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COVERS AND COMPLEMENTS IN THE SUBALGEBRA LATTICE
OF A BOOLEAN ALGEBRA

IVO DUNTSCH

Section 1 addresses the problem of covers in Sub D, the lattice of subalgebras of a Boolean
algebra; we describe those BA'a in whose subalgebra lattice every element has a cover,
and show that every small and separable subalgebra of P(ui) has 2" covers in SubP(t*>).
Section 2 is concerned with complements and quasicomplements. As a general result
it is shown that Sub D is relatively complemented if and only if D is a finite- cofinite
BA. Turning to SubP(uj), we show that no small and separable D < P(v) can be a
quasicomplement. In the final section, generalisations of packed algebras are discussed,
and some properties of these classes are exhibited.

0. INTRODUCTION

The set Sub D of subalgebras of a Boolean algebra D is a complete atomistic
[1] and dually atomistic [6] lattice under set inclusion. This paper is, in a way, a
continuation of [2] and [3]. We shall look in particular at covers, quasi-complements,
and complements in SubP(w); the final section will be concerned with locally packed
and diverse Boolean algebras.

If M C Sub D, then inf M = (~\M, and sup M is the subalgebra of D generated
by UM. If A is a subalgebra of D, we usually write A ^ D. The subalgebra of D
generated by M C D is denoted by (M); if M = {a}, we just write (a) instead of
({a}). For A < D and u € D \ A, (AU {u}) is called a simple extension of A, which
is denoted by A(u). It is well known that each b 6 A(u) has the form

b = x -u + y • —u

for some x, y £ A. If A, B G Subl?, then A is a quasicomplement of B if A is
maximal with respect to the property A (1 B = 2. A Boolean algebra D is called
small if \D\ < 2W, and separable if it has a countable dense subalgebra. The two
element Boolean algebra is denoted by 2. Unless stated otherwise, all Boolean algebras
mentioned are assumed to be infinite.
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372 I. Duntsch [2]

1. COVERS IN

Our first aim is to give a convenient criterion for when a subaigebra of D is covered:

PROPOSITION 1.1. If A and B are subalgebras of D, then B covers A if and

only if B — A(u) for some element u of D\A, and {a £ A \ a-u £ A} is a prime ideal

of A.

PROOF: Suppose that B covers A] if u £ B \ A, then A ^ A(u) D B, and hence
A(u) = B. Let a £ A such that a • u £ A. Since A(u) covers A and a • u £ A(u), we
have A(a • u) = A(u), and thus there are x, y £ A such that

u = x • a • u + y • (—a - I— u )

=x•a•u+y•—a

which implies — a • u 6 A.

For the converse, suppose that for all a G A either a • u g A or —a -u £ A. Let

z £ A{u) \ A; then there are x, y £ A such that z = x • u + y • —u. Suppose without

loss of generality that x • u £ A. Since z £ A, y • —u is not an element of A, and thus

—V • ~u € -4- Now,

— z = -x • u H — y • — u,

and y • —z = y • —x -u is an element of A(z). Therefore,

u = x • u H—x • u

— x • u + y • —x • u -\—y • —x • u

is an element of A(z) which implies A(z) = A(u). 0

Recall that a lattice L is called weakly atomic if every proper interval [c, tZ] contains
a jump, that is, there are a,b £ [c,d] such that a < b and b covers o.

LEMMA 1.2. Subi> is weakly atomic.

PROOF: Let A < B < D. Since Sub B is dually atomistic, there is a dual atom
C of SubjB containing A. As C is a dual atom of S u b B , it is covered by B. U

A Boolean algebra D has the cover property if every subaigebra of D has a cover
in Sub D, and one may ask which Boolean algebras have the cover property. It turns
out that the Boolean algebras with this property are exactly the superatomic ones.
An equivalent result has been independently shown by Koppelberg [4] in a different
context.
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[3] The subalgebra lattice of a Boolean algebra 373

LEMMA 1.3. If A has the cover property, and if f: A —> B is an onto homomor-

pliism, then B has the cover property.

