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1. Introduction. Let/(() be a power series of the form

t + ao + ajt+..., (1)
where lim sup \an\

i/n < cc. The Faber polynomials {/„(()} (n = 0,1,2,. . .) are the polynomial
parts of the formal expansion of (/(())" about ( = oo. Series (1) defines an analytic element of
an analytic function which we designate as w =/(()• Since/'(C) # 0 at ( = co, the analytic
element is univalent in some neighborhood of infinity; thus the inverse of this element is
uniquely determined in some neighborhood of w = oo, and has a Laurent expansion of the
form

w + bo + bjw + ..., (2)

where lim sup | bn |
1/n = p < oo. Let ( = g(w) be this single-valued function defined by (2) in

| w | > p. No analytic continuation of g(w) will be considered.
Let A(() and Aa(() (o # 0) be the derived sets, in the (-plane, of the zeros of /„(() and

/„((,)—a, respectively. These sets can be described by means of certain sets in the (-plane whose
definitions follow:

DEFINITION. A point (,, in the ^-plane, is said to belong to the set ct if g(w)—(t = 0 has a
solution w, in \ w\ > p such that g'(wt) # 0, g(w2) # (i for \ w2 \ ^ | wt |, w2 # wx. A point
( , , in the C,-plane, is said to belong to the set st ifd is in ct and the corresponding solution, of
greatest modulus, for g(w) — d = 0 is of modulus greater than 1.

Ullman [4] proved the following theorem concerning A(Q.

THEOREM 1. (a) A(Q lies in the complement ofct and (b) A(() contains every boundary point
ofcx.

In [1] the author extended Ullman's results to Aa(():

THEOREM 2. (a) Aa(() lies in the complement of st and (b) Aa(() contains every boundary
point of Si.

Theorem 2 indicates an interesting difference between the cases p > 1 and p < 1. It
shows that a = 0 is a special case when p > 1, while it is an exceptional case when p < 1.

The object of this paper is the location of A(() and Aa(() for a special function, namely

w = / ( O = C e W 0 = C + 1M + 1/(2A2O + . . . , (3)

where X is an arbitrary positive number. In §3 the following theorem concerning the location
of A(Q and A0(Q is established. We state the theorem relative to the z-plane, where z =

t An abstract of this paper was submitted to the seventy-fourth annual meeting of the American Mathe-
matical Society and presented in January, 1968.
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T H E O R E M 3 . (a) A ( z ) i s the set T = { z \ \ z e l z| = 1,
set F as in p a r t (a), while f o r X ^ e it is the set F , = {z I

z | g 1}. (b) For X<e, Aa(z) « //ie
Xze~z\ = 1, | z | ^ 1}.

Finally, in §4 an asymptotic distribution of the a-points along F and F t is established.

2. Discussion of results. The methods used in proving Theorems 1 and 2 are hard to apply
for the special function (3). Instead we employ methods used by Szego [3], which lend them-
selves naturally to this case.

To obtain the exterior mapping radius p associated with (3), we use Biirmann-Lagrange
series (see for example [2]) and get

. . ™ n"w~"

Thus

P = el A . (4)

In order to determine the sets c, and st for the special function, we need to discuss the mapping

t = ze1"1. (5)

The level curve | z e' ~z \ = 1 is symmetrical with respect to the x-axis and consists of two parts:

r = { z | | z e » - | = l , | z | 3 1 } , 1

F ' = { z | \zei-'\ = l,\z\^l}. J

From the polar equations of (5), one can easily see that F is a simple closed curve intersecting
the jr-axis at —0.278 and 1. The second part F' intersects the x-axis at 1 alone; thus the level
curve has a double point at z = 1 and makes the angles n/4, 3^/4, 5^/4, injA with the x-axis
there. Let I, II and III be the domains interior of F, to the right of F' and bounded by F and
F', respectively. Using the polar equations of (5), one can easily show that (5) maps I in a
one-to-one manner onto | T | < 1, and maps II in a similar manner onto the infinite Riemann
surface which has been constructed with a cut along the negative x-axis, for which | T | < 1.
Domain III is mapped by (5) in a similar manner onto the above Riemann surface for which
| T | > 1 .

