− Vj

V0
.. It is easily checked that the elliptic operator L̃j is adapted

on M̃ = (M, g̃) (it has a bounded drift in (M, g̃) and a bounded zero order

coefficient, so in the notations of [An4], L̃j ∈ D �

M
(θ,∞) for θ chosen large

enough). Moreover, L̃j + c is transient in M \B(O,R) for c < 1/C1 and R
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large, and L̃j is transient in M , thus L̃j is weakly coercive in M (see [An4,

Corollary 1.1], and its proof for the simple argument).

We may then apply the main result in [An4] and compare the Green

functions G̃1 and G̃2 for L̃1 and L̃2 over (M̃, g̃), since for B̃j = V −1
0

[
Bj +

(1 − n/2)A∗
j

(
∇̃V0

)]
and

Ψ(t) = sup
{
‖A1(x) −A2(x)‖g̃ + ‖B̃1(x) − B̃2(x)‖g̃

+
|V1(x) − V2(x)|

V0(x)
; d̃(0, x) ≥ t

}

we have Ψ(F (r)) ≤ (C0n/2)Φ(r), and by Lemma 9.2
∫ ∞

0
Ψ(t) dt =

∫ ∞

0
Ψ(F (R))F ′(R) dR

≤ C0
n

2

∫ ∞

0
Φ(R) sup

{√
V0(x) ; d(0, x) = R

}
dR <∞.

So, by [An4, Theorem 1] there is a C ≥ 1 such that C−1G̃1(x, y) ≤
G̃2(x, y) ≤ CG̃1(x, y) if d̃(x, y) ≥ 1. Since G̃j(x, y) = Gj(x, y)V0(y)

1−n/2

(see definition of Green’s function in §1) the result follows.

9.5. Proof of Corollary 9.1

Under the assumptions of Corollary 9.1, the proof above (for L2 =

L1 − 1) and [An4] Section 6 show that −1/V0 is a small perturbation of L̃1

in (M, g̃), that is

sup
{[ ∫

d̃(0,z)≥T
G̃1(x, z)

1

V0(z)
G̃1(z, y) dσ̃(z)

]
/G̃1(x, y) ; x, y /∈ B̃(0, T )

}
→ 0

(9.1)

as T → ∞. Since G̃1(x, y) = G1(x, y)V0(y)
1−n/2,

∫

d̃(0,z)≥T
G̃1(x, z)

1

V0(z)
G̃1(z, y) dσ̃(z)

= V0(y)
1−n/2

[ ∫

d̃(0,z)≥T
G1(x, z)G1(z, y)V0(z)

−n/2 dσ̃(z)
]
,

or

1

G̃1(x, y)

∫

d̃(0,z)≥T
G̃1(x, z)

1

V0(z)
G̃1(z, y) dσ̃(z)

=
1

G1(x, y)

∫

d̃(0,z)≥T
G1(x, z)G1(z, y) dσ(z).
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So (9.1) means that −1 is a small perturbation of L1 in M .

§10. Proof of Theorem 2′

We start with a discrete setting counter-example. A “continuous set-

ting” counter part is briefly described afterwards.

10.1. A discrete setting example with bounded geometry and
bounded drift

By a segment of length ` (where ` ∈ N
∗) we shall mean a graph S of

the form S = {A0, A1, . . . , A`} with nearest neighbor relations: Aj ∼ Ak if

and only if |j − k| = 1, 0 ≤ j, k ≤ `. We shall also denote S = [A0, A`].

Notice that for the random walk in S with the transition function p(Aj , .) =
2
3δAj−1

+ 1
3δAj+1

, 1 ≤ j ≤ `− 1, p(A0, A0) = p(A`, A`) = 1, the probability,

starting from Ak to hit A` before hitting A0 is smaller than 2k−` and hence

small for `− k large.

Consider the sequence Pj = (2j , 0, 0), j ≥ 1, in Z
3; by the Wiener type

criterion ([I-M]), the set {Pj ; j ≥ 0} is thin at infinity for the standard

random walk in Z
3. Construct a graph X by first glueing to Z

3 (with

its standard graph structure of constant valence 6) at each Pj a segment

[Pj , Qj ] =
{
P 0
j , . . . , P

`j
j

}
of length `j ≥ 10 to be chosen later (so P 0

j = Pj ,

P
`j
j = Qj), and then segments [Qj , Qj+1] =

{
Q0
j , Q

1
j , . . . , Q

Lj

j

}
of length

Lj ≥ 10 (so Q
Lj

j = Qj+1). To be more specific, each Pj = P 0
j has seven

neighbors: the six standard neighbors in Z
3 and P 1

j , the vertex Q1 has

two neighbors: Q1
1 and P `1−1

1 , and Qj, j ≥ 2, has three neighbors: Q1
j ,

Q
Lj−1−1
j−1 and P

`j−1
j . Let Σj denote the union of all segments [Pk, Qk],

[Qk, Qk+1], with 1 ≤ k ≤ j − 1 and set Bj = {z ∈ Z
3 ; |z| ≤ 2j+2} ∪ Σj+2,

B′
j = {z ∈ Z

3 ; |z| ≤ 2j+1/2} ∪ Σj+1 where |z| = max1≤i≤3 |zi| for z ∈ Z
3.

