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TORSION OF ABELIAN VARIETIES OVER LARGE
ALGEBRAIC EXTENSIONS OF Q

MOSHE JARDEN and SEBASTIAN PETERSEN

Abstract. LetK be a finitely generated extension of Q, and letA be a nonzero

abelian variety over K. Let K̃ be the algebraic closure of K, and let Gal(K) =

Gal(K̃/K) be the absolute Galois group of K equipped with its Haar measure.

For each σ ∈ Gal(K), let K̃(σ) be the fixed field of σ in K̃. We prove that for

almost all σ ∈ Gal(K), there exist infinitely many prime numbers l such that

A has a nonzero K̃(σ)-rational point of order l. This completes the proof of a

conjecture of Geyer–Jarden from 1978 in characteristic 0.
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Introduction

The goal of this work is to complete the proof of an old conjecture

of Geyer–Jarden in characteristic 0. The conjecture deals with a finitely

generated field K of Q. We fix an algebraic closure K̃ of K. Then, the

absolute Galois group Gal(K) = Gal(K̃/K) of K is a profinite group. It

is equipped with a unique Haar measure µK with µK(Gal(K)) = 1 [FrJ08,

p. 378, Section 18.5]. For each positive integer e> 1, the group Gal(K)e

is equipped with the product measure, which we also denote by µK . We

say that a certain statement holds for almost all σ ∈Gal(K)e if the set of

σ ∈Gal(K)e for which that statement holds has µK-measure 1. For each

σ = (σ1, . . . , σe) ∈Gal(K)e, we consider the field

K̃(σ) = {x ∈ K̃ | σix= x, i= 1, . . . , e}.

Given an abelian variety A over K and a positive integer m, we denote

the kernel of the multiplication of A by m with Am. For a prime number l,

we write Al∞ =
⋃∞
i=1 Ali .

Conjecture A. [GeJ78, p. 260, Conjecture] Let K be a finitely gener-

ated field over Q, let A be a nonzero abelian variety over K, and let e be a

positive integer. Then, for almost all σ ∈Gal(K)e the following holds:

(a) If e= 1, then there exist infinitely many prime numbers l with

Al(K̃(σ)) 6= 0.

(b) If e> 2, then there exist only finitely many prime numbers l with

Al(K̃(σ)) 6= 0.

(c) If e> 1 and l is a prime number, then Al∞(K̃(σ)) is finite.

B. Previous results. Conjecture A along with its analog to positive

characteristics has been proved in [GeJ78, p. 259, Theorem 1.1] when A

is an elliptic curve. The analog of the conjecture is true for an arbitrary

abelian variety over a finite field [JaJ84, p. 114, Proposition 4.2]. Note that

the latter paper contains a proof of Part (a) of Conjecture A and its analog

https://doi.org/10.1017/nmj.2017.33 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.33


48 M. JARDEN AND S. PETERSEN

to positive characteristic. Unfortunately, that proof is false as indicated

in [JaJ85].

Part (c) of Conjecture A along with its analog to positive characteristic

and Part (b) of the conjecture appear in [JaJ01, Main Theorem].

The main result of [GeJ05] considers a nonzero abelian variety A over a

number field K and says that there exists a finite Galois extension L of K

such that for almost all σ ∈Gal(L) there exist infinitely many primes l with

Al(K̃(σ)) 6= 0.

Finally, Zywina [Zyw16] improves [GeJ05] by proving Part (a) of Conjec-

ture A for a number field K not only for almost all σ ∈Gal(L) for some L

as [GeJ05] does but for almost all σ ∈Gal(K).

We generalize Zywina’s result to an arbitrary finitely generated extension

K of Q.

Theorem C. Let A be a nonzero abelian variety over a finitely generated

extension K of Q. Then, for almost all σ ∈Gal(K) there exist infinitely

many prime numbers l with Al(K̃(σ)) 6= 0.

D. On the proof. Let g = dim(A). For each prime number l let

ρA,l : Gal(K)→GL2g(Fl)

be the l-ic representation (also called the mod -l representation) of Gal(K)

induced by the action of Gal(K) on the vector space Al over Fl of

dimension 2g.

D1. Serre’s theorem. The proof of [GeJ05] uses the main result of [Ser86].

That result deals with a number field K. Among others, it gives a finite

Galois extension L of K, a positive integer n, and for each l a connected

reductive subgroup Hl of GL2g,Fl
such that (Hl(Fl) : ρA,l(Gal(L))) divides

n. In addition, the fields L(Al) with l ranging over all prime numbers are

linearly disjoint over L. Another important feature of Serre’s theorem is the

existence of a set Λ of prime numbers of positive Dirichlet density, such that

Hl splits over Fl for each l ∈ Λ.

D2. Borel–Cantelli lemma. For each l let

Sl = {σ ∈Gal(L) | ρA,l(σ) has eigenvalue 1}.

Then, [GeJ05] proves the existence of a positive constant c and a set Λ

of positive Dirichlet density such that µL(Sl)> c/l for each l ∈ Λ. Thus,
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l∈Λ µL(Sl) =∞. In addition, by D1, the sets Sl with l ranging over Λ

are µL-independent. It follows from the Borel–Cantelli lemma, that almost

all σ ∈Gal(L) lie in infinitely many Sl’s with l ∈ Λ. Thus, for almost all

σ ∈Gal(L) there exist infinitely many l’s such that Al(K̃(σ)) 6= 0, which is

the desired result over L.

D3. Zywina’s combinatorial approach. Zywina makes a more careful

use of the Borel–Cantelli lemma. In [Zyw16] he chooses a set B of

representatives of Gal(K) modulo Gal(L). For each l and every β ∈B he

considers the set

Uβ,l = {σ ∈ βGal(L) | ρA,l(σ) has eigenvalue 1}.

Then, he constructs a positive constant c and a set Λβ of prime numbers

having positive Dirichlet density such that

(1) µK(Uβ,l) >
c

l
for each l ∈ Λβ.

Again, by the Borel–Cantelli lemma, this leads to the conclusion that the

µK-measure of the set Uβ of all σ ∈Gal(K) that belong to infinitely many

Uβ,l is 1
[L:K] . Since the Uβ’s with β ∈B are disjoint, it follows that for almost

all σ ∈Gal(K) there are infinitely many l’s such that Al(K̃(σ)) 6= 0.

D4. Function Fields. Now assume that K is a finitely generated extension

of Q of positive transcendence degree and choose a subfield E of K such

that K/E is a regular extension of transcendence degree 1. We wish to find

a place of K/E with residue field K that induces a good reduction of A

onto an abelian variety A over K such that

(2) Gal(K(Al)/K)∼= Gal(K(Al)/K)

for at least every l in a set of positive Dirichlet density.

D5. Hilbert irreducibility theorem. The first idea that comes into

mind is to use the Hilbert irreducibility theorem. However, that theorem

can take care of only finitely many prime numbers, so it is of no use for our

problem.

