THE *a*-POINTS OF FABER POLYNOMIALS FOR A SPECIAL FUNCTION[†]

by HASSOON S. AL-AMIRI

(Received 25 May, 1968)

1. Introduction. Let $f(\zeta)$ be a power series of the form

$$\zeta + a_0 + a_1/\zeta + \dots, \tag{1}$$

where $\limsup |a_n|^{1/n} < \infty$. The Faber polynomials $\{f_n(\zeta)\}$ (n = 0, 1, 2, ...) are the polynomial parts of the formal expansion of $(f(\zeta))^n$ about $\zeta = \infty$. Series (1) defines an analytic element of an analytic function which we designate as $w = f(\zeta)$. Since $f'(\zeta) \neq 0$ at $\zeta = \infty$, the analytic element is univalent in some neighborhood of infinity; thus the inverse of this element is uniquely determined in some neighborhood of $w = \infty$, and has a Laurent expansion of the form

$$w + b_0 + b_1/w + \dots,$$
 (2)

where $\limsup |b_n|^{1/n} = \rho < \infty$. Let $\zeta = g(w)$ be this single-valued function defined by (2) in $|w| > \rho$. No analytic continuation of g(w) will be considered.

Let $\Delta(\zeta)$ and $\Delta_a(\zeta)$ ($a \neq 0$) be the derived sets, in the ζ -plane, of the zeros of $f_n(\zeta)$ and $f_n(\zeta) - a$, respectively. These sets can be described by means of certain sets in the ζ -plane whose definitions follow:

DEFINITION. A point ζ_1 , in the ζ -plane, is said to belong to the set c_1 if $g(w) - \zeta_1 = 0$ has a solution w_1 in $|w| > \rho$ such that $g'(w_1) \neq 0$, $g(w_2) \neq \zeta_1$ for $|w_2| \ge |w_1|$, $w_2 \neq w_1$. A point ζ_1 , in the ζ -plane, is said to belong to the set s_1 if ζ_1 is in c_1 and the corresponding solution, of greatest modulus, for $g(w) - \zeta_1 = 0$ is of modulus greater than 1.

Ullman [4] proved the following theorem concerning $\Delta(\zeta)$.

THEOREM 1. (a) $\Delta(\zeta)$ lies in the complement of c_1 and (b) $\Delta(\zeta)$ contains every boundary point of c_1 .

In [1] the author extended Ullman's results to $\Delta_a(\zeta)$:

THEOREM 2. (a) $\Delta_a(\zeta)$ lies in the complement of s_1 and (b) $\Delta_a(\zeta)$ contains every boundary point of s_1 .

Theorem 2 indicates an interesting difference between the cases $\rho > 1$ and $\rho < 1$. It shows that a = 0 is a special case when $\rho > 1$, while it is an exceptional case when $\rho < 1$.

The object of this paper is the location of $\Delta(\zeta)$ and $\Delta_a(\zeta)$ for a special function, namely

$$w = f(\zeta) = \zeta e^{1/(\lambda\zeta)} = \zeta + 1/\lambda + 1/(2\lambda^2\zeta) + \dots,$$
(3)

where λ is an arbitrary positive number. In §3 the following theorem concerning the location of $\Delta(\zeta)$ and $\Delta_a(\zeta)$ is established. We state the theorem relative to the z-plane, where $z = 1/\lambda\zeta$.

[†] An abstract of this paper was submitted to the seventy-fourth annual meeting of the American Mathematical Society and presented in January, 1968.

HASSOON S. AL-AMIRI

THEOREM 3. (a) $\Delta(z)$ is the set $\Gamma = \{z \mid |ze^{1-z}| = 1, |z| \leq 1\}$. (b) For $\lambda < e, \Delta_a(z)$ is the set Γ as in part (a), while for $\lambda \geq e$ it is the set $\Gamma_1 = \{z \mid |\lambda ze^{-z}| = 1, |z| \leq 1\}$.