Consider then the (adapted) random walk on X with the transition

probability measures p(m, .), m ∈ X, such that (we denote ∼ the nearest

neighbor relation in X):

(i) p(m, y) 6= 0 if and only if y ∈ Vm = {z ∈ X ; m ∼ z},
(ii) if m ∈ X is not interior to one of the added segments, p(m, .) =

|Vm|−1
∑

y∼x δy,

(iii) p(P kj , .) = 1
3δP k−1

j
+ 2

3δP k+1
j

for 1 ≤ k ≤ `j − 1,

(iv) p(Qkj , .) = 2
3δQk−1

j
+ 1

3δQk+1
j

for 1 ≤ k ≤ Lj − 1.
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Thus on the interior of each of the added segments, the random walk

is a standard random walk with a constant drift. It is then easy to see that

(a) the pair (X,p) is transient (Z3 being transient and {Pj ; j ≥ 1}
thin at infinity in Z

3),

(b) if the length `j grow sufficiently fast (independently of the choice

of the lengths Lj) then the hitting probability

P{∃n ≥ 1 : Zn = Q1 and Zs /∈ Z
3, ∀s ≤ n |Z0 = m}

is at least 1/2 for every starting point m ∈ R =
⋃
j≥1[Qj , Qj+1],

(c) fixing {`j} so that (b) is satisfied, one may then choose successively

the Lk so large that the probability, starting from m = Qsk, 0 ≤ s ≤ 3
4Lk,

to hit Qk+1 before Qk is smaller than any given εk. In particular, if Lk is

sufficiently large, then for every positive p-harmonic function in Bk+1, we

have (for a constant C independent of k)

sup
x∈∂B′

k

u(x) ≤ C u(−2k, 0, 0).

The proof is similar to the proof of (5.1) and in fact easier since for Ak =

{z ∈ Z
3 ; |z| =

√
2 2k} we may easily obtain from the available uniform Har-

nack inequalities w. r. to the standard random walk (Remark 2 below) the

estimate supx∈Ak
u(x) ≤ C u(−2k, 0, 0). So substitutes to Proposition 4.1

or to the killing procedure in Section 5 are not needed.

Arguing as in Section 3, it is seen that the Martin boundary of the

random walk constructed above is trivial, i.e. positive p-harmonic functions

in X are constants. On the other hand, by (b) above, the Green function

G(.,Q1) is larger than a constant on the ray R =
⋃
j≥1[Qj , Qj+1]. Finally

we have a graph with bounded geometry (i.e. the number of neighbors of

each vertex m ∈ X is bounded by a constant) with an adapted transient

random walk whose boundary is trivial but whose Green’s function GO does

not vanish at infinity.

Remarks. 1. Let us mention and prove more explicitly the analogue
of Lemma 5.1. If ψ is harmonic measure of the point Qj+1 in B′

j , we have

(using a “path” [Qj, Pj ] ∪ γ joining Qj to ∂B′
j in X with γ ⊂ Z

3) that

ψ(Qj) ≤ (1 − cj)ψ(Q1
j ) where cj > 0 depends only on j and `j. Writing

ψ = ϕ + Hψ in [Qj, Qj+1] where ϕ is the harmonic measure of Qj+1 in
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[Qj, Qj+1], we have

ψ(Qkj ) = ϕ(Qkj ) +Hψ(Qkj ) ≤ ϕ(Qkj ) + ψ(Qj) ≤ ϕ(Qkj ) + (1 − cj)ψ(Qkj ),

1 ≤ k ≤ Lj,

(using maximum principle two times) whence ψ(Qkj ) ≤ c−1
j ϕ(Qkj ) ≤ c−1

j

2k−Lj . Thus for any given ε > 0, we have as before ψ(Qkj ) ≤ ε for all

k ≤ 3
4Lj as soon as Lj is large enough.

2. The (well-known) Harnack inequalities for the standard random walk
ζ = {ζn} in Z

3 (see [Duf]) say that there is a c0 ≥ 1 such that for R ≥ 1,
and u non-negative and ζ-harmonic in ωR = {z ∈ Z

3 ; |z| ≤ R} one has
c−1
0 u(0) ≤ u(x) ≤ c0u(0) for all x ∈ ωR/2.

