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Abstract

We prove that a very general smooth cubic fourfold containing a plane can be embedded

into an irreducible holomorphic symplectic eightfold as a Lagrangian submanifold.

We construct the desired irreducible holomorphic symplectic eightfold as a moduli

space of Bridgeland stable objects in the derived category of the twisted K3 surface

corresponding to the cubic fourfold containing a plane.

1. Introduction

1.1 Motivation and results

In this paper, we assume that all cubic fourfolds are smooth. Cubic fourfolds have been studied in

the contexts of associated irreducible holomorphic symplectic manifolds, relations to K3 surfaces

and rationality problems, and so on. For example, Beauville and Donagi [BD85] proved that

the Fano variety F (X) of lines on X is an irreducible holomorphic symplectic fourfold which

is deformation-equivalent to the Hilbert scheme of two points on a K3 surface. Recently, Lehn

et al. [LLSvS15] proved that if X is a cubic fourfold not containing a plane, then X can be

embedded into an irreducible holomorphic symplectic eightfold Z as a Lagrangian submanifold.

This Z is constructed as the moduli space of generalized twisted cubics on X [dJS04], and if X

is Pfaffian, then Addington and Lehn [AL15] have proved that Z is deformation-equivalent to

the Hilbert scheme of four points on a K3 surface. However, if X contains a plane, the argument

of Lehn et al. does not apply. In this paper, we prove the following theorem.

Theorem 1.1. Let X be a very general cubic fourfold containing a plane. Then X can be

embedded into an irreducible holomorohic symplectic eightfold M as a Lagrangian submanifold.

Moreover, M is deformation-equivalent to the Hilbert scheme of four points on a K3 surface.

Whereas Lehn et al. used the moduli space of twisted cubics, we use notions of derived

categories and Bridgeland stability conditions in our construction of M . More precisely, the

holomorphic symplectic eightfold M is constructed as a moduli space of Bridgeland stable objects

in the derived category of the twisted K3 surface (S, α), which corresponds to X. The twisted K3

surface (S, α) was constructed by Kuznetsov [Kuz10, § 4] in the context of his conjecture about

K3 surfaces and rationality of cubic fourfolds.

Received 26 November 2014, accepted in final form 19 July 2016, published online 23 March 2017.
2010 Mathematics Subject Classification 14F05, 14J60 (primary).
Keywords: derived category, stability condition, irreducible holomorphic symplectic manifold.
This journal is c© Foundation Compositio Mathematica 2017.

https://doi.org/10.1112/S0010437X16008307 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X16008307


G. Ouchi

1.2 Background
Let us recall Kuznetsov’s conjecture. The rationality problem of cubic fourfolds is related to K3
surfaces conjecturally. The derived category Db(X) of coherent sheaves on X has the following
semiorthogonal decomposition:

Db(X) = 〈AX ,OX ,OX(1),OX(2)〉. (1)

The full triangulated subcategory AX is a Calabi–Yau 2-category, i.e. the Serre functor of
AX is isomorphic to the shift functor [2]. Kuznetsov posed the following conjecture.

Conjecture 1.2 [Kuz10]. A cubic fourfold X is rational if and only if there is a K3 surface S
such that AX ' Db(S).

Hassett [Has00] introduced the notion of special cubic fourfolds. Cubic fourfolds containing
a plane are examples of special cubic fourfolds. Special cubic fourfolds often have associated K3
surfaces Hodge-theoretically [Has00]. Addington and Thomas [AT14] proved that Kuznetsov’s
and Hassett’s relations between cubic fourfolds and K3 surfaces coincide generically. Known
examples of rational cubic fourfolds include Pfaffian cubic fourfolds [Tre84, Tre93] and some
rational cubic fourfolds containing a plane, which were constructed in [Has99]. Conjecturally,
very general cubic fourfolds are irrational. However, so far there are no known examples of
irrational cubic fourfolds. Kuznetsov constructed the equivalences between AX and the derived
categories of coherent sheaves on K3 surfaces for these rational cubic fourfolds. For a general
cubic fourfold X containing a plane, Kuznetsov proved the following theorem.

Theorem 1.3 [Kuz10, Theorem 4.3]. Let X be a general cubic fourfold containing a plane. Then
there is a twisted K3 surface (S, α) such that AX ' Db(S, α). Moreover, the Brauer class α ∈
Br(S) is trivial, i.e. the twisted K3 surface (S, α) is the usual K3 surface S if and only if X is
Hassett’s rational cubic fourfold containing a plane.

We say that a general cubic fourfold X containing a plane is very general when the Picard
number of S is equal to 1. If a cubic fourfold X containing a plane is very general, then AX is
not equivalent to derived categories of coherent sheaves on K3 surfaces [Kuz10, Proposition 4.8].
So very general cubic fourfolds containing a plane are irrational conjecturally.

We recall previous work on holomorphic symplectic manifolds associated to cubic fourfolds
and derived categories. Using the mutation functors associated to the semiorthogonal
decomposition (1), we can define a projection functor pr : Db(X) → AX . The Fano variety
F (X) of lines on X and the holomorphic symplectic eightfold Z in [LLSvS15] are related to
the projection functor pr : Db(X) → AX . In [KM09], the Fano variety F (X) of lines on X is
regarded as a moduli space of objects in AX of the form pr(Oline(1)). For a general cubic fourfold
X containing a plane, Macri and Stellari [MS12] constructed Bridgeland stability conditions on
AX ' Db(S, α) such that all objects of the form pr(Oline(1)) are stable. So the Fano variety
F (X) of lines on a general cubic fourfold X containing a plane is isomorphic to a moduli
space of Bridgeland stable objects in AX ' Db(S, α). For a general Pfaffian cubic fourfold X
not containing a plane, Lehn and Addington [AL15] proved that the holomorphic symplectic
eightfold Z is birational to the Hilbert scheme of four points on the K3 surface by considering the
projections of ideal sheaves of (generalized) twisted cubics on X and the equivalence between AX
and the derived category of coherent sheaves on the K3 surface. In particular, the holomorphic
symplectic eightfold Z is deformation-equivalent to the Hilbert scheme of four points for a
general Paffian cubic fourfold not containing a plane.
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1.3 Strategy for Theorem 1.1
To construct Lagrangian embeddings of cubic fourfolds, we consider the projections of skyscraper
sheaves of points on X. First, we illustrate the relation between the projection functor
pr : Db(X) → AX and Lagrangian embeddings of cubic fourfolds. We prove the following
proposition in § 4.

Proposition 1.4. Let X be a cubic fourfold. Take a point x ∈ X. Then the following properties
hold.
• For x 6= y ∈ X, pr(Ox) is not isomorphic to pr(Oy).
• We have Ext1(Ox,Ox) = C4, Ext1(pr(Ox),pr(Ox)) = C8 and Ext2(pr(Ox), pr(Ox)) '

Hom(pr(Ox),pr(Ox)) = C.
• The linear map pr: Ext1(Ox,Ox) → Ext1(pr(Ox), pr(Ox)) is injective.
• Let

ωx : Ext1(pr(Ox), pr(Ox))× Ext1(pr(Ox),pr(Ox)) → Ext2(pr(Ox),pr(Ox))

be the bilinear form induced by the composition of morphisms in the derived category. Then
the bilinear form ωx vanishes on Ext1(Ox,Ox).

Next, we construct a Lagrangian embedding of a very general cubic fourfold containing a
plane using Bridgeland stability conditions σ on the Calabi–Yau 2-category AX such that the
objects pr(Ox) are σ-stable for all x ∈ X. We prove the following proposition.

Proposition 1.5 (Cf. Proposition 3.3). Let X be a very general cubic fourfold containing a
plane and let Φ: AX

∼
→ Db(S, α) be the equivalence as in Corollary 2.12. Let v be the Mukai

vector of Φ(pr(Ox)). Then there is a stability condition σ ∈ Stab(Db(S, α)), generic with respect
to v, such that pr(Ox) is σ-stable for all x ∈ X. In particular, the morphism

X → M, x 7→ Φ(pr(Ox))

is the Lagrangian embedding. Here M is the moduli space of σ-stable objects with Mukai vector v.
So M is deformation-equivalent to the Hilbert scheme of four points on a K3 surface.