Finally, in §4 an asymptotic distribution of the *a*-points along Γ and Γ_1 is established.

2. Discussion of results. The methods used in proving Theorems 1 and 2 are hard to apply for the special function (3). Instead we employ methods used by Szegö [3], which lend themselves naturally to this case.

To obtain the exterior mapping radius ρ associated with (3), we use Bürmann-Lagrange series (see for example [2]) and get

$$g(w) = w - \sum_{0}^{\infty} \frac{n^{n} w^{-n}}{(n+1)! \lambda^{n+1}}.$$

Thus

$$\rho = e/\lambda. \tag{4}$$

In order to determine the sets c_1 and s_1 for the special function, we need to discuss the mapping

$$\tau = z e^{1-z}.$$

The level curve $|ze^{1-z}| = 1$ is symmetrical with respect to the x-axis and consists of two parts:

$$\Gamma = \{ z \mid |z e^{1-z}| = 1, |z| \leq 1 \},$$

$$\Gamma' = \{ z \mid |z e^{1-z}| = 1, |z| \geq 1 \}.$$

$$(6)$$

From the polar equations of (5), one can easily see that Γ is a simple closed curve intersecting the x-axis at -0.278 and 1. The second part Γ' intersects the x-axis at 1 alone; thus the level curve has a double point at z = 1 and makes the angles $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$ with the x-axis there. Let I, II and III be the domains interior of Γ , to the right of Γ' and bounded by Γ and Γ' , respectively. Using the polar equations of (5), one can easily show that (5) maps I in a one-to-one manner onto $|\tau| < 1$, and maps II in a similar manner onto the infinite Riemann surface which has been constructed with a cut along the negative x-axis, for which $|\tau| < 1$. Domain III is mapped by (5) in a similar manner onto the above Riemann surface for which $|\tau| > 1$.

Since no analytic continuation is considered for $\zeta = g(w)$, the inverse of the special function, the set c_1 is easily seen through the transformations $\zeta = 1/(\lambda z)$, $\tau = e/(\lambda w)$ as the set I in the z-plane. Similarly s_1 becomes, in the z-plane, the part of I corresponding to $|w| \ge 1$ or $|\tau| \le e/\lambda$. Hence s_1 is the interior of Γ_1 (See (9) below). Thus to establish Theorems 1 and 2 for the special function (3) is equivalent to proving Theorem 3.

3. Location of $\Delta(z)$ and $\Delta_a(z)$. Let

$$s_n(z) = \sum_{0}^{n} (nz)^p / p! \ (n = 1, 2, ...) \text{ and } g_n(z) = 1 - e^{-nz} s_n(z).$$

Szegö used the following lemma to show, among other things, that the derived set of the zeros of $s_n(z)$ is the curve Γ given by (6).

LEMMA 1. For $z \neq 1$,

(a)
$$g_n(z) = (1/\sqrt{(2\pi n)})(ze^{1-z})^n(z/(1-z))(1+\varepsilon_n(z))$$
 for z in I, III or on Γ .

(b) $g_n(z) = 1 + (1/\sqrt{(2\pi n)})(ze^{1-z})^n(z/(1-z))(1+\varepsilon'_n(z))$ for z in II, III or on Γ' .

In (a) and (b) $\lim \varepsilon_n(z) = \lim \varepsilon'_n(z) = 0$ uniformly in every finite region which is located entirely in the corresponding regions of (a) and (b) and does not include z = 1.

Since $\zeta^n e^{n/\lambda\zeta} = \zeta^n (1 + n/\lambda\zeta + ... + n^n/n!\lambda^n\zeta^n + ...)$, the Faber polynomials associated with (3) are given by

$$f_n(\zeta) = \zeta^n \{ 1 + n/(\lambda\zeta) + \ldots + n^n/(n!\,\lambda^n\zeta^n) \}.$$

From $\zeta = 1/(\lambda z)$,

$$f_n(\zeta) = f_n(1/\lambda z) = (1 + nz + n^2 z^2/2! + \ldots + n^n z^n/n!)/\lambda^n z^n = s_n(z)/\lambda^n z^n.$$

Thus the zeros of $f_n(\zeta)$ in the ζ -plane are those of $s_n(z)$ in the z-plane. It follows then that $\Delta(z)$ is the curve Γ , which is part (a) of Theorem 3.