D6. Openness theorem. Instead, we choose a smooth curve S over E

whose function field is K such that A has a good reduction along S and

set K̂ =
∏
l∈L K(Al), where L is the set of all prime numbers. Using a
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combination of results of Anna Cadoret and Akio Tamagawa that goes under

the heading “openness theorem” (Proposition 1.6), we find a closed point s

of S with an open decomposition group in Gal(K̂/K). Let Ks be the residue

field of K at s and K̂s =
∏
l∈L Ks(As,l), where As is the reduction of A at s.

Then, there exists a finite extension K ′ of K in K̂ such that the reduction

modulo s induces an isomorphism Gal(K̂/K ′)∼= Gal(K̂s/Ks). This gives

the desired isomorphism (2) for K ′ rather than for K and for all prime

numbers l.

D7. Serre’s theorem over K. Now we use a result of [GaP13] and find

a finite Galois extension L of K that contains K ′ and satisfies the same

reduction conditions that K ′ does and in addition the fields L(Al), with l

ranging over all prime numbers, are linearly disjoint over L.

Note that Ks is again finitely generated over Q and the transcendence

degree of Ks over Q is one less than that of K. Starting with Serre’s theorem

for number fields mentioned above and using induction on the transcendence

degree over Q, we now prove the theorem of Serre mentioned in D1 over our

current field K.

D8. Strongly regular points. Having Serre’s theorem for our function

field K at our disposal, we now follow the proof of [Zyw16] to obtain the

estimates (1) for our abelian variety A/K. The proof contains a careful

analysis of regular points of the reductive groups Hl mentioned in Serre’s

theorem for l ∈ Λ. It uses Zywina’s crucial observation that if T is an Fl-
split maximal torus of Hl and t ∈ T (Fl), then tn! ∈ ρA,l(Gal(L)). Moreover,

if t is a regular element of Hl and T is the unique maximal torus of Hl

that contains t, then the number of points t′ ∈ T (Fl) with (t′)n! = tn! is at

most (n!)r, where r = rank(Hl) = dim(T ). Finally, still following [Zyw16], we

make use of the Lang–Weil estimates (or rather the more accurate version

of these estimates that [Zyw16] provides) to prove that “most of the points”

of ρA,l(Gal(K)) are regular points of Hl whose characteristic polynomials

have “maximal numbers of roots in Fl.” (We may refer to these points as

“strongly regular.”)

D9. Serre’s density theorem. At some point of the proof, [Zyw16] uses

the Chebotarev density theorem for number fields to choose a prime of

K whose Artin class is equal to a previously chosen conjugacy class in

Gal(L(Al)/K) (where L is the number field mentioned in Serre’s theorem

for number field). Instead, we use Serre’s generalization of the Chebotarev
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density theorem (Proposition 3.5) to our function field K in order to find a

prime p of K with the same properties as above.

§1. Adelic openness

Let K be a finitely generated transcendental extension of Q, and let A be

an abelian variety over K. We consider K as a function field of one variable

over a field E. Using results of Cadoret and Tamagawa, we prove that there

exists a finite extension K ′ of K in K̂ =
∏
l K(Al), with l ranging over all

prime numbers, such that the reduction modulo “almost every valuation v

of K ′ over E” maps the group Gal(K ′(Al)/K
′), for each l, isomorphically

onto the corresponding group with respect to the reduced objects.

To be more specific, let E be a finitely generated extension of Q, S an

absolutely integral smooth curve over E, K = E(S) the function field of S,

and A an abelian variety over K of dimension g > 0 with good reduction

along S [Shi98, p. 95, Proposition 25]. Let A(K̃) be the abelian group

of all K̃-rational points of A. For each m ∈ N, let Am be the kernel of

multiplication of A by m. By [Mil85, p. 116, Remark 8.4], Am(K̃) is a

free Z/mZ-module of rank 2g. Moreover, since A is defined over K, each

σ ∈Gal(K) gives rise to an automorphism of A(K̃) that leaves Am(K̃)

invariant.

We denote the set of all prime numbers by L. For each l ∈ L, let Tl(A) =

lim←−Ali(K̃) be the Tate module of A associated with l. Then, Al(K̃)∼= F2g
l

and Tl(A)∼= Z2g
l , so Aut(Al)∼= GL2g(Fl) and Aut(Tl(A))∼= GL2g(Zl). Thus,

the action of Gal(K) on A(K̃) mentioned in the preceding paragraph gives

rise to homomorphisms

(1) ρA,l : Gal(K)→GL2g(Fl), ρA,l∞ : Gal(K)→GL2g(Zl).

Since Ker(ρA,l) = Gal(K(Al)) and

Ker(ρA,l∞) = Gal(K(Al∞)) = Gal

( ∞⋃
i=1

K(Ali)

)
,

the homomorphism ρA,l (resp. ρA,l∞) (also called the l-ic and the l-adic

representations of Gal(K)) induces (under an abuse of notation) a homomor-

phism ρA,l : Gal(N/K)→GL2g(Fl) (resp. ρA,l∞ : Gal(N/K)→GL2g(Zl))
for each Galois extension N of K that contains K(Al) (resp. K(Al∞)).

We denote the set of closed points of S by Sclosed. By Hilbert Nullstellen-

satz, Sclosed is an infinite set.
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Since S is a smooth curve, each s ∈ Sclosed induces a discrete valuation

vs of K with residue field Ks, which is a finite extension of E in Ẽ [Lan58,

p. 151, Theorem 1] and where Ẽ is the algebraic closure of E in K̃.

Let Kur =Kur,S be the maximal Galois extension of K, which is

unramified along S, and observe that Ẽ ⊆Kur, because char(E) = 0. Thus,

Gal(Kur/K) is the étale fundamental group of S. Since char(Ks) = 0 for

each s ∈ Sclosed, [SeT68, Theorem 1] implies that

(2) K(Am)⊆Kur for each m ∈ N.

By what we said above, ρA,l and ρA,l∞ give rise to homomorphisms

ρl : Gal(Kur/K)→Aut(Al), ρl∞ : Gal(Kur/K)→Aut(Tl(A)).

Writing πl : Aut(Tl(A))→Aut(Al) for the epimorphism defined by the

reduction GL2g(Zl)→GL2g(Fl) modulo l, we have ρl = πl ◦ ρl∞ . Further,

the products of the ρl’s, the ρl∞ ’s, and the πl’s, with l ranging over L, give

rise to homomorphisms that fit into the following commutative diagram:

(3)

Gal(Kur/K)
ρ∞

vv

ρ

((∏
l∈L Aut(Tl(A))

π //
∏
l∈L Aut(Al).

Next we consider a point s ∈ Sclosed and choose an extension vs,ur of vs to

Kur. Since Ẽ ⊆Kur, the residue field of vs,ur is Ẽ. For each Galois extension

L of K in Kur we consider the decomposition group of vs,ur|L over K,

Ds,L/K = {σ ∈Gal(L/K) | for all x ∈ L : vs,ur(σx) > 0⇔ vs,ur(x) > 0}.