To prove Proposition 1.5, we do not need the last statement of Proposition 1.4. Since there are
no global holomorphic 2-forms on X, the closed immersion X → M is automatically Lagrangian.
Note that no assumptions about the existence of planes in X are needed for Proposition 1.4.
Since, so far, we do not know how to construct stability conditions on AX for a general cubic
fourfold X, we need to use some kind of geometric description of AX to construct Bridgeland
stability conditions on AX . In fact, it is difficult to construct the heart C of a bounded t-structure
on AX and a central charge Z : K(AX) → C such that Z(C\{0}) is contained in the semiclosed
upper half-plane. Moreover, we do not have well-established moduli theory for Bridgeland stable
objects inAX . So we need some (twisted) K3 surfaces in order to use moduli theory for Bridgeland
stable objects as in [BM14a, BM14b]. However, if X is a very general cubic fourfold containing
a plane, we can construct the desired Bridgeland stability conditions on AX using the twisted
K3 surface (S, α). Thus, using the moduli theory [BM14a, BM14b] of Bridgeland stable objects
on derived categories of twisted K3 surfaces, we obtain the Lagrangian embedding X → M in
Proposition 1.5. Hence we establish Theorem 1.1.

Finally, we comment on two recent papers on cubic fourfolds. One is the work by Toda [Tod16]
on Bridgeland stability conditions on AX . By Orlov’s theorem [Orl09], the triangulated category
AX is equivalent to the triangulated category HMFgr(W ) of graded matrix factorizations of
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the defining polynomial W of X. The investigation of Bridgeland stability conditions on AX
is related to the existence problem of Gepner-type stability conditions on HMFgr(W ), which is
treated in [Tod16]. However, it is also difficult to construct the heart of a bounded t-structure on
HMFgr(W ). The second paper, by Galkin and Shinder [GS14], concerns the rationality problem
of cubic fourfolds and Fano varieties of lines. Galkin and Shinder [GS14] proved that rationality
of cubic fourfolds is related to birationality of Fano varieties of lines and Hilbert schemes of
two points on K3 surfaces if the so-called cancellation conjecture on the Grothendieck ring of
varieties holds. Addington [Add16] compared the results in [GS14] with Conjecture 1.2. It would
be interesting to study the relationship between Lagrangian embeddings of cubic fourfolds and
rationality of cubic fourfolds.

2. Preliminaries

In this section, we recall the notions of twisted K3 surfaces and Bridgeland stability conditions,
as well as the relation between cubic fourfolds containing a plane and twisted K3 surfaces.

2.1 Twisted K3 surfaces
We review the definitions of twisted K3 surfaces, twisted sheaves and twisted Mukai lattices.

Definition 2.1 [Cǎl00]. A twisted K3 surface is a pair (S, α) consisting of a K3 surface S and
an element α of the Brauer group Br(S) := H2(S,O∗S)tor of S.

Definition 2.2 [Cǎl00]. Let (S, α) be a twisted K3 surface. Taking an analytic open cover
{Ui}i∈I of S, the Brauer class α can be represented by a Čech cocycle {αijk}. An α-twisted
coherent sheaf F on S is a collection ({Fi}i∈I , {φij}i,j∈I) where Fi is a coherent sheaf on Ui and
φij |Ui∩Uj : Fi|Ui∩Uj → Fj |Ui∩Uj is an isomorphism satisfying the following conditions:

φii = id, φij = φ−1ji , φij ◦ φjk ◦ φki = αijk · id.

We denote such a coherent sheaf by Coh(S, α) and define Db(S, α) := Db(Coh(S, α)) to be the
category of α-twisted coherent sheaves on S.

Let (S, α) be a twisted K3 surface. For simplicity, we will call E ∈ Coh(S, α) a sheaf instead
of an α-twisted sheaf.

Take B ∈ H2(S,Q) with exp (B0,2) = α. Then B is called a B-field of α. Here B0,2 is the
(0, 2)-part of B in H2(S,C). We define the twisted Mukai lattice H̃1,1(S,B,Z) by

H̃1,1(S,B,Z) := eB
( 2⊕

i=0

H i,i(S,Q)

)
∩H∗(S,Z).

The lattice structure is given by the Mukai pairing 〈−,−〉, where

〈(r, c, d), (r′, c′, d′)〉 := cc′ − rd′ − dr′.

The twisted Chern character [HS05]

chB : K(S, α)� H̃1,1(S,B,Z)

satisfies the Riemann–Roch formula

χ(E,F ) = −〈vB(E), vB(F )〉. (2)

Here vB(E) := chB(E) ·
√

tdS ∈ H̃1,1(S,B,Z) is the (twisted) Mukai vector of E ∈ K(S, α). We
denote by cB1 (−) the degree-2 part of vB(−).
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Lemma 2.3 [MS12, Lemma 3.1]. Let d be the order of α. Then the twisted Mukai lattice H̃1,1(S,
B,Z) is generated by (d, dB, 0),Pic(S) and (0, 0, 1) in H∗(S,Z). In particular, the rank of E is
divisible by d for all E ∈ Db(S, α).

2.2 Bridgeland stability conditions
Let D be a triangulated category and N(D) the numerical Grothendieck group of D. Assume that
N(D) is finitely generated. If D is the derived category of a twisted K3 surface, this assumption
is satisfied.

Definition 2.4 [Bri07]. A stability condition on D is a pair σ = (Z, C) consisting of a group
homomorphism (called the central charge) Z : N(D) → C and the heart of a bounded t-structure
C ⊂ D on D, which satisfy the following conditions.
• For any 0 6= E ∈ C, we have Z(E) ∈ {reiπφ ∈ C | r > 0, 0 < φ 6 1}.
• For any 0 6= E ∈ C, there is a filtration (called the Harder–Narasimhan filtration) in C,

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E,

such that Fi := Ei/Ei−1 is σ-semistable and φ(Fi) > φ(Fi+1) for all 1 6 i 6 N − 1.
• Fix a norm ‖ · ‖ on N(D)R. Then there is a constant C such that ‖E‖ 6 C · |Z(E)| for any

non-zero σ-semistable object E ∈ C. This property is called the support property.
Here we put φ(E) := arg(Z(E))/π ∈ (0, 1] for 0 6= E ∈ C, and E ∈ C is σ-stable (respectively,

σ-semistable) if the inequality φ(F ) < φ(E) (respectively, φ(F ) 6 φ(E)) holds for any 0 6= F ⊂ E.

Remark 2.5 [Bri07]. We denote by Stab(D) the set of all stability conditions on D. Then Stab(D)
has a natural topology such that the map

Stab(D) → HomZ(N(D),C), (Z, C) 7→ Z

is a local homeomorphism. In particular, Stab(D) has the structure of a complex manifold.

From now on, we focus on stability conditions for derived categories of twisted K3 surfaces.
Let (S, α) be a twisted K3 surface and fix a B-field B ∈ H2(S,Q) of the Brauer class α. We set
Stab(S, α) := Stab(Db(S, α)).

Definition 2.6. Fix an ample divisor ω ∈ NS(S) on S. Let E ∈ Coh(S, α) be a sheaf. We define
the slope µB(E) of E by

µB(E) :=
cB1 (E) · ω

rkE
.

If rkE = 0, then we set µB(E) =∞. We say that E is µB-stable (respectively, µB-semistable) if
and only if µB(F )< µB(E/F ) (respectively, µB(F )6 µB(E/F )) holds for all non-zero subsheaves
F ⊂ E.

Note that µB-stability admits the Harder–Narasimhan filtrations and Jordan–Hölder
filtrations.

Let Stab†(S, α) be the distinguished connected component of the space of stability conditions
Stab(S, α); see [Bri08, HMS08]. We will recall how to construct stability conditions on Db(S, α)
in Theorem 6.1.
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Remark 2.7 [Bri08, Tod08, BM14b]. Fix a Mukai vector v ∈ H̃1,1(S,B,Z). Then Stab†(S, α) has
a wall and chamber structure which depends only on the choice of v. Upon varying σ ∈ Stab†(S, α)
within a chamber, the set of σ-(semi)stable objects with Mukai vector v does not change. If
σ ∈ Stab†(S, α) is in a chamber, we say that σ is generic with respect to v. If v is primitive, then
σ ∈ Stab†(S, α) is generic with respect to v if and only if all σ-semistable objects with Mukai
vector v are σ-stable.

2.3 Moduli spaces of Bridgeland stable complexes on twisted K3 surfaces
We recall some facts about moduli spaces of Bridgeland stable objects on twisted K3 surfaces.

