A REMARK ON THE ORTHOGONALITY RELATIONS IN THE REPRESENTATION THEORY OF FINITE GROUPS

HIROSI NAGAO

Let G be a finite group of order g, and

$$
t \rightarrow\left(a_{i j}^{(\mu)}(t)\right)
$$

$$
(\mu=1,2, \ldots, k)
$$

be an absolutely irreducible representation of degree f_{μ} over a field of characteristic zero. As is well known, by using Schur's lemma (1), we can prove the following orthogonality relations for the coefficients $a_{i j}{ }^{(\mu)}(t)$:

$$
\begin{equation*}
\sum_{l \in G} a_{i j}^{(\mu)}(t) a_{k l}^{(\nu)}\left(t^{-1}\right)=\delta_{\mu \nu} \delta_{i \iota} \delta_{j k} \frac{g}{f_{\mu}} . \tag{1}
\end{equation*}
$$

It is easy to conclude from (1) the following orthogonality relations for characters:

$$
\begin{align*}
& \sum_{l \in G} \chi^{(\mu)}(t) \chi^{(\nu)}\left(t^{-1}\right)=\delta_{\mu \nu} g \tag{2}\\
& \sum_{\mu=1}^{k} \chi^{(\mu)}(t) \chi^{(\mu)}\left(s^{-1}\right)=\delta_{t, s} n(t) \tag{3}
\end{align*}
$$

where

$$
\chi^{(\mu)}(t)=\sum_{i} a_{i i}^{(\mu)}(t),
$$

and $\bar{\delta}_{t, s}$ is 1 or 0 according as t and s are conjugate in G or not, and $n(t)$ is the order of the normalizer of t.

In this short note, we remark that we can conclude (1) from (3) or from a special case of (3):

$$
\sum_{\mu=1}^{k} f_{\mu} \chi^{(\mu)}(t)=\delta_{1, t} .
$$

Let us now asume (3^{\prime}). Setting $t=1$ in (3^{\prime}) we have

$$
g=\sum_{\mu} f_{\mu}^{2}
$$

Therefore the number of $(\mu ; i, j)$ such that $1 \leqslant \mu \leqslant k$ and $1 \leqslant i, j \leqslant f_{\mu}$ is g. Let A be the matrix of degree g with the row index t, column index ($\mu ; i, j$) and $(t,(\mu ; i, j))$-element $a_{i, j}{ }^{(\mu)}(t)$.

Let B be the matrix with row index $(\mu ; i, j)$, column index t and $((\mu ; i, j), t)$ element

$$
\frac{f_{\mu}}{g} \cdot a_{j i}^{(\mu)}\left(t^{-1}\right) .
$$

[^0]The (t, s)-element in $A B$ is

$$
\begin{aligned}
& \sum_{\mu, i, j} a_{i, j}^{(\mu)}(t) \cdot \frac{f_{\mu}}{g} a_{j i}^{(\mu)}\left(s^{-1}\right) \\
& \quad=\sum_{\mu, i} \frac{f_{\mu}}{g} a_{i i}^{(\mu)}\left(t s^{-1}\right)=\frac{1}{g} \cdot \sum_{\mu} f_{\mu} \cdot \chi^{(\mu)}\left(t s^{-1}\right)=\delta_{l, s} .
\end{aligned}
$$

This shows that $A B=E$, and hence $B A=E$.
Since the $((\mu ; i, j),(\nu ; k, l))$-element of $B A$ is

$$
\frac{f_{\mu}}{g} \sum_{t \in G} a_{i j}^{(\mu)}(t) a_{k l}^{(\nu)}\left(t^{-1}\right)
$$

we have (1).

Reference:

1. I. Schur, Neue Begründung der Theorie der Gruppencharactere, Sitzungsber. Preuss. Akad. d. Wiss. (1905), 406-32.

Osaka City University
The University of Toronto

[^0]: Received April 23, 1958.