Since vs,ur/vs is unramified, reduction modulo the prime ideal of the

valuation ring of vs,ur gives rise to an isomorphism ϕs :Ds,Kur/K →Gal(Ks)

[EnP10, second paragraph of p. 123 and the “first exact sequence” on p. 124].

(4) Let ψs : Gal(Ks)→Ds,Kur/K be the inverse of ϕs. For each l ∈ L we

consider the homomorphism ρl∞,s = ρl∞ ◦ ψs : Gal(Ks)→Aut(Tl(A)).

It satisfies ρl∞,s(Gal(Ks)) = ρl∞(Ds,Kur/K). We also consider the homo-

morphisms

ρs = ρ ◦ ψs : Gal(Ks)→
∏
l∈L

Aut(Al)
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and

ρ∞,s = ρ∞ ◦ ψs : Gal(Ks)→
∏
l∈L

Aut(Tl(A)).

They satisfy

ρs(Gal(Ks)) = ρ(Ds,Kur/K) and ρ∞,s(Gal(Ks)) = ρ∞(Ds,Kur/K).

The following result of Anna Cadoret is the main theorem of [Cad15],

rewritten in our notation:

Proposition 1.1. We consider a point s ∈ Sclosed. If there exists l ∈ L
such that the group ρl∞,s(Gal(Ks)) is open in ρl∞(Gal(Kur/K)), then

ρ∞,s(Gal(Ks)) is open in ρ∞(Gal(Kur/K)).

Our goal is to prove the assumption of Proposition 1.1, hence to make the

consequence of that theorem valid. To this end, we combine two theorems

of Cadoret and Tamagawa.

Proposition 1.2. (Cadoret–Tamagawa) Given l ∈ L and d ∈ N, we set

S(d) = {s ∈ Sclosed | [Ks : E] 6 d} and consider the set

Sl = {s ∈ Sclosed | ρl∞,s(Gal(Ks)) is not open in ρl∞(Gal(Kur/K))}.

Then, Sl ∩ S(d) is finite.

Proof. By [CaT12, Theorem 5.1], ρl∞ is a GSRP representation. In other

words, the maximal abelian quotient of each open subgroup of the group

ρl∞(Gal(Kur/ẼK)) is finite. It follows from [CaT13, Theorem 1.1] that

Sl ∩ S(d) is finite, as claimed.

Corollary 1.3. There exists s ∈ Sclosed such that the group

ρ∞,s(Gal(Ks)) is open in ρ∞(Gal(Kur/K)).

Proof. Since K is the function field of the curve S over E, there exists

t ∈K, which is transcendental over E such that d= [K : E(t)]<∞. For

all but finitely many elements t ∈ E, the map t→ t gives rise to a point

s ∈ Sclosed such that [Ks : E] 6 d. Hence, S(d) is infinite.

Now we choose l ∈ L. By Proposition 1.2 and the preceding para-

graph, the set S(d) r Sl is infinite. Thus, there exists s ∈ Sclosed such that

ρl∞,s(Gal(Ks)) is open in ρl∞(Gal(Kur/K)). It follows from Proposition 1.1

that ρ∞,s(Gal(Ks)) is open in ρ∞(Gal(Kur/K)), as claimed.
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Corollary 1.4. There exists s ∈ Sclosed such that the group

ρs(Gal(Ks)) is open in ρ(Gal(Kur/K)).

Proof. Let s be a point in Sclosed that satisfies the conclusion of

Corollary 1.3. Then, by (4), the commutative diagram (3) extends to a

commutative diagram

(5)

Gal(Ks)

ρ∞,s

}}

ψs

�� ρs

  

Gal(Kur/K)
ρ∞

vv

ρ

''∏
l∈L Aut(Tl(A))

π //
∏
l∈L Aut(Al) .

In particular,

π(ρ∞,s(Gal(Ks))) = ρs(Gal(Ks))

and

π(ρ∞(Gal(Kur/K))) = ρ(Gal(Kur/K)).

By Corollary 1.3, ρ∞,s(Gal(Ks)) is open in ρ∞(Gal(Kur/K)). By [FrJ08,

p. 5], π is an open map. Therefore, ρs(Gal(Ks)) is open in ρ(Gal(Kur/K)).

Setup 1.5. We interpret Corollary 1.4 in terms of Galois groups. To

this end, we fix a point s ∈ Sclosed such that ρs(Gal(Ks)) is open in

ρ(Gal(Kur/K)). Since A has good reduction at s, its reduction As with

respect to vs is an abelian variety over Ks; in particular, it is nonempty and

absolutely integral [Shi98, p. 83, Section 11.1]. Moreover, by the last para-

graph of [Shi98, p. 70], dim(As) = dim(A) = g. We write K̂ =
∏
l∈L K(Al)

and K̂s =
∏
l∈L Ks(As,l). By (2), K̂ ⊆Kur. Moreover, by [SeT68, p. 495,

Lemma 2], for each l ∈ L, reduction modulo s induces an isomorphism

Al(K̃)→As,l(K̃s).

We denote the restriction of vs,ur to K̂ by v̂s. Then, K̂s is the residue

field of K̂ with respect to v̂s. Also, Ds,K̂/K is the image of Ds,Kur/K under

the restriction map res : Gal(Kur/K)→Gal(K̂/K). We write K ′ for the

fixed field of Ds,K̂/K in K̂ (and note that K ′ depends on s). Then, ψs

induces a monomorphism ψ̂s : Gal(K̂s/Ks)→Gal(K̂/K) whose image is
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Gal(K̂/K ′). Let ϕ̂s : Gal(K̂/K ′)→Gal(K̂s/Ks) be the inverse of ψ̂s. Again,

by [SeT68, p. 495, Lemma 2], the isomorphism Al(K̃)→As,l(K̃s) induces

an isomorphism αl : Aut(Al)→Aut(As,l) that commutes with the action of

Gal(K̂/K ′). Thus, αl ◦ ρA,l|Gal(K̂/K′) = ρAs,l ◦ ϕ̂s|Gal(K̂s/Ks) for each l ∈ L.

The product of the αl’s gives rise to an isomorphism α :
∏
l∈L Aut(Al)→∏

l∈L Aut(As,l).

Proposition 1.6. In the notation of Setup 1.5 and in particular with

the choice of the closed point s of S made in the Setup, K ′ is a finite

extension of K in K̂.

Proof. Observe that ρ : Gal(Kur/K)→
∏
l∈L Aut(Al) naturally decom-

poses as ρ= ρ̂ ◦ resKur/K̂
, where ρ̂ : Gal(K̂/K)→

∏
l∈L Aut(Al) is defined

by the action of Gal(K̂/K) on the Al’s. Since K̂ =
∏
l∈L K(Al), the

homomorphism ρ̂ is injective.