PROOF: Let C ^ B, C ^ B, and D = f~l{C). By our hypothesis, D is covered
in Subi4, say, by D(x). Set b= / (x ) ; then 6 £ C,and, if c = f{y) G C, then yx G D

or -y • x G D by 1.1. It follows that 6 - c e C or - 6 - c e C . D

LEMMA 1.4. If A has a countable dense free subalgebra, then A does not have

the cover property.

PROOF: Let F < A be freely generataed by M = {mj | i < u>}, and let F* be
the completion of F. Since F is dense in .4, we may suppose that A is a regular
subalgebra of F* . Let B* be the subalgebra of F* completely generated by M\{m9},
and set B = A D B*. Assume that B is covered in Sub A by B(x). Since F is dense
in A, there is a set T = {ti \ i < w} of elementary products of elements of M such
that x = sup T. Since x £ B, mo appears in one of the t<, say to — Eomo • . . . • ejfcmjfe,
where e< = ± 1 . Now, T7ifc+1 € 5 , and mjt+i • to > 0 and — m/f+i -to > 0; thus, m0

appears in both rrik+i • x and — mjt+i • x. Consequently, none of these elements can be
in B which is a contradiction to our assumption that B(x) covers B. U

PROPOSITION 1.5. A has the cover property if and only if A is superatomic.

PROOF: If A is not superatomic, then, by Sikorski's Extension Theorem, it has a

quotient B with a countable free dense subalgebra. By the previous lemma, B does

not have the cover property, and, by Lemma 1.3, neither has A.

For the converse, suppose that A is superatomic with ideal sequence {Ip \ /? < a},
and let B be a proper subalgebra of A, that is Ia\B ^%. Set

P = min{5 < a | Is g B}.

Then (3 is well-defined and a successor ordinal, say /? = 7 + 1. Now let a G Ip\B, and
TT: A -» A/I^ be the canonical epimorphism. Then n(a) is an atom of A/I^.

Suppose that x • a £ B for some x G B; then, in particular, x • a $. J7 and hence
7r(x • o) > 0. Since TT(O) is an atom, 7r(x • a) = T(«I), and thus 7r(—x • o) = 0. It follows
that —x • o £ / 7 C B . Lemma 1.1 now implies that B(a) covers B. U

Next, we shall look at covers in Sub P(u>). It follows from the previous result that
not every subalgebra of P(w) has a cover. Nevertheless, covers exist in abundance:

PROPOSITION 1.6. Let A ^ P{w) such that \A\ < 2" and A has a countaWy
generated prime ideal I; then A has 2W covers in SubP(w).

PROOF: Let {6j | i < w} be a set of pairwise disjoint generators of I. Since A is
small, there are 2U subsets M a of w such that mQ = \J{bi \ i G Ma} ^ A, and we
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can choose the Ma to be infinite and almost disjoint. Now, since the bi are pairwise

disjoint and the Ma are almost disjoint, we see that for a < (3 we have ma D mp 6 /

and that, furthermore, ma f~l [J{bj \ j' € / } € / for any finite subset J of u>.

Assume that for some J C 2" with \J\ = 2U and some m C w we have .A(m) =

A(ma) for all a £ J. Then for each such a there are aa, ba G A such that

Tna = aa • m + ba • —m.

Since A is small we must have aa — ap and ba = 6̂  for some a, /3 € J . This implies
m a = m^, a contradicction. Thus we may assume that all A(ma) are different.

Now, suppose a g / ; since the bi generate / as an ideal there is a finite set J C w
such that a < 6 = U{&,- l i e / } . Let a < 21"; then

a H mQ = a n (6 PI mQ) £ / .

Since / is a prime ideal, A(ma) covers A by 1.1. D

COROLLARY 1.7. (MA) J/ .4 is smal/ and has a free countable dense subedgebra,
then A has 2W covers in SubP(u;).

PROOF: Just note that (MA) implies that A has a ultrafilter U which preserves
all sups of the dense countable subalgebra. Hence U is countably generated as a filter. U

2. COMPLEMENTS AND QUASICOMPLEMENTS

It was shown by Todorcevic [8] that every interval algebra I(C) has a sectionally
complemented lattice of subalgebras, that is Sub A is complemented for every A ^

It seems natural to ask which Boolean algebras have Sub I? not only sectionally
complemented but even relatively complemented; it turns out that, in general, the
former is all that we can hope for:

PROPOSITION 2.1. SubD is relatively complemented if and only if D is a Unite-

cofinite algebra.