Since no analytic continuation is considered for ( = g{w), the inverse of the special
function, the set c: is easily seen through the transformations ( = l/(Az), x = ej(Xw) as the set I
in the z-plane. Similarly 5j becomes, in the z-plane, the part of I corresponding to | w | ^ 1 or
| T | ^ e\X. Hence ^ is the interior of F x (See (9) below). Thus to establish Theorems 1 and 2
for the special function (3) is equivalent to proving Theorem 3.

3. Location of A(z) and Aa(z). Let

sR{z) --=i(nz)»lp\ (n = 1,2,...) and gn{z) = 1 - e " " ^ ) .
o
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Szego used the following lemma to show, among other things, that the derived set of the zeros
ofsn{z) is the curve F given by (6).

LEMMA 1. For z ^ 1,

(a) gn{z) = (l/V(2CT))(zC'-7(z/(l-z))(l + *JL*))for z in I, III or on T.
(b) g.(z) = 1 +(l/V(2™))(ze

1-7'(z/(l -z))(l +e'K(z))for z in II, III or on T'.

In (a) and (b) limen(z) = lims^z) = 0 uniformly in every finite region which is located entirely
in the corresponding regions of (a) and(b) and does not include z = 1.

Since £VMC = C(l+nl^+...+n"ln\X%n+ ...), the Faber polynomials associated with
(3) are given by

fJLO = C"{1 + "IttO + ..- + nnl(n! XT)}-
FromC=l/(Az),

/„(£) =/nOMz) = (l+«z + «V/2! + .. . + n"z'ln\)IX'z" = sn(z)IX"zn.

Thus the zeros of /„(£) in the (-plane are those of sn(z) in the z-plane. It follows then that
A(z) is the curve F, which is part (a) of Theorem 3.

Let qtt{z) =/n(C)-a = sn{z)IX"zn-a. Substitution yields

It is now clear that Aa(z) is the derived set of the solutions of gn(z) = 1 -ae~nzXnzn. Set

Gn(z) = gn(2) + ae-^nz". (7)

The set Afl(z) becomes the derived set of the solutions of Gn(z) = 1. We need the following
lemma in order to locate Aa(z) when p = e/A > 1 (See (4)).

LEMMA 2. For p — e\k>\,z^\we have

(a) Gn(z) = 0ly/(2nn))(zel-*nzl(l-z))(l +En(z)),
for z in I, III or on F.

(b) Cm(z)=l+(l/y/(2nn))(zel-'r(zl{l-zy){l+Ei(zy),
for z in II, III or on P .

£n(z) and E'n(z) have the same limit behavior as en(z), e'n(z) in Lemma 1.

The above lemma can be proved easily from Lemma 1. In fact Lemma 2 gives the same
representations for Gn(z) as Lemma 1 for gn{z). Thus it yields the same conclusion, namely
that Aa(z) is T, p > 1, which is the first part of{b) of Theorem 3.

Consider
x' = lze-\ (8)

For p = ejX ^ 1, the level curve 11' | = 1 consists of two curves:

| - l , | z | £ l } , 1

| l | | £ l } J

https://doi.org/10.1017/S001708950000077X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000077X


4 HASSOON S. AL-AMIRI

Denote the interior of Fx by I', the domain left of Fi by II', and the domain bounded by r ,
and r ; by III'. Note that I' c I, i r c n , HI' S III. We shall prove the following lemma.

LEMMA 3. For p = e/A ^ 1, z # 1 we have

for z in I, III or on F.

(b) GJLz)= l+a&e-yQ+M*)),

for z in II, III or on F'.

nn(z) and n'n(z) have the same limit behavior as the corresponding functions in Lemmas 1
and 2.

The above lemma is a direct consequence of Lemma 1. For instance, to prove part (a),
one can use (7) and part (a) of Lemma 1 to get

Gn{z) = fle-"

Since e\X ^ 1, the expression in the square brackets will approach 1 uniformly. Thus part (a)
is proved.

From Lemma 3, we have
I" 0 for z in I',

limGn(z) = .| l f o r z i n l l ' ,
[oo for z in III',

uniformly in every region which is entirely located in I', II' and III', respectively. Conse-
quently, for large n, Gn(z) ^ 1 in I' or in III'. As for z in II' and F',, part (b) of Lemma 3
shows that lim(Gn(z)-l)/fl(Aze"z)" = 1. Thus for n sufficiently large, a theorem due to
Hurwitz yields that Gn(z)-1 # 0 in II', III' or on F',. The only possible location of Aa(z)
then is F ^ However, that Aa(z) occupies every point of F t is a consequence of Theorem 4
below. This completes the second part of part (b) of Theorem 3.