Similarly, we write ρ′s : Gal(K̂s/Ks)→
∏
l∈L Aut(As,l) for the correspond-

ing monomorphism associated with Ks and As. It fits into the following

commutative diagram:

(6)

Gal(Kur/K)
res //

ρ

++
Gal(K̂/K)

ρ̂
//
∏
l∈L Aut(Al)

α

��
Gal(Ks)

res //

ψs

OO

ρs

22
Gal(K̂s/Ks)

ρ′s //

ψ̂s

OO

∏
l∈L Aut(As,l).

Note that in the notation of Corollary 1.4, ρ′s ◦ res
K̃s/K̂s

= ρs. We use

Corollary 1.4 in order to choose s ∈ S(Ẽ) such that the group ρs(Gal(Ks))

is open in ρ(Gal(Kur/K)). Since both restriction maps in (6) are surjective,

α−1(ρ′s(Gal(K̂s/Ks))) is open in ρ̂(Gal(K̂/K)). Since ψ̂s is injective, since

α is bijective, and since both ρ′s and ρ̂ are injective, the group Ds,K̂/K =

ψ̂s(Gal(K̂s/Ks)) is open in Gal(K̂/K). It follows that K ′, which is the fixed

field of Ds,K̂/K in K̂, is a finite extension of K in K̂, as claimed.

§2. Independent homomorphisms

Let Γ be a profinite group, and let I be a set. For each i ∈ I let ρi be a

homomorphism of Γ into a profinite group Γi. Here we follow the usual
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convention and always assume that a homomorphism between profinite

groups is continuous. In addition, every finite group is equipped with the

discrete topology. Let ρ=
∏
i∈I ρi be the direct product of the ρi’s. That

is, ρ is the homomorphism from Γ to
∏
i∈I Γi defined by ρ(x) = (ρi(x))i∈I .

Following [Ser13] and [GaP13], we say that the family (ρi)i∈I is independent

if ρ(Γ) =
∏
i∈I ρi(Γ).

Note that if a family (ρi)i∈I of homomorphisms as in the preceding

paragraph is independent and α : Γ′→ Γ is an epimorphism of profinite

groups, then the family (ρi ◦ α)i∈I is also independent.

Lemma 2.1. Let (Gi)i∈I be a family of closed subgroups of a profinite

group G, and let H be an open subgroup of G. Suppose that
⋂
i∈I Gi = 1.

Then, I has a finite subset J such that
⋂
i∈J Gi 6H.

Proof. Assume toward contradiction that the lemma does not hold.

Then, for each finite subset J of I the closed subset
⋂
j∈J Gj rH is

nonempty. If J ′ is a finite subset of I that contains J , then
⋂
j∈J ′ Gj rH ⊆⋂

j∈J Gj rH. It follows from the compactness ofG that the set
⋂
i∈I Gi rH

is nonempty. This contradicts the assumption that
⋂
i∈I Gi = 1 ∈H.

One of the ingredients of the proof of the following lemma appears in

[GaP13, Remark 3.2(b)(ii)].

Lemma 2.2. Let Γ be a profinite group. For each i in a set I, let ρi
be a homomorphism of Γ into a finite group Γi. Suppose that the family

(ρi)i∈I is independent,
⋂
i∈I Ker(ρi) = 1, and ∆ is an open subgroup of Γ.

Then, ∆ has an open subgroup ∆′, which is normal in Γ such that the family

(ρi|∆′)i∈I is independent.

Proof. By assumption, the homomorphism ρ=
∏
i∈I ρi satisfies ρ(Γ) =∏

i∈I ρi(Γ). Since ∆ is open in Γ, the subgroup ρ(∆) of
∏
i∈I ρi(Γ) is open

[FrJ08, p. 6, Remark 1.2.1(f)]. Thus, I has a finite subset J such that∏
i∈J 1×

∏
i∈IrJ ρi(Γ) 6 ρ(∆).

Since
⋂
i∈I Ker(ρi) = 1, we may use Lemma 2.1 to enlarge J such that

∆′ =
⋂
i∈J Ker(ρi) 6 ∆. In particular, ∆′ is normal in Γ. Since the Γi’s are

finite, ∆′ is open in ∆.

Given a family (xi)i∈I in (∆′)I , we have ρi(xi) = 1 for each i ∈ J . Thus,

(ρi(xi))i∈I ∈
∏
i∈J 1×

∏
i∈IrJ ρi(Γ) 6 ρ(∆). Hence, there exist x ∈∆ with

ρ(x) = (ρi(xi))i∈I . In particular, ρi(x) = ρi(xi) = 1 for each i ∈ J , so x ∈∆′.

It follows that ρ(∆′) =
∏
i∈I ρi(∆

′). This means that the family (ρi|∆′)i∈I is

independent, as claimed.
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Remark 2.3. Let K be a field. For each i ∈ I let ρi : Gal(K)→Gi be a

homomorphism of profinite groups, and let Ki be the fixed field of Ker(ρi)

in K̃. Consider a Galois extension K̂ of K in K̃ that contains each Ki and

let ρ̂i : Gal(K̂/K)→Gi be the homomorphism induced by ρi. As noticed in

[GaP13, Remark 3.1], the family (Ki)i∈I is linearly disjoint over K if and

only if the restriction maps

ρ̂i : Gal(K̂/K)→Gi, i ∈ I

are independent (see also [FrJ08, Lemma 2.5.6]).

§3. Serre’s density theorem

We give in this section an account of a generalization of the Chebotarev

density theorem to finitely generated extensions of Q due to Jean-Pierre

Serre. We call this generalization “Serre’s density theorem.”

3.1 Nagata rings

Recall that a Noetherian ring A (commutative with 1) is called a Nagata

ring if for every prime ideal P of A and for every finite extension L of

Quot(A/P ) the integral closure of A/P in L is a finitely generated A/P -

module (see [Mat80, p. 231] or [Liu06, p. 340, Definition 2.27]). In particular,

every field and every Dedekind domain of characteristic 0 are Nagata rings

[Liu06, p. 340, Example 2.28]. It follows from the definition that if A is

a Nagata ring and U is a multiplicative subset of A, then U−1A is also a

Nagata ring. The main theorem about Nagata rings, due to Nagata, says

that each finitely generated ring extension of a Nagata ring is again a Nagata

ring [Mat80, p. 240, Theorem 72]. In particular, every finitely generated Z-

algebra is a Nagata ring.

3.2 Regular rings

Let K be a finitely generated extension of Q and let L be a finite

Galois extension of K, and choose a transcendence base (t1, . . . , tr) for

K/Q. By Section 3.1, R0 = Z[t1, . . . , tr] is a Nagata ring and the Krull

dimension, dim(R0), of R0 is r + 1 = trans.deg(K/Q) + 1. Therefore, the

integral closure R of R0 in K is a finitely generated R0-module with

Quot(R) =K. Thus, R= Z[x1, . . . , xk] for some x1, . . . , xk ∈K and R is a

Nagata ring with dim(R) = dim(R0) = trans.deg(K/Q) + 1. The set

U = {p ∈ Spec(R) |Rp is a regular ring}
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is open in Spec(R) [Gro65, p. 166, Corollary 6.12.6]. Moreover, U is

nonempty, because it contains the generic point of Spec(R). Therefore, there

exists a nonzero element f ∈R such that Spec(R[f−1])⊆ U . In particular,

the ring R[f−1] is regular. Adding f−1 to the set {x1, . . . , xk}, if necessary,

we may assume that Spec(R) is smooth, so R is a regular ring.