Let $q_n(z) = f_n(\zeta) - a = s_n(z)/\lambda^n z^n - a$. Substitution yields $q_n(z) = 1 - e^{-nz} s_n(z) = 1 - e^{-nz} \lambda^n z^n (a + q_n(z)).$

It is now clear that $\Delta_a(z)$ is the derived set of the solutions of $g_n(z) = 1 - a e^{-nz} \lambda^n z^n$. Set

$$G_n(z) = g_n(z) + a e^{-nz} \lambda^n z^n.$$
(7)

The set $\Delta_a(z)$ becomes the derived set of the solutions of $G_n(z) = 1$. We need the following lemma in order to locate $\Delta_a(z)$ when $\rho = e/\lambda > 1$ (See (4)).

- LEMMA 2. For $\rho = e/\lambda > 1$, $z \neq 1$ we have
- (a) $G_n(z) = (1/\sqrt{(2\pi n)})(ze^{1-z})^n(z/(1-z))(1+E_n(z)),$

for z in I, III or on Γ .

(b)
$$G_n(z) = 1 + (1/\sqrt{(2\pi n)})(z e^{1-z})^n (z/(1-z))(1+E'_n(z)),$$

for z in II, III or on Γ' .

 $E_n(z)$ and $E'_n(z)$ have the same limit behavior as $\varepsilon_n(z)$, $\varepsilon'_n(z)$ in Lemma 1.

The above lemma can be proved easily from Lemma 1. In fact Lemma 2 gives the same representations for $G_n(z)$ as Lemma 1 for $g_n(z)$. Thus it yields the same conclusion, namely that $\Delta_a(z)$ is Γ , $\rho > 1$, which is the first part of (b) of Theorem 3.

Consider

$$\tau' = \lambda z \, e^{-z}.\tag{8}$$

For $\rho = e/\lambda \leq 1$, the level curve $|\tau'| = 1$ consists of two curves:

$$\Gamma_{1} = \{ z \mid |\lambda z e^{-z}| = 1, |z| \leq 1 \},$$

$$\Gamma_{1}' = \{ z \mid |\lambda z e^{-z}| = 1, |z| \geq 1 \}.$$
(9)

Denote the interior of Γ_1 by I', the domain left of Γ'_1 by II', and the domain bounded by Γ_1 and Γ'_1 by III'. Note that $I' \subseteq I$, $II' \subseteq II$, $III' \subseteq III$. We shall prove the following lemma.

LEMMA 3. For $\rho = e/\lambda \leq 1, z \neq 1$ we have

(a) $G_n(z) = a(\lambda z e^{-z})^n(1+\eta_n(z)),$

for z in I, III or on Γ .

(b) $G_n(z) = 1 + a(\lambda z e^{-z})^n (1 + \eta'_n(z)),$

for z in II, III or on Γ' .

 $\eta_n(z)$ and $\eta'_n(z)$ have the same limit behavior as the corresponding functions in Lemmas 1 and 2.

The above lemma is a direct consequence of Lemma 1. For instance, to prove part (a), one can use (7) and part (a) of Lemma 1 to get

$$G_n(z) = a e^{-nz} \lambda^n z^n + (1/\sqrt{(2\pi n)}) (z e^{-z})^n (z/(1-z)) (1+\varepsilon_n(z))$$

= $a(\lambda z e^{-z})^n [1+(e/\lambda)^n (1/a\sqrt{(2\pi n)}) (z/(1-z))] (1+\varepsilon_n(z)).$

Since $e/\lambda \leq 1$, the expression in the square brackets will approach 1 uniformly. Thus part (a) is proved.