Definition 2.8. An irreducible holomorphic symplectic variety is a simply connected smooth
projective variety M with a non-degenerate holomorphic 2-form ω (called a holomorphic
symplectic form) such that H0(M,Ω2

M ) = C · ω.

Examples of holomorphic symplectic varieties which will appear later include moduli spaces
of Bridgeland stable objects in derived categories of twisted K3 surfaces.

Theorem 2.9 [BM14b]. Let (S, α) be a twisted K3 surface and v ∈ H̃1,1(S,B,Z) a primitive
Mukai vector with 〈v, v〉 > −2. Let σ ∈ Stab†(S, α) be a stability condition that is generic with
respect to v. Then the coarse moduli space Mσ(v) of σ-stable objects with Mukai vector v exists
as an irreducible holomorphic symplectic manifold which is deformation-equivalent to the Hilbert
scheme of points on a K3 surface, and we have dimMσ(v) = 2 + 〈v, v〉.

2.4 Relation between cubic fourfolds and twisted K3 surfaces
Let X be a cubic fourfold and H a hyperplane section of X. Consider the semiorthogonal
decomposition

Db(X) = 〈AX ,OX ,OX(H),OX(2H)〉.

The full triangulated subcategory

AX = {E ∈ Db(X) | RHom(OX(iH), E) = 0, i = 0, 1, 2} ⊂ Db(X)

is a Calabi–Yau 2-category [Kuz04, Corollary 4.3].
We recall some geometric properties of cubic fourfolds containing a plane [Has99, Kuz10].

Suppose that X contains a plane P = P2 in P5. Let σ : X̃ → X be the blow-up of X at the plane

P and let p : P̃5 → P5 be the blow-up of P5 at the plane P . The linear projection from P gives

the morphism q : P̃5 → P2. This is a projectivization of the rank-4 vector bundle O⊕3P2 ⊕OP2(−h)
on P2. Here h is a line in P2. Let D be the exceptional divisor of σ. Then D is linearly equivalent

to H − h on X̃. Set π := q ◦ j : X̃ → P2, where j : X̃ ↪→ P̃5 is the natural inclusion. Then
π : X̃ → P2 is a quadric fibration with degenerate fibres along a plane curve C of degree 6. We
assume that fibres of π do not degenerate into the union of two planes. Then C is a smooth
curve. Let f : S → P2 be the double cover ramified along C. Since C is smooth, the surface S is
a K3 surface.

D �
� //

��

X̃ �
� j //

σ

��

P̃5

p
�� q ��

P �
� // X �

� // P5 // P2 S
foo

We recall Kuznetsov’s construction [Kuz10] of the twisted K3 surface (S, α) and the
equivalence between AX and Db(S, α).
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The quadric fibration π defines the sheaf of Clifford algebras Cl on P2. It has even part Cl0
and odd part Cl1, which are described as

Cl0 = OP2 ⊕OP2(−h)⊕3 ⊕OP2(−2h)⊕3 ⊕OP2(−3h),

Cl1 = O⊕3P2 ⊕OP2(−h)⊕2 ⊕OP2(−2h)⊕3.

Let Coh(P2,Cl0) be the category of coherent right Cl0-modules on P2. Note that Cl0 is a spherical
object in Db(P2,Cl0). Set Db(P2,Cl0) := Db(Coh(P2,Cl0)).

Lemma 2.10 [Kuz08, Kuz10]. There exists a fully faithful functor

Φ: Db(P2,Cl0) ↪→ Db(X̃)

with the semiorthgonal decomposition

Db(X̃) = 〈Φ(Db(P2,Cl0)), π
∗Db(P2), π∗Db(P2)(H)〉.

The left adjoint functor Ψ: Db(X̃) → Db(P2,Cl0) of Φ is described as

Ψ(−) = Rπ∗((−)⊗OX̃(h)⊗ E)[2].

Here E is the rank-4 vector bundle on X̃ with the structure of a flat right π∗Cl0-module and the
exact sequence

0 → q∗Cl1(−h− 2H) → q∗Cl0(−H) → j∗E → 0. (3)

Lemma 2.11 [Kuz10]. The following properties hold.
• The functor

ΦP2 := Rσ∗LOX̃(h−H)ROX̃(−h)Φ: Db(P2,Cl0) → AX
gives an equivalence.

• There is a sheaf B of Azumaya algebras on S such that f∗B = Cl0 and f∗ : Coh(S,B) →

Coh(P2,Cl0) gives an equivalence.
• There exist a Brauer class α of order 2 and a rank-2 vector bundle U0 ∈ Coh(S, α) such

that ⊗U∨0 : Coh(S, α) → Coh(S,B) gives an equivalence and End(U0) = B.

Corollary 2.12. The functor ΦS := ΦP2 ◦ f∗ ◦ ⊗U∨0 : Db(S, α) → AX is an equivalence.

Remark 2.13. The following holds:

Φ−1P2 = ΨLOX̃(−h)ROX̃(h−H)Lσ
∗ : AX → Db(P2,Cl0).

If X is very general, i.e. PicS = Z, then α is non-trivial.

Proposition 2.14 [Kuz10, Proposition 4.8]. If X is very general, then AX is not equivalent to
Db(S′) for any K3 surface S′. In particular, α 6= 1.

Owing to Lemma 2.3, the condition α 6= 1 is a strong constraint. In fact, if α 6= 1, then there
are no rank-one sheaves on (S, α).

The following lemma will be needed later.

Lemma 2.15 [MS12, Lemma 2.4]. The following properties hold.
• For any m ∈ Z, Ψ(OX̃(mh)) = Ψ(OX̃(mh−H)) = 0.
• We have Ψ(OX̃(−h+H)) = Cl0[2] and Ψ(OX̃(h− 2H)) = Cl1.

In the next section, we will look at the construction of the Lagrangian embeddings.

953

https://doi.org/10.1112/S0010437X16008307 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008307


G. Ouchi

3. Formulation of the main proposition

In this section, we define the projection functor and formulate Proposition 1.5.

Definition 3.1. Let X be a cubic fourfold and H a hyperplane section of X. We define the
projection functor as

pr := ROX(−H)LOX
LOX(H)[1] : Db(X) → AX . (4)

From now on, we use the same notation as in § 2.4.

Definition 3.2. For a point x ∈ X, let Px := Φ−1S (pr(Ox))[−4] ∈ Db(S, α).

The following proposition is a more precise version of Proposition 1.5.

Proposition 3.3 (Cf. Proposition 1.5). Assume that X is a very general cubic fourfold

containing a plane P . Fix a B-field B ∈ H2(S,Q) of the Brauer class α and let v := vB(Px) ∈
H̃1,1(S,B,Z) for x ∈ X. Then the following properties hold:

(a) There is a stability condition σ ∈ Stab†(S, α), generic with respect to v, such that Px is

σ-stable for each x ∈ X;

(b) Mσ(v) is a holomorphic symplectic eightfold;

(c) X → Mσ(v), x 7→ Px is a closed immersion;

(d) X is a Lagrangian submanifold of Mσ(v).

In the rest of the paper, we will give a proof of Proposition 3.3. In the proof of property

(a), we will construct a family {σλ} of stability conditions generic with respect to v such that

Px is σλ-stable for each x ∈ X. The construction of stability conditions will take place in § 6.

Property (b) is deduced from Theorem 2.9 and RHom(pr(Ox), pr(Ox)) = C⊕C8[−1]⊕C[−2] or

〈v, v〉 = 6. The Mukai vector v will be calculated in § 5. In proving properties (c) and (d), we will

identify the tangent spaces TxX and TxMσ(v) with Ext1(Ox,Ox) and Ext1(Px, Px), respectively.

Statements (c) and (d) are deduced from Proposition 1.4; this will be done in § 4. Note that in

the proof of Proposition 1.4 we will not use K3 surfaces and the plane P in a cubic fourfold X.

4. The projection functor and Lagrangian embeddings

In this section we prove Proposition 1.4. Let X be a cubic fourfold and H a hyperplane section
of X. Take a point x ∈ X. Let Ix ⊂ OX be the ideal sheaf of x ∈ X. Considering the restriction
of the Koszul complex for a point x ∈ X ⊂ P5, we have the exact sequence

0 → Fx → O⊕5X → OX(H) → Ox → 0. (5)

Note that Im(O⊕5X → OX(H)) = Ix(H). First of all, we collect some facts about cohomology

groups which are used in the proof of Proposition 1.4.