Since R is a Nagata ring, its integral closure RL in L is a finitely generated

R-module, hence a finitely generated ring extension of Z. Moreover, the

fixed ring of RL under Gal(L/K) is R. Hence, Spec(R) is isomorphic

to the quotient scheme of Spec(RL) modulo Gal(L/K), where Gal(L/K)

acts on Spec(RL) in the natural way [GoW10, p. 331, Proposition 12.27].

Finally, we replace R and RL by R[u] and RL[u], if necessary, where u is an

appropriate element of K×, to assume that RL is a ring cover of R in the

terminology of [FrJ08, p. 109, Remark 6.1.5]. This means that RL =R[z],

where discr(irr(z, K)) is a unit of R and irr(z, K) is the monic irreducible

polynomial of z over K. In particular, RL is standard étale over R [Ray70,

p. 19, (2)].

3.3 Dirichlet density

We denote the set of maximal ideals of R by Max(R). For each

p ∈Max(R), the residue ring R/p is a finite field (see [Ser65, p. 83,

Section 1.3] or [Eis95, p. 132, Theorem 4.19]) and we set Np = |R/p|.
Note that Max(R) (resp. Max(RL)) is the set of closed points of Spec(R)

(resp. Spec(RL)).

This allows us to use the notation and the results of [Ser65, Section 2.7] for

X = Spec(RL), G= Gal(L/K), and Y = Spec(R). Let d= dim(Y ). Then,

d= trans.deg(K) + 1. Accordingly, the Dirichlet density of a subset B of

Max(R) is defined as the limit

(1) δ(B) = lim
s→d+

∑
p∈B (1/Nps)∑

p∈Max(R) (1/Nps)
,

if it exists. By [Ser65, p. 84, Corollary 2], the denominator of the fraction

in (1) diverges as s→ d+. Hence, δ(B) = 0 if B is finite. In other words, if

δ(B)> 0, then B is infinite.

3.4 Artin symbols

Next we consider p ∈Max(R) and choose pL ∈Max(RL) over p. Then,

RL/pL is a finite Galois extension of the finite field R/p. By our choice of R

and RL, the maximal ideal pL is unramified over R, so the decomposition
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group D =DpL/p of pL over p is isomorphic to D = Gal((RL/pL)/(R/p))

[FrJ08, p. 109, Lemma 6.1.4]. As usual we denote the element of D that

corresponds to the Frobenius element of D by [L/KpL ] and the conjugacy class

of [L/KpL ] in G= Gal(L/K) by (L/Kp ). This conjugacy class does not depend

on the choice of pL. If L′ is a finite Galois extension of K that contains L and

p is unramified in RL′ , then our definition implies that (L
′/K
p )|L = (L/Kp ).

With this notation, we may now state the Serre density theorem (that

Serre calls the “Artin–Chebotarev density theorem”).

Proposition 3.5. [Ser65, p. 258, Theorem 7] In the above notation, let

C be a conjugacy class of G. Then, the Dirichlet density of the set of all

p ∈Max(R) such that (L/Kp ) = C is equal to |C|/|G|. In particular, that set

is infinite.

In the case where K is a number field, Proposition 3.5 reduces to the

usual Chebotarev density theorem.

§4. Images of l-ic representations

Let A be an abelian variety over a number field K. Using previous results

of Faltings and Nori, Serre proved the existence of a finite Galois extension

L of K with a great amount of information about the groups ρA,l(Gal(L)).

We use Proposition 1.6 to generalize Serre’s result to finitely generated

extensions of Q, but limit our generalization only to properties we need in

what follows.

Proposition 4.1. Let A be an abelian variety of positive dimension g

over a finitely generated extension K of Q. Then, there exist positive integers

n, r, l0 and for each l > l0 there exists a connected reductive subgroup Hl of

GL2g,Fl
of rank r with the following properties:

(a) There exist a number field K0, an abelian variety A0 over K0 of

dimension g, a finite Galois extension L0 of K0, and a positive integer

n0 that divides n such that ρA0,l(Gal(L0)) is a subgroup of Hl(Fl) of

index 6 n0. Moreover, Hl contains the group Gm of homotheties of

GL2g,Fl
. Furthermore, the family (ρA0,l|Gal(L0))l>l0 of homomorphisms

is independent.

(b) There exists a finite Galois extension L of K such that the group

ρA,l(Gal(L)) is contained in Hl(Fl) with index 6 n. Moreover, the

family (ρA,l|Gal(L))l>l0 of homomorphisms is independent.
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Proof. First suppose that K is a number field. By Serre, there exist

positive integers n0, r, l0 and for each l > l0 there exists a connected

reductive subgroup Hl of GL2g,Fl
of rank r such that (a) holds with K0 =K,

A0 =A, L0 = L, and n= n0 (see [Zyw16, Theorem 3.1] for the statement).

A full account of statement (a) and the proof can be found in [Ser86]

(see also letters from Serre to M.-F. Vignéra [Ser00, #137] and K. Ribet

[Ser00, #138]). Finally, the statement about the independence of the family

(ρA,l|l>l0) is proved in [Ser13, Theorem 1].

Thus, (a) and (b) hold when K is a number field.

Now assume that the transcendence degree of K over Q is positive. In

Section 1 and in particular in Setup 1.5 we have introduced the following

objects: E is a finitely generated extension of Q, S is a smooth curve

over E whose function field is K, s is a closed point of S, Kur is the

maximal unramified extension of K along S (it contains K(Al) for each

l ∈ L), Ks is the residue field of K at s (it is a finite extension of

E with trans.deg(Ks/Q) = trans.deg(K/Q)− 1), As is an abelian variety

over Ks of dimension g, K ′ is a finite extension of K (Proposition 1.6),

ψ̂s : Gal(K̂s/Ks)→Gal(K̂/K ′) is an isomorphism, and ϕ̂s : Gal(K̂/K ′)→
Gal(K̂s/Ks) is the inverse of ψ̂s.

An induction hypothesis on the transcendence degree over Q applied to

Ks and As gives a number field K0, an abelian variety A0 over K0, a finite

Galois extension L0 of K0 and positive integers n0, r, l0 such that

(1a) For each prime number l > l0 there is a connected reductive subgroup

Hl of GL2g,Fl
such that ρA0,l(Gal(L0)) is a subgroup of Hl(Fl) of index

6n0. Moreover Hl is of rank r and contains the center Gm of GL2g,Fl
.