PROOF: The "if" part was shown by Remmel [5], so we need only prove the other
direction.

Suppose that D is not a finite-cofinite algebra. Then there exists an element u

of D such that below u and — u there are countably infinite sets of pairwise disjoint
elements, say, S = {a,- | i < u>}, and T = {bi \ i < w}. Let A ^ D be generated by
{u} U 5 U T , B be generated by S, C be generated by {a, + 6< | t < a;} and E be
generated by B U C. Since u is not an element of E, the latter is a proper subalgebra
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of A. The aim now is to show that E has no complement in the interval [C, A]; for
this, it is enough to prove that, for each x G A \ E, C(x) D E is not a subalgebra of
C. Keeping in mind that B D C = 2, this is straightforward and will be left to the
reader. U

We shall use the construction of 1.3 to shed some light on the problem when
in SubP(w) an algebra can be a quasicomplement to another subalgebra of P(w).
This is connected with a question by Remmel [5] where he asks for which pairs (a , /?)
of cardinals it is possible that A, B ^ D, |A| = a , \B\ = /?, and A and B are
quasicomplements of each other. In [3] an example was given where |£>| = 2W and
(w, w) was realised in SubZ). In the same article it was shown that for (a , /?) to be
realised in SubP(tn), one of a or /? must in fact be 2 " . For both results Martin's
Axiom was used, and it is unknown to the author if they can be obtained in ZFC
proper.

PROPOSITION 2.2. If A ^ P(u>) has a countaWy generated ideal then A is not a

quasicomplement to any B < P'(w).

PROOF: Let the prime ideal / of A be generated by the set {6j | i < w} of pairwise

disjoint elements. Furthermore, choose the set {ma | a < 2"} as in 1.3.

Let B < P(w), and assume that A(ma) D B ^ 2 for all a < 2W. Then, for each
such a , there are some ba £ B, sa, ta € A such that

ba = {9Qnma)\J{taD-ma).

We may assume that each ta is an element of / , otherwise we choose — ba. Since A is
small, we can also suppose after a simple thinning process that

ba = (s r\ma) U t

for some a € A, t € / , and all a < 2"'. Observe that 3 £ I, since otherwise ba £ A.

Now, if a < j3 < 2U, then ba n bp = (s 0 ma D mp) U ( which is an element of A.

From A 0 B = 2 it follows that 6a and bp are disjoint, in particular, t = 0. Since
P(u>) has the ccc, there is some J C 2W of cardinality 2W such that s ("1 ma = s fl rap

for all a, /? £ J. Again since A is small and —s € / , there are a, (3 £ J such that
—s D ma = — s fl m^ . It follows that ma = mp, which is a contradiction. D

COROLLARY 2.3. (MA) If A < SubP(w) is small and separable, then it is not a
quasicomplement of any B ^ P{w) •

I have not been able to determine whether (a, 2W) can be realised at all on
SubP(w) for an infinite a < 21".
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3. LOCALLY PACKED AND DIVERSE ALGEBRAS

The final part of this paper generalises the notion of a packed algebra as defined

in [9]: D is packed if A, B < D and \A\ = \B\ = \D\ imply that \A (1 B\ = \D\.

Let A be a regular uncountable cardinal, and \D\ = A. D is called:

(1) diverse if D \ d and D \ —d have no isomorphic subalgebra of cardinality
A for every d £ D.

[Note that D is diverse if and only if for every u £ D and every A < D with |J4| = A,
(u) is not independent of A, that is there exists an a £ A+ such that a • u = 0 or
a • — u = 0.]

(2) locally packed if, for all A, B ^ D and d £ D such that B < A(d) and

\A\ = \B\ = A, we have | . 4 n 5 | = A.

Furthermore, let I* = {A e SubD | \A\ < A}. It was shown in [2] that Sub£> is
not simple if I\ is a distributive element in the ideal lattice of Sub D. Observe that
we could have defined D to be packed if and only if I\ is a prime ideal of Sub D.