10.2. A Riemannian manifold example

It is easy to produce a similar example with a complete Riemannian

manifold M of bounded geometry and an elliptic operator of the form L =

∆ +V.∇ where V is a bounded drift in M . Associate to each abstract edge

from X a (flat) cylinder of length and radius equal to one, each boundary

circle corresponding to one of the vertices defining the edge. Associate also

to each vertex of valence ≥ 3 a sphere of radius ten. Glue together in

the natural way the cylinders’ boundary circles corresponding to the same

vertex of valence 2, and for each vertex of valence ≥ 3, attach (smoothly

and in a uniform way) to the corresponding sphere the boundary circles

associated to this vertex. Equip the resulting Riemannian manifold with

the operator L = ∆ + V.∇ where V is a unit vector field parallel to the

axis on the cylinders with at least one corresponding vertex outside Z
3 (and

same orientation as the discrete drift in the preceding construction) and V

vanishes elsewhere. Then again, by arguments similar to 10.1 and §5, it

may be shown that if the `j are first chosen long enough and then the Lj
taken very large, the Martin boundary of (M,L) is trivial but the Green’s

function of L does not vanish at infinity. Clearly, M has bounded sectional

curvatures and injectivity radius bounded from below. Also V is bounded

(and can obviously be made smooth by a slight change in the construction).

§11. Appendix. Proof of Remarks 1.2

Part A. It is immediate that (b) implies (c) and easy to check that

(c) implies (b) for x and y in M \ {O} and f(x) = G(O,x)/G(x,O); the

complete property (b) follows. That (b) implies (a) is clear once noted
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that if u ∈ C2
0 (M) then u = G(ϕ) with ϕ = −L(u) (the L-subharmonic

function |u − G(ϕ)| is majorized near infinity by the potential G(|ϕ|) and

thus vanishes).

It remains to prove that (a) implies (b). Fix p ∈ (N,∞), N = dim(M).

Assuming (a), a simple approximation argument shows that (a) holds for u

and v compactly supported and of class W 2,p
loc . Let ϕ and ψ be nonegative

compactly supported functions in Lp(M). Then, by standard Lp interior

estimates, G(ϕ) is in W 2,p
loc (M). If K is a large compact subset in M , if K ′

is a compact neighborhood of K and if α : M → [0, 1] is smooth, vanishes

in K and is equal to 1 in M \ K ′, w = αG(ϕ) is in W 2,p and w = G(ϕ̃),

if ϕ̃ = −L(w). By a general property of réduites, G(ϕ̃+) − R(w) is a L-

potential (ref. [Mok, pp. 220–221]), so R(w) = G(ϕ1) where ϕ1 ∈ Lp+(M)

and vanishes outside K ′ \K. Starting from ψ and compacts subsets L ⊂ L′

–instead of ϕ, K and K ′– there is a similar function ψ1 ∈ Lp(M). We may

now apply the identity in (a) to u = G(ϕ)−G(ϕ1) and v = G(ψ) −G(ψ1).

Fixing K and taking L large we have
∫

(ϕ − ϕ1)G(ψ − ψ1)f dσ =∫
ψG(ϕ − ϕ1)f dσ. Now as L tends to M , G(ψ1) decreases to zero (by

the definitions of potentials). So,
∫

(ϕ−ϕ1)G(ψ)f dσ =
∫
ψG(ϕ−ϕ1)f dσ.

Let then K grow to M : from
∫
ψG(ϕ − ϕ1)f dσ ≤

∫
ϕG(ψ)f dσ we get∫

ψG(ϕ)f dσ ≤
∫
ϕG(ψ)f dσ. Exchanging ϕ and ψ we finally obtain

∫
ψG(ϕ)f dσ =

∫
ϕG(ψ)f dσ,

for all compactly supported and non-negative ϕ, ψ in Lp(M). (b) follows

with f = h.

Part B. Assume that L ≡ ∆. + D.∇. + γ. and that θ is symmetric.

Writing (a) above, we first see by taking v = 1 on the support of u that

∆f = div(fD) in the distribution sense. Taking u and v arbitrary, we

obtain that in the distribution’s sense and for all u ∈ C∞
0 (M):

f [∆u+D.∇u] = ∆(fu) − div(ufD).

Now, ∆(fu)−div(ufD) = u[∆(f)−div(fD)]+2∇u.∇f+(∆u)f−fD.∇u.
Thus, we get

2fD.∇u = 2∇u.∇f
for all u ∈ C∞

0 (M), in the distribution sense. So, D = ∇ log(f) σ-a.e. (and

f is locally Lipschitz since D is locally bounded). The reverse implication

(D is a gradient implies the symmetry of θ) is left to the reader.
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Remark 11.1. It follows from Remarks 1.2 that the symmetry of the θ
kernel is a “local” property (i.e. it holds for (M,L) iff it holds in (Uj ,L|Uj

)
for some open cover {Uj} of M) ifM is simply connected –or more generally
if H1(M,R) = 0–, but not in general.
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[Näı] L. Näım, Sur le rôle de la frontière de R. S. Martin dans la théorie du Potentiel,
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