(1b) The family (ρA0,l|Gal(L0))l>l0 of homomorphisms is independent.

Moreover, there exists a finite Galois extension Ls of Ks and a positive

integral multiple ns of n0 with the following properties:

(2a) For all l > l0, ρA0,l
(Gal(Ls)) 6Hl(Fl), and (Hl(Fl) : ρAs,l(Gal(Ls))) 6

ns.
(2b) The family (ρAs,l|Gal(Ls))l>l0 of homomorphisms is independent.

Let L′ be the fixed field in Kur of ψs(Gal(Ls)). Then, L′ is a finite Galois

extension of K ′ in Kur and, by the last statement of Setup 1.5, we have the
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following commutative diagram:

Gal(K ′)
res //

ρA,l|Gal(K′)

''
Gal(Kur/K

′)
ϕs
// Gal(Ks)

ρAs,l// Hl(Fl)

Gal(L′)
res //

OO

Gal(Kur/L
′)

ϕs
//

OO

Gal(Ls)

OO

ρAs,l // Hl(Fl).

Since ϕs maps Gal(Kur/L
′) surjectively onto Gal(Ls), it follows from

(2b) that the family (ρA,l|Gal(L′))l>l0 of homomorphisms is independent

(Section 2, second paragraph).

Since K ′ is a finite extension of K, so is L′. However, L′ need not be Galois

over K. Nevertheless, by Lemma 2.2, K has a finite Galois extension L in

Kur that contains L′ such that the family (ρA,l|Gal(L))l>l0 is independent.

Moreover, for each l > l0 we have ρA,l(Gal(L)) 6 ρA,l(Gal(L′)) 6Hl(Fl) and,

by (2a),

(Hl(Fl) : ρA,l(Gal(L)))

= (Hl(Fl) : ρA,l(Gal(L′))) · (ρA,l(Gal(L′)) : ρA,l(Gal(L)))

6 (Hl(Fl) : ρAs,l(Gal(Ls))) · [L : L′] 6 ns[L : L′].

Thus, L satisfies Conditions (a) and (b) of the proposition with n=

ns[L : L′].

4.2 Tori in reductive groups

Let H be a connected reductive group over a field F and let T be a

maximal torus of H over F . Then, T (F̃ ) is isomorphic to (F̃×)r for some

positive integer r, called the rank of H [Spr98, p. 117, Section 7.2.1]. In

particular, T is absolutely integral. By [Spr98, p. 108, Proposition 6.4.2], all

maximal tori of H are conjugate, so the rank of H is independent of T .

We say that T F -splits if T is isomorphic over F to the group Dr of

diagonal matrices. Thus, in this case T (F )∼= (F×)r. We say that H F -splits

if H has a maximal F -split torus [Spr98, p. 271, Section 16.2.1]. By [Spr98,

p. 256, Theorem 15.2.6], all F -split maximal tori are conjugate by an element

of H(F ).

A result of Zywina gives additional information on the groups Hl

mentioned in Proposition 4.1.
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Lemma 4.3. Let A, g, K, L, n, r, l0, and Hl with l > l0, be as in

Proposition 4.1. Then, there is a finite Galois extension M of Q such that

if l ∈ L splits completely in M and is sufficiently large, then the following

holds:

(a) The reductive group Hl Fl-splits.

(b) Let (Xij , Y )16i,j62g be independent variables. We identify GL2g(Fl)
with the closed subvariety of Spec(Fl[Xij , Y ]16i,j62g) = A4g2+1

Fl
defined

by the equation det((Xij)16i,j62g)Y = 1.

Let T be an Fl-split maximal torus of Hl. Then, the torus T , viewed

as a closed subvariety of A4g2+1
Fl

, is defined by at most c1 polynomials

of degree at most c2, where c1 and c2 are constants that do not depend

on l.

Proof. By Proposition 4.1, the subgroups Hl satisfy Conditions (a)

and (b) of that proposition with respect to an abelian variety A0 of

dimension g defined over a number field K0 and with respect to a finite

Galois extension L0 of K0. Therefore, our lemma follows from [Zyw16,

Lemma 3.2] (in which A=A0, K =K0, and L= L0).

Another auxiliary tool that we quote from [Zyw16] is the following variant

of a theorem of Lang–Weil.

Proposition 4.4. [Zyw16, Theorem 2.1] Let q be a power of a prime

number and consider a Zariski-closed subset V of AkFq
with k > 1 defined by

the simultaneous vanishing of s polynomials f1, . . . , fs in Fq[X1, . . . , Xk],

each of which is of degree at most e. Let V1, . . . , Vm be the irreducible

components of VF̃q
, which have the same dimension as V . Then,

(a) |V (Fq)|6mqdim(V ) + 6(3 + se)k+12sqdim(V )− 1
2 .

If all of the components V1, . . . , Vm are defined over Fq, then

(b) ||V (Fq)| −mqdim(V )|6 6(3 + se)k+12sqdim(V )− 1
2 .

In the rest of this section we bound the constant m that appears in

Proposition 4.4 in terms of the degrees of f1, . . . , fs.

Lemma 4.5. Let F be an algebraically closed field, Y an irreducible

algebraic variety in AnF , H a hypersurface in AnF , and Z1, . . . , Zs the

irreducible components of Y ∩H. Then,
∑s

j=1 deg(Zj) 6 deg(Y ) deg(H).
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Proof. The degrees of Y and H do not change by taking the Zariski

closures of these varieties in PnF . The number of the components of Y ∩H
may only increase. Hence, we may assume that Y and H are projective.

If Y ⊆H, then Y = Y ∩H is the unique irreducible component of Y ∩H
and deg(Y ) 6 deg(Y ) deg(H). If on the other hand Y 6⊆H, then by [Har77,

p. 53, Theorem 7.7],

(3)
s∑
j=1

i(Y, H; Zj) deg(Zj) = deg(Y ) deg(H).

Since the intersection multiplicities i(Y, H; Zj) are positive integers, the

conclusion of the lemma follows from (3).

Lemma 4.6. Let F be an algebraically closed field and let f1, . . . , fk ∈
F [X1, . . . , Xn] be nonzero polynomials. Let

V = V (f1, . . . , fk) = Spec(F [X1, . . . , Xn]/

n∑
i=1

F [X1, . . . , Xn]fi)

be the algebraic variety in AnF defined by f1, . . . , fk and let Z1, . . . , Zm be

the irreducible components of V . Then, m6
∑m

i=1 deg(Zi) 6
∏k
i=1 deg(fi).

Proof. Since deg(Zi) > 1 for all i, the left inequality is clear. We prove

the right inequality.

First we consider the case where k = 1. Let f1 = cgd11 · · · gdmm be the

decomposition of f1 into a product of powers of irreducible polynomials in

F [X1, . . . , Xn], no one of which is a product of the other with an element of

K×, and c ∈K×. Then, V (g1), . . . , V (gm) are the irreducible components

of V (f1). By [Har77, p. 52, Proposition 7.6(d)], we have
∑m

i=1 deg(V (gi)) =∑m
i=1 deg(gi) 6

∑m
i=1 di deg(gi) = deg(f1).