PROPOSITION 3.1. It \D\ = A is uncountable and regular, each property implies

the next:

(1) D is packed;
(2) I\ is distributive ideal;

(3) D is locally packed;

(4) D is diverse.

PROOF: (1) => (2) follows from 3.9 and (2) => (3) follows from 3.6 of [2].

Suppose that D is locally packed and assume the existence of some u G D such
that there are A <^ D \u, B 4, D \ — u, both having cardinality A, and that f: A>-> B
is an isomorphism.

Set C = {x + f(x) \ x E A}; clearly, C is a subalgebra of D. If A* is a canonical
copy of A in SubZ?, then C D A* = 2; on the other hand, A* $J C(u), contradicting
the fact that D is locally packed, so we have (3) =S> (4). D

In general, (4) does not imply (3) as the following example shows:

EXAMPLE 3.2. TAere is a Boolean algebra of cardinality w1 which is diverse, but
not locally packed.

PROOF: Let {aa | a < wi} be a family of infinite almost disjoint subsets of u>, and
let A ^ P(v) be generated by this set. Observe that A is Wi-like, that is if a £ A+,
then A | a or A | —a is countable.

Let B S FC{wx) with atoms {6a | a < u>i}; next, set D = A x B and assume
without loss of generality that A - D \ u and B = | -u for some u £ D\ let B* s$ D

https://doi.org/10.1017/S0004972700017408 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017408


[7] The subalgebra lattice of a Boolean algebra 377

be generated by the ba •
(1) D is not locally packed:

Set ea = aa + ba and E = {{ea \ a < u>i}). Then, \E\ = ui, and B* ^ E(u),

since ba = ea • —u.

Assume that E C\ B* ^ 2 , and suppose without loss of generality that d — b0 +

... + bn is an atom of E. Thus there exist xOt ..., x, £ {±e a | a < u>i} such that
d = xo • • -. • x,. Since each —ea • — u is cofinite in D \ —u = B, there is at least one
r ^ s with xr € {ea | a < Wj}. On the other hand, since for all a , f3 < u>i we have
ea • ep — o,<x • a0 < ^i w e c a n have at most, one such r. Thus, let us suppose without
loss of generality that d = e0 • — et •... • — e,. Since d < —it, that is d-u = 0, we obtain
0 = ao • —a,- • . . . • —a,; in other words, Oo < â  + . . . + a, which contradicts the fact
that the aa are infinite and almost disjoint.
(2) D is diverse:

Assume that there is some c 6 D such that D \ c and D | —c have isomorphic
uncountable subalgebras, that is there is an uncountable C ^ D such that c is inde-
pendent of C. Note that the projections of C to D \ c and D \ —c are isomorphic to
C.

Since c = c-u+c-— u, by possibly taking the complement of c, we may suppose that
c = a + b where a £ A+ and 6 = 0 or b is a finite sum of atoms of B. Independence
now implies that for all x, y € C+, x ^ y implies x • c ^ y • c. Furthermore, there are
only finitely many elements of D below b. Thus, there are only finitely many elements
t of C such that t • a = 0, and consequently C contains an uncountable subalgebra E

such that e • a > 0 for every e € E+. Since a ^ c, we also have e • —a > 0, and hence
a is independent of E.

Without loss of generality, let C = E and c = a; since A and B have no isomorphic
uncountable subalgebras, a ^ u. Recall that A is wi-like; since D \ c contains an
uncountable subalgebra, it follows that A | c is uncountable. Thus — c • u is countable,
which, in turn, implies that the projection of C to (—u] is uncountable and thus
contains an uncountable set of pairwise disjoint elements. Again we use that — c • u is
countable and that — c — — c • u -\—u, and find that the projection of C to (—c] also
contains such a set; hence, by independence, so does the projection of C to —c which
is a relative algebra of A — D | u.