From Lemma 3, we have

$$\lim G_n(z) = \begin{cases} 0 \text{ for } z \text{ in } I', \\ 1 \text{ for } z \text{ in } II', \\ \infty \text{ for } z \text{ in } III', \end{cases}$$

uniformly in every region which is entirely located in I', II' and III', respectively. Consequently, for large n, $G_n(z) \neq 1$ in I' or in III'. As for z in II' and Γ'_1 , part (b) of Lemma 3 shows that $\lim (G_n(z)-1)/a(\lambda z e^{-z})^n = 1$. Thus for n sufficiently large, a theorem due to Hurwitz yields that $G_n(z)-1 \neq 0$ in II', III' or on Γ'_1 . The only possible location of $\Delta_a(z)$ then is Γ_1 . However, that $\Delta_a(z)$ occupies every point of Γ_1 is a consequence of Theorem 4 below. This completes the second part of part (b) of Theorem 3.

4. An asymptotic distribution of the zeros and the *a*-points of $f_n(\zeta)$. Using Lemma 1, Szegö not only proved that the derived set of the zeros of $s_n(z)$ and $s_n(z) - a$ is identical to Γ , but also that its elements are positioned along any arc of Γ in such a way that the distribution along the arc is asymptotically equal to the change in $(1/2\pi)(\arg(ze^{1-z})^n)$ along the arc. We shall call such a distribution *uniform*. Obviously the distribution of the zeros of $f_n(\zeta)$ along Γ in the z-plane is uniform. Also, since Lemma 2 is the same as Lemma 1, the distribution of the *a*-points of $f_n(\zeta)$ along Γ , when $\rho > 1$, is uniform. As for the distribution of the *a*-points of $f_n(\zeta)$ for $\rho \leq 1$, we shall show that it is uniform along Γ_1 in the z-plane.

Let 0 < r < 1 < R, $0 < \theta_1 < \theta_2 < 2\pi$. Consider the region in the τ' -plane bounded by

a-POINTS OF FABER POLYNOMIALS

two line segments and two circular arcs whose vertices are $re^{i\theta_1}$, $Re^{i\theta_1}$, $Re^{i\theta_2}$, and $re^{i\theta_2}$. Let *D* be the region in the *z*-plane whose image in the τ' -plane under (8) is the above region.

THEOREM 4. Let r, R, θ_1, θ_2 be chosen as before. For sufficiently large n, let $N(r, R, \theta_1, \theta_2)$ be the number of zeros of $G_n(z) - 1$ in D when $\rho \leq 1$. Then

$$N(r, R, \theta_1, \theta_2) = n(\theta_2 - \theta_1)/2\pi + O(1).$$
(10)

Proof. For every *n*, we associate with *D* two regions D_n^- , D_n^+ , such that $D_n^- \subset D \subset D_n^+$. In order to construct D_n^- , for example, replace the right-hand boundary of *D* by another curve whose image under (8) consists of two line segments and one circular arc connecting the following points in the positive direction: $re^{i(\theta_1 + \beta/n)}, \frac{1}{2}(1+R)e^{i(\theta_1 + \beta/n)}, \frac{1}{2}(1+R)e^{i\theta_1}, Re^{i\theta_1}$, and such that

$$n\theta_1 + \beta \equiv -\alpha + \pi \pmod{2\pi}$$
, where $\alpha = \arg a$ and $0 \leq \beta < 2\pi$

Replace the left-hand boundary of D by a similar interior curve. Thus $D_n^- \subset D$. The replacement of the right and left boundary parts of D by two exterior curves constructed in a way similar to the above is D_n^+ . Thus $D \subset D_n^+$. Let N_n^- , N_n^+ be the number of zeros of $G_n(z)-1$ in D_n^- , D_n^+ , respectively. We shall show that

and

$$N_n^- = n(\theta_2 - \theta_1)/2\pi + O(1),$$

$$N_n^+ = n(\theta_2 - \theta_1)/2\pi + O(1).$$

Since $N_n^- \leq N_n \leq N_n^+$, Theorem 4 will then be proved. We shall show the above for D_n^- ; D_n^+ is handled similarly.