Lemma 4.1. Let L ∈ PicX be a line bundle on X. Then:

• RHom(Ox, L) = Ox[−4];

• RHom(Ox, L) = C[−4].
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Proof. The second assertion can be deduced from the first. So here we prove the first assertion.
Let ix : x ↪→ X be the natural inclusion. Using Grothendieck–Verdier duality, we have the
isomorphisms

RHom(Ox, L) = RHom(ix∗Ox, L)

' ix∗RHomx(Ox, i!xL)

' ix∗RHomx(Ox,Ox[−4])

' Ox[−4]. 2

Lemma 4.2. The following properties hold:

(a) RHom(OX , Fx) = 0;

(b) RHom(Fx,OX(−H)) = C[−2];

(c) RΓ(X,Fx(H)) = C10;

(d) RHom(Ix(H),OX) = C[−3].

Proof. (a), (c) These are deduced from RΓ(X, Ix(H)) = C5, RΓ(X, Ix(2H)) = C20 and the exact
sequence

0 → Fx → O⊕5X → Ix(H) → 0. (6)

(b) Consider the following exact triangles:

RHom(Ox,OX(−H)) → RHom(OX(H),OX(−H)) → RHom(Ix(H),OX(−H)),

RHom(Ix(H),OX(−H)) → RHom(O⊕5X ,OX(−H)) → RHom(Fx,OX(−H)).

By Lemma 4.1 and RHom(OX(H),OX(−H)) = 0, the first exact triangle is nothing but

C[−4] → 0 → RHom(Ix(H),OX(−H)).

So we obtain RHom(Ix(H),OX(−H)) = C[−3].
Since RHom(O⊕5X ,OX(−H)) = 0, the second exact triangle is nothing but

RHom(Ix(H),OX(−H)) → 0 → RHom(Fx,OX(−H)).

This implies

RHom(Fx,OX(−H)) = RHom(Ix(H),OX(−H))[1]

= C[−2].

(d) Consider the exact triangle

RHom(Ox,OX) → RHom(OX(H),OX) → RHom(Ix(H),OX).

By Lemma 4.1 and RHom(OX(H),OX) = 0, we obtain

RHom(Ix(H),OX) = C[−3]. 2

By RHom(OX(H), Ix(H)) = RΓ(X, Ix) = 0 and Lemma 4.2(a), we have the following
remark.
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Remark 4.3. We have

LOX(H)(Ox)[−1] = Ix(H),

LOX
(Ix(H))[−1] = Fx.

Moreover, we get the exact triangles

Ix(H) ↪→ OX(H)� Ox
e1
→ Ix(H)[1], (7)

Fx ↪→ O⊕5X � Ix(H)
e2
→ Fx[1], (8)

Fx
c

→ OX(−H)[2] → pr(Ox)
e3
→ Fx (9)

by the definition of mutation and Lemma 4.2(b).

The following proposition is the first statement in Proposition 1.4.

Proposition 4.4. Let x 6= y ∈ X be distinct points in X. Then pr(Ox) is not isomorphic to
pr(Oy).

Proof. By (9) we have H0(pr(Ox)) = Fx. So it is sufficient to prove that Fx is not isomorphic
to Fy. Therefore we prove that Ext2(Fx,OX) ' Ox.

Applying RHom(−,OX) to the exact triangles (7) and (8), we obtain the isomorphisms

Ext2(Fx,OX) ' Ext3(Ix(H),OX)

' Ext4(Ox,OX)

' Ox. 2

We will prove the remaining statements of Proposition 1.4. To do so, we need some
cohomology computations.

Lemma 4.5. There are the following isomorphisms:

◦ e1 : RHom(Ix(H), Ix(H))
∼
→ RHom(Ox, Ix(H))[1], (10)

◦ e2 : RHom(Fx, Fx)
∼
→ RHom(Ix(H), Fx)[1], (11)

e3 ◦ : RHom(pr(Ox),pr(Ox))
∼
→ RHom(pr(Ox), Fx)[1]. (12)

Proof. Applying RHom(−, Ix(H)) to the exact sequence (7), we have the exact triangle

RHom(Ox, Ix(H)) → RHom(OX(H), Ix(H)) → RHom(Ix(H), Ix(H)).

Since Ix(H) ∈ 〈OX(H)〉⊥, we have RHom(OX(H), Ix(H)) = 0. So we obtain the isomorphism

◦ e1 : RHom(Ix(H), Ix(H))
∼
→ RHom(Ox, Ix(H))[1].

Similarly, using Fx ∈ 〈OX〉⊥ and pr(Ox) ∈ AX , we obtain

◦ e2 : RHom(Fx, Fx)
∼
→ RHom(Ix(H), Fx)[1],

e3 ◦ : RHom(pr(Ox),pr(Ox))
∼
→ RHom(pr(Ox), Fx)[1]. 2

Lemma 4.6. There are the following isomorphisms:

e1 ◦ : Exti−1(Ox,Ox)
∼
→ Exti(Ox, Ix(H)) (i = 1, 2, 3),

e2 ◦ : Exti−1(Ix(H), Ix(H))
∼
→ Exti(Ix(H), Fx) (i = 1, 2),

◦ e3 : Hom(Fx, Fx)
∼
→ Ext1(pr(Ox), Fx).
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Proof. To prove the first isomorphism, consider the exact triangle

RHom(Ox, Ix(H)) → RHom(Ox,OX(H)) → RHom(Ox,Ox). (13)

By Lemma 4.1, the exact triangle (13) is nothing but

RHom(Ox, Ix(H)) → C[−4] → RHom(Ox,Ox). (14)

Taking the long exact sequence, we get the first isomorphism.
Next, we prove the second isomorphism. Consider the exact triangle

RHom(Ix(H), Fx) → RHom(Ix(H),O⊕5X ) → RHom(Ix(H), Ix(H)). (15)

By Lemma 4.2(d), the exact triangle (15) is nothing but

RHom(Ix(H), Fx) → C5[−3] → RHom(Ix(H), Ix(H)). (16)

Taking the long exact sequence, we get the second isomorphism. Finally, to prove the last
isomorphism, consider the exact triangle

RHom(pr(Ox), Fx) → RHom(OX(−H)[−2], Fx) → RHom(Fx, Fx). (17)

By Lemma 4.2(c), the exact triangle (17) is nothing but

RHom(pr(Ox), Fx) → C10[−2] → RHom(Fx, Fx). (18)

Taking the long exact sequence, we get the last isomorphism. 2

We can prove that the object pr(Ox) is simple.

Corollary 4.7. We have Hom(pr(Ox),pr(Ox)) = C.

Proof. By Lemmas 4.5 and 4.6, we have the isomorphisms

Hom(pr(Ox),pr(Ox))
e3◦' Ext1(pr(Ox), Fx)
◦e3' Hom(Fx, Fx)
◦e2' Ext1(Ix(H), Fx)
e2◦' Hom(Ix(H), Ix(H))
◦e1' Ext1(Ox, Ix(H))
e1◦' Hom(Ox,Ox) = C. 2

Corollary 4.8. The linear map

pr: Ext1(Ox,Ox) → Ext1(pr(Ox), pr(Ox))

is injective.

Proof. By Lemmas 4.5 and 4.6, the linear map

pr: Ext1(Ox,Ox) → Ext1(pr(Ox), pr(Ox))
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can be factorized as follows:

pr : Ext1(Ox,Ox)
e1◦' Ext2(Ox, Ix(H))
◦e1' Ext1(Ix(H), Ix(H))
e2◦' Ext2(Ix(H), Fx)
◦e2' Ext1(Fx, Fx)
◦e3
↪→ Ext2(pr(Ox), Fx)
e3◦' Ext1(pr(Ox), pr(Ox)). 2

Corollary 4.9. We have Ext1(pr(Ox), pr(Ox)) = C8.

Proof. First, we prove that Ext2(Fx, Fx) = C7. By the exact triangle (16), we have the exact
sequence

0 → Ext2(Ix(H), Ix(H)) → Ext3(Ix(H), Fx) → C5

→ Ext3(Ix(H), Ix(H)) → Ext4(Ix(H), Fx) → 0.

By Lemma 4.5 and the isomorphism (12), we have

Ext4(Ix(H), Fx) ' Ext3(Fx, Fx)

' Ext4(pr(Ox), Fx)

' Ext3(pr(Ox), pr(Ox)) = 0.

By Lemmas 4.5 and 4.6, we have

Ext2(Ix(H), Ix(H)) = C6,

Ext3(Ix(H), Ix(H)) = C4,

Ext2(Fx, Fx) ' Ext3(Ix(H), Fx).