Now we assume that k > 2, set Vk−1 = V (f1, . . . , fk−1), and let

W1, . . . , Wm′ be the irreducible components of Vk−1. An induction assump-

tion implies that

(4)

m′∑
i=1

deg(Wi) 6 deg(f1) · · · deg(fk−1).

For each 1 6 i6m′ let Zi,1, . . . , Zi,m′i be the irreducible components of

Wi ∩ V (fk). Then, the Zij with i= 1, . . . , m′ and j = 1, . . . , m′i are the

irreducible components of V (eventually with repetitions). By Lemma 4.5,
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j=1 deg(Zij) 6 deg(Wi) deg(fk). It follows from (4) that

m′∑
i=1

m′i∑
j=1

deg(Zij) 6
m′∑
i=1

deg(Wi) deg(fk) 6 deg(f1) · · · deg(fk−1) deg(fk),

and this implies the desired inequality.

§5. Good reduction of abelian varieties

We generalize results of Serre and Tate in [SeT68] about good reduction of

abelian schemes over discrete valuation rings to results about good reduction

of abelian schemes over more general integral domains.

5.1 Abelian scheme over a domain

Let R be a Noetherian integrally closed domain with quotient field K and

let π :A→ Spec(R) be an abelian scheme. Thus, π is a proper and smooth

morphism with connected geometric fibers [Mil85, p. 145, first paragraph of

Section 20].

Moreover, for each p ∈ Spec(R) let Kp = Quot(R/p) and set K̃p for the

algebraic closure of Kp. Also, let Ap =A×R Spec(Kp). Then, πp :Ap→
Spec(Kp) is a proper and smooth morphism with a connected geometric

fiber, so Ap is an abelian variety over Kp that we call the reduction of A
modulo p.

Note that π is of finite type and set g = dim(A)− dim(R) for the relative

dimension of A. Then, dim(Ap) = g for each p ∈ Spec(R) [Mum88, p. 304,

Theorem III.10.3’].

In particular, let o be the zero ideal of R. Then, the generic fiber A=Ao

of A is an abelian variety over K of dimension g.

5.2 Multiplication with m

By [Mil85, p. 116, Remark 8.4], multiplication of A by a positive integer

m is a finite and flat morphism of A onto A. Moreover, the kernel Am
of that morphism is a finite flat group scheme over Spec(R) of order m2g.

In particular, the finiteness of the morphism Am→ Spec(R) implies that

Am = Spec(B), where B =Bm is a ring extension of R, which is finitely

generated as an R-module [Mum88, p. 172, Definition II.7.3]. In other words,

B is an integral extension of R.

Remark 5.3. If none of the residue characteristics of R divides m

(equivalently, m /∈ p for each p ∈ Spec(R); equivalently, m is a unit of R),
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then multiplication of A by m as well as Am→ Spec(R) are étale morphisms

[Mil85, p. 147, Proposition 20.7]. Hence, B is étale over R.

5.4 Reduction modulo p

We consider a prime ideal p ∈ Spec(R) and compose each β ∈
HomR(B, R) with the quotient map R→R/p followed by the inclusion

R/p→Kp to get a homomorphism βp as in the following commutative

diagram

B
β
//

βp

&&
R // R/p // Kp.

The map β 7→ βp gives rise to a reduction map modulo p:

(1) HomR(B, R)→HomR(B, Kp).

There is a natural bijection HomR(B, R)→MorR(Spec(R), Spec(B)) that

maps each β ∈HomR(B, R) onto the R-morphism Spec(R)→ Spec(B) that

maps each prime ideal of R onto its inverse image in B under β [Liu06, p. 48,

Proposition 2.3.25]. By definition, Am(R) = MorR(Spec(R), Spec(B)). An

analogous rule applies to Kp rather than to R. This gives a commutative

diagram

(2)

Am(R)
fp

// Ap,m(Kp)

MorR(Spec(R), Spec(B))
fp
// MorR(Spec(Kp), Spec(B))

HomR(B, R) //

OO

HomR(B, Kp),

OO

where the vertical arrows are bijections. Note that if

s ∈MorR(Spec(R), Spec(B)),

then fp(s) = s ◦ ip, where ip is the natural map Spec(Kp)→ Spec(R/p)→
Spec(R) that maps the zero ideal of Kp onto p. Thus,

(3) if s, s′ ∈MorR(Spec(R), Spec(B)) and fp(s) = fp(s
′), then s(p) = s′(p).
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Lemma 5.5. Let R and A be as in Section 5.1 and let m be a positive

integer. Consider a prime ideal p of R and let o be the zero ideal of R. Then,

the following statements about the objects introduced in this section are true:

(a) the map fo :Am(R)→Am(K) is bijective;

(b) let p be a prime ideal of R such that char(Kp) -m. Then, the map

fp :Am(R)→Ap,m(Kp) is injective, hence

(c) the specialization map Am(K)
f−1
o // Am(R)

fp
// Ap,m(Kp) is

injective.

Proof of (a). We consider Diagram (2) in the case where p is the zero

ideal o of R. In this case, Kp =K. Let ι :R→K be the inclusion map.

By the commutativity of that diagram, it suffices to prove that the map

HomR(B, R)→HomR(B, K) defined by α 7→ ι ◦ α is bijective.

Indeed, the map α 7→ ι ◦ α is injective, because ι is injective. In order to

prove that the map is surjective it suffices to prove that β(B)⊆R for each

β ∈HomR(B, K).

Indeed, if x ∈B, then x is integral over R (by Section 5.2). Hence, so is

β(x). Since R is integrally closed, β(x) ∈R, as has to be proved.

Proof of (b). Since char(Kp) -m, we have char(K) -m. Hence, we may

consider the integrally closed integral domain R′ =R[m−1]. Then we make

a base change from R to R′ and consider the prime ideal p′ = pR′ of R′.

We also set A′ =AR′ and B′ =B[m−1]. Then, Quot(R′) = Quot(R) =K,

Quot(R′/p′) = Quot(R/p) =Kp, A′m = Spec(B′). Finally, we may identify

HomR(B, Kp) with HomR′(B
′, Kp). Hence, by Diagram (2), we may identify

Ap,m(Kp) with A′p′,m(Kp).

By (a) (applied to R and to R′), we may identify Am(R) and A′m(R′) with

Am(K); hence we may identify Am(R) with Am(R′). Let f ′p′ :A′m(R′)→
Ap,m(Kp) =A′p′,m(Kp) be the analogous map to fp :Am(R)→Ap,m(Kp).

Then, the following diagram commutes:

A′m(R′)
f ′
p′
// A′p′,m(Kp)

Am(K) Am(R)
fp
// Ap,m(Kp).