Let A, B, C, D, E, F, G, H, be the points on the boundary of D_n^- which are the images under (8) of the points $re^{i(\theta_2 - \beta/n)}$, $re^{i(\theta_1 + \beta/n)}$, $\frac{1}{2}(1+R)e^{i(\theta_1 + \beta/n)}$, $\frac{1}{2}(1+R)e^{i\theta_1}$, $Re^{i\theta_1}$, $Re^{i\theta_2}$, $\frac{1}{2}(1+R)e^{i\theta_2}$, $\frac{1}{2}(1+R)e^{i(\theta_2 - \beta/n)}$, respectively. Let

$$F(z) = a(\lambda z e^{-z})^n.$$
⁽¹¹⁾

In what follows n is chosen large enough to satisfy the different statements mentioned below. From (8) and (11) it follows that

for z on AB, while

$$|(F(z)-1)/F(z)| > 1/|a|r^{n}-1 > \frac{1}{2}$$
$$|(F(z)-1)/F(z)| > 1-1/|a|R^{n} > \frac{1}{2}$$

for z on EF. Since the curve BC is mapped by (11) onto a line segment joining $-|a|r^n$ and $-|a|((1+R)/2)^n$, F(z) is closer to the origin than to (1,0) when z traverses BC. Hence |(F(z)-1)/F(z)| > 1 for z on BC. For z on CD or DE, $|(F(z)-1)/F(z)| > 1-2^n/|a|(1+R)^n > \frac{1}{2}$. In short, $|(F(z)-1)/F(z)| > \frac{1}{2}$ whenever z is on the curve ABCDEF. Similarly, the above inequality holds on the rest of the boundary of D_n^- . Thus

$$|F(z) - 1| > \frac{1}{2} |F(z)|, \tag{12}$$

for z on the boundary of D_n^- and for sufficiently large n.

From Lemma 3, part (a), one obtains

$$G_n(z) - 1 = F(z) - 1 + F(z)\eta_n(z).$$
(13)

Since $\eta_n(z) \to 0$, $|\eta_n(z)| < \frac{1}{2}$ for z on the boundary of D_n^- . From this and (12) it follows that

$$|F(z)-1| > \frac{1}{2}|F(z)| > |F(z)\eta_n(z)|,$$

for z on the boundary of D_n^- . Rouché's theorem yields that F(z) - 1 and $F(z) - 1 + F(z)\eta_n(z)$ have the same number of zeros in D_n^- . It follows from (13) that the number of zeros of $G_n(z) - 1$ is the same as the number of zeros of $a(\lambda z e^{-z})^n - 1$ in D_n^- . Note that the change of the argument of $a(\lambda z e^{-z})^n - 1$ as z traverses the boundary of D_n^- is determined by the change of the argument as z traverses the arc EF except for an additive term which remains bounded for sufficiently large n. Using the argument principle, we get

$$N_n^- = n(\theta_2 - \theta_1)/2\pi + O(1).$$

Similarly $N_n^+ = n(\theta_2 - \theta_1)/2\pi + O(1)$ and (10) follows.

REFERENCES

1. H. S. Al-Amiri, The a-points of Faber polynomials, Bull. College Sci. Baghdad 8 (1965), 1-25.

2. A. Hurwitz and R. Courant, Funktionentheorie (Interscience Publishers, 1925).

3. G. Szegö, Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Ber. Math. Ges. 23 (1924), 50-64.

4. J. Ullman, Studies in Faber polynomials, Trans. Amer. Math. Soc. 94 (1960), 515-528.

BOWLING GREEN STATE UNIVERSITY OHIO, U.S.A.