So the above long exact sequence can be described as

0 → C6
→ Ext2(Fx, Fx) → C5

→ C4
→ 0.

Hence Ext2(Fx, Fx) = C7.
By Lemmas 4.5 and 4.6, we have

Ext1(Fx, Fx) = C4,

Ext1(pr(Ox), pr(Ox)) ' Ext2(pr(Ox), Fx). (19)

Moreover, using Lemma 4.5 and Corollary 4.7, we have

Ext3(pr(Ox), Fx) ' Ext2(pr(Ox), pr(Ox)) = C.

Here the last equality is deduced from the Serre duality for AX . By the exact triangle (18), we
obtain the long exact sequence

0 → C4
→ Ext1(pr(Ox),pr(Ox)) → C10

→ C7
→ C → 0.

So Ext1(pr(Ox),pr(Ox)) = C8. 2
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Finally, we prove the last statement in Proposition 1.4. Before giving a proof, we recall the
definition of the bilinear form on Ext1(pr(Ox),pr(Ox)), which corresponds to the symplectic
forms on moduli spaces of Bridgeland stable complexes on twisted K3 surfaces.

Definition 4.10. We define a bilinear form

ωx : Ext1(pr(Ox),pr(Ox))× Ext1(pr(Ox), pr(Ox)) → C

by the composition of morphisms in the derived category.

The following proposition implies Proposition 3.3(d).

Proposition 4.11. The bilinear form ωx vanishes on Ext1(Ox,Ox)× Ext1(Ox,Ox).

Proof. Consider the following commutative diagram:

Ext1(Ox,Ox)× Ext1(Ox,Ox)
composition //

pr

��

Ext2(Ox,Ox)

pr

��
Ext1(pr(Ox),pr(Ox))× Ext1(pr(Ox), pr(Ox)) ωx

// Ext2(pr(Ox), pr(Ox)).

It is sufficient to prove that

pr : Ext2(Ox,Ox) → Ext2(pr(Ox), pr(Ox)) (20)

is zero.
The linear map (20) can be factorized as follows:

pr : Ext2(Ox,Ox)
e1◦' Ext3(Ox, Ix(H))
◦e1' Ext2(Ix(H), Ix(H))
e2◦
↪→ Ext3(Ix(H), Fx)
◦e2' Ext2(Fx, Fx)
◦e3
� Ext3(pr(Ox), Fx)
e3◦' Ext2(pr(Ox), pr(Ox)).

Applying RHom(−,OX) to the exact triangle (8), we have the exact triangle

RHom(Ix(H),OX) → RHom(O⊕5X ,OX) → RHom(Fx,OX).

Since RHom(O⊕5X ,OX) = C5, we have

Ext2(Fx,O⊕5X )
◦e2' Ext3(Ix(H),O⊕5X ). (21)

By the isomorphism (21) and the exact triangle (15), we have

Im(Ext2(Ix(H), Ix(H)) ↪→ Ext2(FxFx))

= Ker(Ext2(Fx, Fx) → Ext2(Fx,O⊕5X )).

Note that this vector space is six-dimensional.
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Recall that c : Fx → OX(−H)[2] is the morphism in the exact triangle (9). Taking the long
exact sequence of the exact triangle (17), we obtain the exact sequence

0 → Ext1(Fx, Fx)
◦e3
→ Ext2(pr(Ox), Fx) → Ext2(OX(−H)[2], Fx)

◦c
→ Ext2(Fx, Fx)

◦e3
� Ext3(pr(Ox), Fx) → 0.

Hence we have

Ker(Ext2(Fx, Fx)
◦e3
� Ext3(Fx, pr(Ox)))

= Im(Ext2(OX(−H)[2], Fx)
◦c
→ Ext2(Fx, Fx)).

By (19), Lemma 4.2(c), Lemma 4.5 and Corollary 4.9, this vector space is six-dimensional.
So it is enough to prove that

Im(Ext2(OX(−H)[2], Fx)
◦c
→ Ext2(Fx, Fx)) ⊂ Ker(Ext2(Fx, Fx) → Ext2(Fx,O⊕5X )).

Take ψ ∈ Im(Ext2(OX(−H)[2], Fx)
◦c
→ Ext2(Fx, Fx)).

Then there is a morphism η ∈ Ext2(OX(−H)[2], Fx) that satisfies the following commutative
diagram:

Fx

ψ

��

c // OX(−H)[2]

η
yy

Fx[2] // O⊕5X [2].

Take a hyperplane section H of X such that x /∈ H. Let i : OX(−H) → OX be the morphism
defining H.

We prove that i[2] ◦ c 6= 0. Assume that i[2] ◦ c = 0. Then there is a morphism between exact
triangles as follows:

Fx
c //

��

OX(−H) //

id
��

pr(Ox)

��
OH(1)[1] // OX(−H)[2]

i[2] // OX [2].

Since x /∈ H, we have
0 → Fx|H → O⊕5H → OH(1) → 0,

which is the restriction of the exact sequence (7).
Applying RHom(−,OH) to this exact sequence, we have

RHom(Fx,OH) = RHom(Fx|H,OH) = C5.

This implies Ext1(Fx,OH) = 0. Since c 6= 0, we have a contradiction.

Note that the vector space Ker(Ext2(OX(−H)[2],OX)
◦c
� Ext2(Fx,OX)) is generated by

morphisms OX(−H) → OX induced by hyperplane sections of X, which pass through the point

x. By the definition of Fx, the composition OX(−H)
η

→ Fx → O⊕5X is induced by hyperplane

sections of X, which pass through x ∈ X. So the composition Fx
ψ
→ Fx[2] → O⊕5X is zero. Hence

ψ ∈ Ker(Ext2(Fx, Fx) → Ext2(Fx,O⊕5X )). 2

Thus we have proved Proposition 1.4. In the next section, we will look at properties of the
object Px on the twisted K3 surface, which corresponds to the point x ∈ X.

960

https://doi.org/10.1112/S0010437X16008307 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008307


Lagrangian embeddings of cubic fourfolds containing a plane

5. Description of complexes on twisted K3 surfaces

Let X be a cubic fourfold containing a plane P as in § 2.4, and let (S, α) be the corresponding
twisted K3 surface. We use the same notation as in § 2.4.

Definition 5.1. For a point x ∈ X, we define the objects Rx ∈ Db(P2,Cl0) and Px ∈ Db(S, α)
as

Rx := Φ−1P2 (pr(Ox))[−4] ∈ Db(P2,Cl0),

Px := (⊗U∨0 ◦ f∗)−1Rx ∈ Db(S, α).

Lemma 5.2. Let x ∈ X be a point. Then:

(a) Rx ' Ψ(Lσ∗(Ix(H)))[−2];

(b) there is the exact triangle

Rx → Cl0(h) → Ψ(Lσ∗Ox)[−2]. (22)

Proof. (a) Since Lσ∗ : Db(X̃) → Db(X) is fully faithful, we have

Rx = Φ−1P2 (pr(Ox))[−4]

= ΨLOX̃(−h)ROX̃(h−H)Lσ
∗ROX(−H)LOX

LOX(H)(Ox)[−3]

' ΨLOX̃(−h)ROX̃(h−H)ROX̃(−H)LOX̃
Lσ∗(Ix(H))[−2].

First, we prove that ΨLOX̃(−h)(E) ' Ψ(E) for any E ∈ Db(X̃). By the definition of mutation
functors, there is the exact triangle

RHom(OX̃(−h), E)⊗OX̃(−h) → E → LOX̃(−h)(E).

Applying the functor Ψ, we obtain the exact triangle

Ψ(RHom(OX̃(−h), E)⊗OX̃(−h)) → Ψ(E) → Ψ(LOX̃(−h)(E)).

By Lemma 2.15, we have

Ψ(RHom(OX̃(−h), E)⊗OX̃(−h)) = RHom(OX̃(−h), E)⊗Ψ(OX̃(−h)) = 0.

So ΨLOX̃(−h)(E) ' Ψ(E).
Imitating these arguments, we obtain the isomorphism Rx ' Ψ(Lσ∗(Ix(H)))[−2].
(b) Applying Ψ(Lσ∗(−))[−2] to the exact triangle (7), we obtain the exact triangle

Rx → Ψ(LσOX(H))[−2] → Ψ(Lσ∗Ox)[−2].