4. An asymptotic distribution of the zeros and the a-points of /„(()• Using Lemma 1,
SzegO not only proved that the derived set of the zeros of sn(z) and sn(z)—a is identical to F,
but also that its elements are positioned along any arc of F in such a way that the distribution
along the arc is asymptotically equal to the change in (l/27r)(arg(ze1~z)n) along the arc. We
shall call such a distribution uniform. Obviously the distribution of the zeros of/n(C) along F in
the z-plane is uniform. Also, since Lemma 2 is the same as Lemma 1, the distribution of the
a-points of /„(() along F, when p > 1, is uniform. As for the distribution of the a-points of
/n(C) for p ^ 1, we shall show that it is uniform along F t in the z-plane. .

Let 0 < r < 1 < R, 0 < 0X < 62 < 2n. Consider the region in the r'-plane bounded by
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two line segments and two circular arcs whose vertices are re'9', Reie', ReWl, and reWl. Let
D be the region in the z-plane whose image in the t'-plane under (8) is the above region.

THEOREM 4. Let r, R, 9U 02 be chosen as before. For sufficiently large n, let N(r, R, 9UQ2)
be the number of zeros of Gn(z) — 1 in D when p ^ 1. Then

N{r,R,Blte2) = *(02-0,) /2* + O(l). (10)

Proof. For every n, we associate with D two regions D~, D*n, such that D~ <= D c D*.
In order to construct Z>~, for example, replace the right-hand boundary of D by another curve
whose image under (8) consists of two line segments and one circular arc connecting the
following points in the positive direction: re((9 '+"/n), ±0 + R)em+0'"\ ±(1 +R)eWl, Re'e', and
such that

/10,+Z? = — a + ?t(mod2;r), where a = arga and 0 ^ p <2n.

Replace the left-hand boundary of D by a similar interior curve. Thus D~ <=• D. The replace-
ment of the right and left boundary parts of D by two exterior curves constructed in a way
similar to the above is D+

n. Thus i ) c D j . Let N~, N* be the number of zeros of Gn(z)—\
in D~, D*, respectively. We shall show that

and

Since N ; ^Nn^N^, Theorem 4 will then be proved. We shall show the above for D~; £>* is
handled similarly.

Let A,B,C,D,E,F,G,H, be the points on the boundary of D~ which are the images
under (8) of the points re'l°2~'M, rei(Oi+fln), $(l + K)em+fl"\ !( l+/{)e"\ Rem, Re1"1,
i(l +R)eie\ Kl +R)eilB2-fiM, respectively. Let

F(z) = a(kze-y. (11)

In what follows n is chosen large enough to satisfy the different statements mentioned below.
From (8) and (11) it follows that

for z on AB, while
| (F() I)/F() | > 1 - 1 / | a |

for z on EF. Since the curve BC is mapped by (11) onto a line segment joining — | a | r" and
— |fl|((l+i?)/2)", F(z) is closer to the origin than to (1,0) when z traverses BC. Hence
|(F(z)-l)/F(z)| > lforzon.BC. ForzonCDorZ)£,|(F(z)-l)/F(z)| > l-2"l\a\(l+R)n > f
In short, \(F(z)-\)/F(z)\ > •£ whenever z is on the curve ABCDEF. Similarly, the above
inequality holds on the rest of the boundary of D~. Thus

| | | , (12)

for z on the boundary of D~ and for sufficiently large «.
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From Lemma 3, part (a), one obtains

Gn(z)-l=F(z)-l+F(z)r,n(z). (13)

Since t\n(z) -> 0, | r\n{z) | < | for z on the boundary of D~. From this and (12) it follows that

for z on the boundary of D~. Rouche's theorem yields that F(z)— 1 and F(z) — 1 + F(z)//n(z)
have the same number of zeros in D~. It follows from (13) that the number of zeros of
Gn{z)—\ is the same as the number of zeros of a(Xze~z)n — 1 in D~. Note that the change of
the argument of a(Xze~z)n— 1 as z traverses the boundary of D~ is determined by the change
of the argument as z traverses the arc EF except for an additive term which remains bounded
for sufficiently large n. Using the argument principle, we get

Similarly W+ =n{02-Ql)j2n + O{\) and (10) follows.
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