This contradicts the fact that A satisfies the countable chain condition. U

It is not known whether (3) implies (2) in general; however, in some cases the last
three properties of 3.1 coincide:

PROPOSITION 3.3. If \D\ = A is regular, D diverse, and SubD sectionally com-

plemented, then I\ is a distributive ideai of SubD.
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PROOF: By 3.4 and 3.7 of [2], I\ is distributive if, for every u G D and every

A ^ D with \A\ — A, every subalgebra of A(u) disjoint from A has cardinality less

than A.

Suppose that A and u are as above, and assume the existence of some B ^ A(u)

such that \B\ = A and A l~l B = 2. Since u £ A and A is the meet of all antiatoms
of Sub A(u) which contain A, there is an antiatom E of Sub A(u) containing A and
u £ E. Then since every subalgebra C of E{u) = A(u) disjoint from E has at most
four elements, and since Sub D is sectionally complemented, B D E has cardinality a ,
and we may suppose without loss of generality that u £ A V B by possibly substituting
B n E for B.

Let B\ < B be generated by M = {b e B \ b < u}, B2 < B be generated by
{b £ B \ b < —u}, and set Bz = (Bi U B2) • Suppose that C is a complement of B3 in
S u b B ; then for each c 6 C + we have c-u > 0, hence w is independent of C; therefore
\C\ < A. Thus, we may as well assume that B — B\.

Let {bi I i < A} be an enumeration of M + and choose Oi € 4̂ such that bi = o,-u.
Because 6t- ^ J4, we see that aj • —tt > 0 for all i < a. Since \M\ = A, we may suppose
that A is generated by the a;. Assume that there is an a £ A+ with a < u. Since
A PI (M] is an ideal of A, we need only consider the following two cases:

(1) a=ail-...-ain--ail-...--ajk=a-u

= 64l . . . . . 6 i n • -bh • ...• -bjk,

since 6<r < u and —6,r • u = — a j r • u. This contradicts our assumption tha t a R B = 2.

( 2 ) a = - a h • . . . • - a , - n

= -6i , • . . . • -bin • u

= -(b^ + ... + bin) • u,

and thus, u = a+ 6^ + . . . + &in G (.AUJB), a contradiction. This gives us vln(u] = {0}.
Let Ai ^ D be generated by AC\(—u]; since u is not independent of A and ^4n(u] =
{0}, every complement of Ai in Sub A has cardinality < A. But this implies that the
projection of A to (u\, which includes M, has cardinality less than A, and again we
arrive at a contradiction. U

It was mentioned in [2] without proof that certain diverse Boolean algebras have

very strong rigidness properties.

A Boolean algebra D is called:

(1) mono-rigid, if every one-one endomorphism of D is the identity:

(2) Bonnet-rigid, if, whenever / : D >—• B is a one-one homomorphism and
g: D -* B is an onto homomorphism, then / = g;
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(3) factor-homogeneous, if every proper factor of D has the same cardinality

as D.

PROPOSITION 3.4. If D is diverse and factor homogeneous, then D is mono-rigid.

PROOF: Suppose that /:£>>—> is one-one, and assume the existence of some d ^ D
with f(d) £ d. Then there is some e € D such that e • / (e) = 0. The restriction of
/ to D | e is an embedding into D \ — e, and consequently D | e and D \ —e have
isomorphic subalgebras of the same cardinality as D, a contradiction. U

For locally packed algebras, the following result by Shelah [7] comes in helpful:

If D is mono-rigid and not Bonnet-rigid, then there exist d 6 D, B <

D | d and an onto homomorphism / : B ->• D \ —d.

PROPOSITION 3.5. If D is locally packed and factor homogeneous, then D is

Bonnet-rigid.

PROOF: Let d G D, B and / be as in the remark above, and suppose that \D\ =

a. Let E be a canonical copy of D \ —d in SubD, and set C = {x + f(x) \ x £ B}.

Observe that C is a subalgebra of D (see Lemma 7 of [3]), and E < C(d), since / is
onto.

Let a £ C fl E\ since E (1 D \ —d is a prime ideal of E, we may suppose that
a < — d. By definition of C there exists some b £ C such that a = b + /(—6), which
implies that 6 = 0. The fact that / is a homomorphism now shows that /(6) = 0. It
follows that C C\ E — 2, contradicting the fact that D is locally packed. U
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