By Lemma 2.15, we have the isomorphisms

Ψ(LσOX(H))[−2] ' Ψ(OX̃(H))[−2]

' Ψ(OX̃(−h+H))(h)[−2]

' Cl0(h).

Thus we obtain the desired exact triangle. 2

If x ∈ P , then H−1(Lσ∗Ox) = Oσ−1(x)(D), H0(Lσ∗Ox) = Oσ−1(x), and the others are all
zero. Since D = H − h, we have the following lemma.
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Lemma 5.3. The following properties hold.
• If x ∈ X\P , then Ψ(Lσ∗Ox)[−2] = π∗(E(h))|π(σ−1(x)).
• If x ∈ P , then

H0(Ψ(Lσ∗Ox)[−2]) = π∗(E(h))|π(σ−1(x)),

H−1(Ψ(Lσ∗Ox)[−2]) = π∗(E)|π(σ−1(x)),

and the others are zero.

Lemma 5.4. Let x ∈ X be a point. Then the following properties hold.

(a) The object Rx is a sheaf.

(b) Assume that x ∈ X\P . Taking the long exact sequence of the exact triangle (22), we
have the exact sequence

0 → Rx → Cl0(h) → π∗(E(h))|π(σ−1(x)) → 0.

Here π(σ−1(x)) is a point in P2.

(c) Assume that x ∈ P . Taking the long exact sequence of the exact triangle (22), we have
the exact sequence

0 → (Rx)tor → Rx → Cl0(h) → π∗(E(h))|π(σ−1(x)) → 0.

Note that π(σ−1(x)) is a line in P2 and (Rx)tor is a one-dimensional pure torsion sheaf.

Proof. Take a point x ∈ X. By Lemma 5.3, it is sufficient to prove that the morphism Cl0(h) →

π∗(E(h))|π(σ−1(x)) is surjective.

Restricting the exact sequence (3) to X̃, we have the surjection π∗Cl0(−H)� E . So we can
obtain the surjective morphism π∗Cl0(h−H)� E(h).

Note that π|σ−1(x) : σ−1(x) → P2 is a closed immersion. By restricting the morphism

π∗Cl0(h−H)� E(h) to σ−1(x) and taking direct images of π, we obtain the surjective morphism
Cl0(h − H)|π(σ−1(x)) � E(h)|π(σ−1(x)). Now we can ignore ⊗OX(−H); so there is the following
commutative diagram:

Cl0(h)

restriction
���� ))

Cl0(h)|π(σ−1(x))
// // π∗(E(h))|π(σ−1(x)).

Therefore the morphism Cl0(h) → π∗(E(h))|π(σ−1(x)) is surjective. 2

Considering these exact sequences on the twisted K3 surface (S, α), we have the following
proposition.

Proposition 5.5. Let x ∈ X be a point. Then there is the exact triangle

Px → U0 → Qx. (23)

Here Qx := (f∗(−⊗ U∨0 ))−1(Ψ(Lσ∗Ox)[−2]) ∈ Db(S, α).
If x ∈ X\P , then Qx is a zero-dimensional torsion sheaf of length 2 and the exact triangle

(23) induces in Coh(S, α) the exact sequence

0 → Px → U0 → Qx → 0. (24)
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If x ∈ P , then the exact triangle (23) induces in Coh(S, α) the exact sequence

0 → (Px)tor → Px → U0 → H0(Qx) → 0. (25)

Note that (Px)tor = H0(Qx)(−h) is a one-dimensional pure torsion sheaf.

Definition 5.6. We define the rank-2 α-twisted vector bundle U1 ∈ Coh(S, α) by

U1 := (⊗U∨0 ◦ f∗)−1Cl0.

For x ∈ P , the torsion part (Px)tor is related to U1.

Lemma 5.7. Let x ∈ P be a point. Then we have an exact triangle

U1(−h) → U0 → (Px)tor. (26)

Proof. Take a line Cx ⊂ X which passes through a point x.
Let C ′x := σ−1(Cx) and lx := σ−1(x). Then there are isomorphisms

OD(−C ′x) ' OD(−H),

OC′x(−lx) ' OC′x(−H).

Consider the following exact sequences:

0 → OX̃(−D)(= OX̃(h−H)) → OX̃ → OD → 0, (27)

0 → OD(−C ′x)(= OD(−H)) → OD → OC′x → 0, (28)

0 → OC′x → OC′x(H) → Olx → 0. (29)

Here the exact sequence (29) is induced by the exact sequence

0 → OC′x(−lx)(= OC′x(−H)) → OC′x → Olx → 0.

(Note that Olx(H) ' Olx .)
Applying the functor Ψ(−)[−2] to (29), we have the exact triangle

Ψ(OC′x)[−2] → Ψ(OC′x(H))[−2] → Ψ(Olx)[−2].

If Ψ(OC′x)[−2] ' Cl1 and Ψ(OC′x(H))[−2] ' Cl0(h), there is an exact triangle

U1 → U0(h) → H0(Qx). (30)

This implies the statement in the lemma by Proposition 5.5. So we need to prove that
Ψ(OC′x)[−2] ' Cl1 and Ψ(OC′x(H))[−2] ' Cl0(h).

First we prove that Ψ(OC′x)[−2] ' Cl1. By Lemma 2.15 and the exact triangle (27), we have
Ψ(OD) = 0.

Applying the functor Ψ to the sequence (28), we have the exact triangle

Ψ(OD(−H)) → Ψ(OD) → Ψ(OC′x).

Since Ψ(OD) = 0, we have Ψ(OC′x) ' Ψ(OD(−H))[1].
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Applying Ψ(−⊗OX̃(−H)) to the sequence (27), we have

Ψ(OX̃(h− 2H)) → Ψ(OX̃(−H)) → Ψ(OD(−H)).

By Lemma 2.15, we get isomorphisms

Ψ(OC′x) ' Ψ(OD(−H))[1]

' Ψ(OX̃(h− 2H))[2]

' Cl1[2].

It remains to prove that Ψ(OC′x(H))[−2] ' Cl0(h). Applying Ψ(− ⊗ OX̃(H)) to the
sequence (28), we have

Ψ(OD) → Ψ(OD(H)) → Ψ(OC′x(H)).

Since Ψ(OD) = 0, we have Ψ(OC′x(H)) ' Ψ(OD(H)). Applying Ψ(− ⊗ OX̃(H)) to the
sequence (27), we have

Ψ(OX̃) → Ψ(OX̃(H)) → Ψ(OD(H)).

By Lemma 2.15, we get isomorphisms

Ψ(OC′x(H)) ' Ψ(OD(H))

' Ψ(OX̃(H))

' Cl0(h)[2]. 2

Next, we calculate Mukai vectors of Px and (Px)tor. Fix a B-field B ∈ H2(S, 12Z) of the Brauer
class α.

Lemma 5.8 [Tod16, Lemma 3.2]. We have RHom(Cli,Cli) = C ⊕ C[−2] for i = 0, 1. In
particular, Ui is spherical.

Lemma 5.9 [Tod16, Lemma 4.6]. We can express vB(U0) = (2, s, t) such that s2 − 4t = −2 and
s− 2B ∈ PicS.

Proof. Recall that U0 is the α-twisted vector bundle of rank 2. So we can write vB(U0) =
(2, s, t) ∈ H̃1,1(S,B,Z). Since U0 is spherical, we have χ(U0,U0) = −2. By the Riemann–Roch
formula (2), we have s2 − 4t = −2.

By Lemma 2.3, we have s− 2B ∈ PicS. 2

Toda [Tod16, Corollary 4.4] proved that

[Cl1] = 3
8 [Cl0] + 3

4 [Cl0(h)]− 1
8 [Cl0(2h)]

in N(Db(P2,Cl0)). Let U1 ∈ Coh(S, α) be the α-twisted vector bundle corresponding to Cl1.
Using this relation, we can calculate the Mukai vector of U1 as follows.

Lemma 5.10 [Tod16, Lemma 4.6]. We have

vB(U1) = eh/2vB(U0) = (2, s+ h, t+ 1
2sh+ 1

2).

We now calculate the Mukai vector of Px.
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Proposition 5.11. Let x ∈ X be a point. Then

vB(Px) = (2, s+ 2h, t+ sh). (31)

Proof. By Lemma 4.3, the numerical classes of Px and Py are the same for any points x, y ∈ X.
So we can assume that x ∈ X\P . Since Qx is a zero-dimensional torsion sheaf of length 2, we
have vB(Qx) = (0, 0, 2). Using the exact sequence (24), we then have

vB(Px) = vB(U0(h))− vB(Qx)

= eh(2, s, t)− (0, 0, 2)

= (2, s+ 2h, t+ sh). 2

In the next lemma, we calculate the Mukai vector of (Px)tor.

Lemma 5.12. Let x ∈ P be a point. Then we have

vB((Px)tor) = (0, h, 12sh−
1
2). (32)

Proof. By (26) and Lemma 5.10, we have

vB((Px)tor) = vB(U0)− e−hvB(U1)
= (0, h, 12sh−

1
2). 2

Proposition 5.13. Let x ∈ P be a point. Then Px/(Px)tor ' U1.

Proof. Note that Px/(Px)tor and U1 are µB-stable rank-2 torsion-free sheaves. We can calculate
the Mukai vector of Px/(Px)tor as follows:

vB(Px/(Px)tor) = vB(Px)− vB((Px)tor)

= (2, s+ h, t+ 1
2sh+ 1

2)

= vB(U1).

Since the moduli space of stable sheaves with Mukai vector (0, h, 12sh−
1
2) is the point, we have

Px/(Px)tor ' U1. 2

In the next section, we construct stability conditions under which Px is stable for any points
x ∈ X.

6. Construction of stability conditions

We use the same notation as in the previous section. In this section we assume that Pix(S) = Zh;
so we have α 6= 1. We will construct stability conditions in the main theorem. First we recall
how to construct stability conditions on Db(S, α).

Theorem 6.1 [Bri08, HS05]. Take B′ ∈ NS(S)R and a real ample class ω ∈ NS(S)R. Let B̃ :=
B′ +B ∈ H2(S,R). We define a group homomorphism Z := ZB̃,ω : N(S, α) → C by

ZB̃,ω(E) := 〈vB(E), eB̃+iω〉.

We can define a torsion pair (T , F ) on Coh(S, α) as follows:
• T := 〈E ∈ Coh(S, α) | E is µB-semistable with µB(E) > B̃ω〉ex;
• F := 〈E ∈ Coh(S, α) | E is µB-semistable with µB(E) 6 B̃ω〉ex.
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Then C := 〈F [1], T 〉ex ⊂ Db(S, α) is the heart of a bounded t-structure on Db(S, α) induced
by the torsion pair (T ,F). Here we denote the extension closure by 〈−〉ex. The pair (Z, C)
is a stability condition on Db(S, α) if and only if for any spherical twisted sheaf E we have
ZB̃,ω(E) /∈ R60.

We introduce the candidate of stability conditions in the main theorem.

Definition 6.2. Let
B̃ := 1

2 l + 1
4h+B = 1

2s+ 1
4h ∈ H

2(S,Q).

Here l := s− 2B ∈ PicS. For λ > 0, we define the pair σλ = (Zλ, C) := (ZB̃,λh, C).

By the definition of Zλ, we can prove the following lemma.

Lemma 6.3. Let E ∈ Db(S, α) be an object such that vB(E) = (r, c, d). Then

Zλ(E) = cB̃ − 1
2rB̃

2 + rλ2 − d+ λi(c− rB̃)h.

The pair σλ gives the stability conditions.

Lemma 6.4. If λ > 1/4, then σλ = (Zλ, C) := (ZB̃,λh, C) is a stability condition on Db(S, α).

Proof. Assume that there is a spherical twisted sheaf E such that ZB̃,ω(E) ∈ R60. Let vB(E) = (r,

c, d). Since ρ(S) = 1 and E is spherical, we have r > 0 and c2−2rd = −2, because ImZλ(E) = 0
and so by Lemma 6.3 we have c = rB̃. Hence

r2B̃2 − 2rd = −2. (33)

By ReZB̃,ω(E) ∈ R60, we have the inequality

1
2rB̃

2 + rλ2 6 d.

Using (33), we have r2λ2 6 1. Due to λ > 1/4, we get r2 < 16. Since r is even, we obtain r = 2.
Hence c = 2B̃ = s+ 1/2h; but this contradicts 1/2h /∈ H2(S,Z). 2

For simplicity, we denote the central charge Zλ by Z. The goal of this section is to establish
the following proposition.

Proposition 6.5. Assume that X is very general. If
√

3/4 < λ < 3/4, then σλ is generic with
respect to v and Px is σλ-stable for all x ∈ X.

As a special case of Lemma 6.4, we have the following result.

Lemma 6.6. For a point x ∈ X, we have

Z(Px) = 2λ2 + 3
8 + 3λi.

For a point x ∈ P , we have
Z((Px)tor) = 1 + 2λi.

By Lemma 6.6, we can compare the phases of Px and (Px)tor for x ∈ P .
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Remark 6.7. Let x ∈ P be a point. Then φ((Px)tor) < φ(Px) if and only if λ < 3/4.

Proof. By Lemma 6.6, the inequality φ((Px)tor) < φ(Px) is equivalent to

ReZ((Px)tor) >
2
3ReZ(Px).

Solving this inequality, we get λ < 3/4. 2

The following lemma allows us to discuss σλ-stability of objects Px.

Lemma 6.8. We have Px ∈ C for all x ∈ X.

Proof. Take x ∈ X\P . Since α 6= 1 and Px is of rank 2 and torsion-free, Px is µB-stable. Because
ImZ(Px) = 3λ > 0, we have µB(Px) > B̃h. Hence Px ∈ T .

Take x ∈ P . Since α 6= 1, Px/(Px)tor is µB-stable. Since ImZ(Px/(Px)tor) = λ > 0, we have
µB(Px/(Px)tor) > B̃h. Hence Px ∈ T . 2

Lemma 6.9. Let x ∈ X be a point and let 0 6= F ⊂ Px be a subobject in C. Then F ∈ T and
ImZ(F ) > 0.

Proof. Since Px ∈ T , we have H−1(F ) = 0. So we obtain F ∈ T .
We prove that ImZ(F ) > 0. If F is not torsion, then ImZ(F ) > 0 holds. So we assume that

F is torsion.
Consider the exact sequence

0 → F → Px → Coker(F → Px) → 0

in C. Taking the long exact sequence, we have the exact sequence

0 → H−1(Coker(F → Px)) → F → Px → H0(Coker(F → Px)) → 0

in Coh(S, α).
Since H−1(Coker(F → Px)) ∈ F and F is torsion, we have

H−1(Coker(F → Px)) = 0.

So F ⊂ (Px)tor in Coh(S, α). If x ∈X\P , we have (Px)tor = 0 and F 6= 0. This is a contradiction; so
we can assume x ∈ P . Since (Px)tor is a one-dimensional pure torsion sheaf, F is a one-dimensional
torsion sheaf. Hence, ImZ(F ) > 0 holds. 2

The following description of the central charge Z will be useful later.

Lemma 6.10. Let E ∈ Db(S, α) be an object such that vB(E) = (r, c, d) and set L := c− rB̃ and
m := Lh. Then L ∈ Pic(S)⊗Q, m ∈ Z. If r = 0, then

Z(E) = −d+ cB̃ + iλm ∈ 1
2Z× 2λZ. (34)

If r 6= 0, then

Z(E) = −1

r

(
1 +

m2

4

)
+ rλ2 + iλm+

2− χ(E,E)

2r
. (35)
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Proof. Assume that r = 0. Then there is k ∈ Z such that c = kh by ρ(S) = 1. By Lemma 6.3,
we have

Z(E) = −d+ cB̃ + iλm

= −d+ 1
2ksh+ 1

2k + 2λki ∈ 1
2Z× 2λZ.

The second statement is deduced from Lemma 6.3 and (2). 2

Lemma 6.11. Assume that λ >
√

3/4. For a σλ-semistable object E with vB(E) = v, we have
H−1(E) = 0.

Proof. Consider the natural exact sequence

0 → H−1(E)[1] → E → H0(E) → 0

in C. Suppose that H−1(E) 6= 0. Then rkH0(E) > 0 holds. Taking the Harder–Narasimhan
filtration and Jordan–Hölder filtration with respect to µB-stability, we obtain a µB-stable
subsheaf F ⊂ H−1(E). So we obtain an exact sequence

0 → F [1] → E → G → 0

in C. Taking the long exact sequence, we have the exact sequence

0 → F → H−1(E) → H−1(G)

→ 0 → H0(E) → H0(G) → 0.

Since E is σλ-semistable, we have ImZ(F [1]) > 0. So we obtain ImZ(F [1]) = λ, 2λ or 3λ. Since
H−1(E) is torsion-free, we have rkH0(E) > 0.

Suppose that ImZ(F [1]) = 3λ. Then we have

ImZ(H0(G)) + ImZ(H−1(G)[1]) = ImZ(G) = 0,

so we can deduce that ImZ(H0(E)) = ImZ(H0(G)) = 0. Since rkH0(E) > 0, ImZ(H0(E))
must be positive. This is a contradiction; therefore ImZ(F [1]) = λ or 2λ.

Let vB(F [1]) = −(r, c, d), L := c − rB̃ and m := Lh. Note that r > 0 and m = −1 or −2.
By (35), we have

Z(F [1]) =
1

r

(
1 +

m2

4

)
− rλ2 − iλm− 2− χ(F, F )

2r
.

Since F is simple, we have
2− χ(F, F )

2r
> 0.

So, by the σλ-semistability of E, we have the following inequality:

−m
3

(
2λ2 +

3

8

)
6 ReZ(F [1]) 6

1

r

(
1 +

m2

4

)
− rλ2.

Note that a function of the form a/x−bx2, where a and b are positive real numbers, is monotone
decreasing for x > 0. Assume that m = −1. Then we have the inequality

2
3λ

2 + 1
8 6

5
8 − 2λ2.
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Solving it, we get
√

3/4 > λ. This is a contradiction, so we deduce that m = −2. Assume that
r > 4. Then we have

4
3λ

2 + 1
4 6

1
2 − 4λ2.

Solving it, we get
√

3/8 > λ. This is a contradiction, so r = 2. Since ρ(S) = 1, there is k ∈ Q
such that L = kh. By m = −2, we have k = −1. This implies c = s − 1/2h by the definition of
L, which contradicts 1/2h /∈ H2(S,Z). 2

The following statement is part of the main proposition in this section.

Proposition 6.12. Assume that
√

3/4 < λ < 3/4. Then σλ is generic with respect to v.

Proof. It is sufficient to prove that σλ-semistable objects with Mukai vector v are σλ-stable. Let
E ∈ C be a σλ-semistable object with Mukai vector v. Suppose that E is not σλ-stable. Then
there is an exact sequence

0 → F → E → G → 0

in C such that φ(E) = φ(F ). Now F is also σλ-semistable. Taking the Jordan–Hölder filtration
of F , we can assume that F is σλ-stable. Since ImZ(E) = 3λ and φ(F ) = φ(E), we have
Z(F ) = m(2λ2 + 3/8)/3, where vB(F ) = (r, c, d), L := c − rB̃ and m := Lh. Note that m = 1
or 2.

Assume that r = 0. Since ρ(S) = 1, we have m = 2, so

1
2 < ReZ(F ) = 2

3(2λ2 + 3
8) < 1.

By (34), this is a contradiction. Hence, r > 0 holds by Lemma 6.11.
Therefore we have the equality

m

3

(
2λ2 +

3

8

)
= −1

r

(
1 +

m2

4

)
+ rλ2 +

2− χ(F, F )

2r
. (36)

Assume that m = 1. Suppose that r > 4. Then we have the inequality

1
3(2λ2 + 3

8) > − 5
16 + 4λ2.

Solving it, we get
√

21/40 > λ. This is a contradiction; hence r = 2. By (36), we have

4

3
λ2 − 3

4
=
χ(F, F )− 2

4
.

Since the Mukai lattice is even, the right-hand side is in 1
2Z. However, we have −1/2 < 4λ2/3−

3/4 < 0. This is a contradiction, so m = 2. Note that L = h due to ρ(S) = 1. If r > 6, then we
have 1/8 > λ2 by (36) as in the case of m = 1. So we get r = 2 or 4. If r = 2, then c = s+ 2/3h.
This is a contradiction; hence we must have r = 4. By L = h and r = 4, we get c = 2s+2h. Since
H2(S,Z) is even, we have χ(F, F ) = −vb(F )2 = −4s2 − 8sh− 8 + 8d ∈ 8Z. By (36), we have

8

3
λ2 − 1

2
=
χ(F, F )

8
.

The right-hand side is an integer. However, we have 0 < 8λ2/3−1/2 < 1, which is a contradiction.
2
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We will prove the σλ-stability of objects Px for x ∈ X. We need some cohomology
computations for U1 and Px.

Lemma 6.13 [Tod16, Lemma 3.7]. Let IP ⊂ OX be the ideal sheaf of the plane P in X. Then

Rσ∗Φ(Cl1) ' IP ⊕OX(−H)⊕3.

Lemma 6.14. We have Hom(U1, Px) = 0 for all x ∈ X.

Proof. There are the following isomorphisms and an inclusion:

Hom(U1, Px) ' Hom(Px,U1[2])

' HomCl0(Ψ(Lσ∗Ix(H))[−2],Cl1[2])

' HomX(Ix(H)[−2],Rσ∗Φ(Cl1)[2])

' HomX(Ix(H)[−2], IP ⊕OX(−H)⊕3[2])

' HomX(Ix(H)[−4], IP ⊕OX(−H)⊕3)

' HomX(IP ⊕OX(−H)⊕3, Ix(−2H))

' HomX(IP ⊕OX(−H)⊕3, Ix(−2H))

' HomX(IP , Ix(−2H))⊕HomX(OX(−H), Ix(−2H))⊕3

⊂ HomX(I∨∨P , Ix(−2H)∨∨)⊕Hom(OX(−H)∨∨, Ix(−2H)∨∨)⊕3

' HomX(OX ,OX(−2H))⊕HomX(OX(−H),OX(−2H))⊕3

= 0.

The first isomorphism is given by the Serre duality for AX . The third isomorphism is deduced
from the adjoint property. The fourth isomorphism is given by Lemma 6.13. The sixth
isomorphism is given by the Serre duality for Db(X). So we have Hom(U1, Px) = 0. 2

The following proposition completes the proof of the main theorem.

Proposition 6.15. Assume that
√

3/4 < λ < 3/4. Then Px is σλ-stable for any point x ∈ X.

Proof. Take x ∈X. By Proposition 6.12, it is sufficient to prove that Px is σλ-semistable. Suppose
that Px is not σλ-semistable. Then there is an exact sequence

0 → F → Px → G → 0

in C such that φ(F ) > φ(Px). Taking the Harder–Narasimhan filtration and Jordan–Hölder
filtration of F , we can assume that F is σλ-stable. Since Px ∈ T , the object F is also contained
in T .

Let vB(F ) = (r, c, d), L := c − rB̃ and m := Lh. First, we prove that r > 0. Assume that
r = 0. Since H−1(G) ∈ F , we have H−1(G) = 0. So F is a subsheaf of Px. Since Px is torsion-free
for x ∈ X\P , it is sufficient to consider the case of x ∈ P . Now F ⊂ (Px)tor and (Px)tor is a
one-dimensional pure torsion sheaf. So we can write vB(F ) = (0, h, k) for some k ∈ Z. Since
(Px)tor/F is a zero-dimensional torsion sheaf, we have φ((Px)tor) > φ(F ). By Remark 6.7, this
is a contradiction. Note that r > 0 and m = 1 or 2.

By φ(F ) > φ(Px) and (35), we have the inequality

−1

r

(
1 +

m2

4

)
+ rλ2 +

2− χ(F, F )

2r
<
m

3

(
2λ2 +

3

8

)
. (37)
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Assume that m = 1. If r > 4, we have
√

21/40 > λ by (37) as in Lemmas 6.11 and 6.12. Hence
r = 2. By (37), we have χ(F, F ) > 0. Since F is simple and χ(F, F ) is even, we get χ(F, F ) = 2.
By L = 1/2h and χ(F, F ) = 2, we have

vB(F ) = (2, s+ h, t+ 1
2sh+ 1

2) = vB(U1).

Since ρ(S) = 1 and F is spherical, F must be torsion-free, so F is µB-stable. Since the moduli
space of stable sheaves with Mukai vector (2, s + h, t + 1

2sh + 1
2) is the point, we have F ' U1.

This contradicts Lemma 6.14. If rkF = 2, then rkG = 0. By (34), we have ImZ(G) ∈ 2Zλ ⊂ R.
However, ImZ(G) = λ holds. This is a contradiction, so we must have r > 4. However, we have
3/4
√

2 > λ by (37) again. By Proposition 6.12, we may assume that 3/4
√

2 < λ < 3/4, which is
a contradiction. 2
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