Thus, it suffices to prove that the morphism f ′p′ is injective.
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Let s, t be elements of A′m(R′) such that f ′p′(s) = f ′p′(t). By (3) for R′

rather than for R, s(p′) = t(p′). Diagram (2) identifies both s and t as

elements of MorR′(Spec(R′), Spec(B′)), that is, as sections of the morphism

h : Spec(B′)→ Spec(R′) induced from the inclusion R′ ⊆B′. Since m is

a unit of R′, Remark 5.3 implies that B′ is étale over R′. Since h is

affine, it is separated [Liu06, p. 100, Proposition 3.3.4]. Hence, by [Mil80,

p. 25, Corollary 3.12] or [Gro71, Exposé 1, p. 6, Corollary 5.3], s= t,

as claimed.

Proof of (c). This follows from (b) and from (a).

Let π :A→ Spec(R) be as in Section 5.1 and let m be a positive integer.

We use Lemma 5.5(a) to identify Am(R) and Am(K).

If char(Kp) -m, then by Lemma 5.5(c), the injective map fp :Am(R)→
Ap,m(Kp) can be considered as an injective homomorphism fp :Am(K)→
Ap,m(Kp) that we call the reduction map modulo p. If m′ is a multiple of m

and m′ /∈ p, then the reduction map modulo p with respect to m′ extends

the reduction map modulo p with respect to m.

Lemma 5.6. Let R and A be as in Section 5.1. Let m be a positive integer

and N an algebraic extension of K that contains K(Am). We denote the

integral closure of R in N by RN . Consider a prime ideal p of R that does

not contain m. Then, for each P ∈ Spec(RN ) over p, reduction modulo P

maps Am(N) isomorphically onto Ap,m(NP).

Proof. By Section 5.1, dim(Ap) is equal to the relative dimension g

of A over R. Hence, by [Mil85, p. 116, Remark 8.4], |Am(N)|=m2g and

|AP,m(NP)|= |Ap,m(NP)|6m2g. By Lemma 5.5(c) for RN and N rather

than R and K, the reduction map Am(N)→AP,m(NP) is injective. Hence,

that map is bijective, so it is an isomorphism.

5.7 Good reduction of representations

Again, let R, A, B, and m be as in Section 5.2. In particular, B =

R[x1, . . . , xk] is a finitely generated ring extension of R. Let I be the

kernel of the R-homomorphism R[X1, . . . , Xk]→B that maps Xi onto xi
for i= 1, . . . , k.

We consider again a Galois extension N of K that contains K(Am),

a prime ideal p of R that does not contain m, and a prime ideal P of

the integral closure RN of R in N that lies over p. Then, Ap,m(NP) =

HomR(B, NP). As usual, we identify each element of HomR(B, NP)
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with a k-tuple

(x1,P, . . . , xk,P)

with coordinates in NP at which every h ∈ I vanishes. Then, x1, . . . , xk
lie in RN and reduction modulo P maps x1, . . . , xk onto x1,P, . . . , xk,P,

respectively. This gives another presentation to the reduction modulo P of

Am(N) mentioned in Lemma 5.6 and its proof.

Next, we recall that B is étale over R (Section 5.3) and assume that RN
is also étale over R, at least locally over p (e.g., N =K(Am′), where m′ is

a multiple of m that does not belong to p). Let DP/p = {σ ∈Gal(N/K) |
σP = P} be the decomposition group of P over p. Then, the reduction

x 7→ x modulo P (with x ∈RN ) induces an isomorphism σ→ σ of DP/p onto

Gal(NP/Kp) defined by σ x= σx. Indeed, if N/K is finite, then RN/R is

locally standard étale in a Zariski-open neighborhood of p [Mil80, p. 26,

Theorem 3.14]. Thus, there exists z ∈N such that RN,P =Rp[z], where the

discriminant of irr(z, K) is a unit of Rp (Section 3.2). Now apply [FrJ08,

p. 109, Lemma 6.1.4].

This isomorphism is then compatible with the isomorphism Am(N)→
Ap,m(NP) given by Lemma 5.6, which leads to the following commutative

triangle:

DP/p
//

ρA,m

��

Gal(NP/Kp)

ρAp,mww
GL2g(Z/mZ),

where ρA,m is the m-ic representation induced by the action of Gal(K) on

Am(K̃). If l is a prime number that does not belong to p and if K(Al∞)⊆N ,

the preceding diagram applied to l, l2, l3, . . . gives rise to a commutative

diagram for the l-adic representations:

DP/p
//

ρA,l∞

��

Gal(NP/Kp)

ρAp,l∞xx
GL2g(Zl).

§6. Bounds on degrees

Given a field F and a nonzero polynomial f ∈ F [X], we denote the number

of distinct roots of f(X) in F̃ by ν(f(X)). We prove that the condition
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“ν(f(X)) 6 d” is equivalent to a “Zariski-closed condition on the coefficients

of f .”

Lemma 6.1. Let F be a field, t1, . . . , te elements of a field extension of

F , T = Spec(F [t]) (with t = (t1, . . . , te)), f ∈ F [t][X] a monic polynomial

in X of degree m with coefficients in F [t], and d an integer between 1 and

m. Then, there exists a Zariski-closed subset V of T such that V (F̃ ) = {t′ ∈
T (F̃ ) | ν(f(t′, X)) 6 d}.

Proof. Let f(t, X) =
∏m
i=1(X − xi) be the decomposition of f(t, X)

in F̃ (t). We set x = (x1, . . . , xm). Then, F (t, x)/F (t) is a finite normal

extension of fields. Moreover, F [t, x]/F [t] is an integral extension of integral

domains. Hence, by [Mum88, p. 171, Proposition II.7.4], the corresponding

morphism ϕ : U = Spec(F [t, x])→ Spec(F [t]) is closed.

Let I be the set of all d-tuples i = (i1, . . . , id) of integers between 1 and

m. For each i ∈ I and 1 6 j 6m we consider the Zariski-closed subset Wi,j

of U defined by the equation (Xj −Xi1) · · · (Xj −Xid) = 0.

Since F [t, x]/F [t] is an integral extension, for each t′ ∈ T (F̃ ) the map

t 7→ t′ extends to an F -homomorphism F [t, x]→ F [t′, x′] that maps x onto

x′ = (x′1, . . . , x
′
m) with x′1, . . . , x

′
m ∈ F̃ such that f(t′, X) =

∏m
i=1(X − x′i).

If x′′ = (x′′1, . . . , x
′′
m) is another m-tuple in F̃m such that the map t 7→ t′

extends to an F -homomorphism F [t, x]→ F [t′, x′′] that maps x onto x′′,

then there exists σ ∈Aut(F̃ /F (t′)) such that (x′)σ = x′′. Hence, Ṽi,j =

{t′ ∈ T (F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0} is a well-defined subset of T (F̃ ). It

follows that the set Ṽ = {t′ ∈ T (F̃ ) | ν(f(t′, X)) 6 d} satisfies the following

condition:

Ṽ =
⋃
i∈I
{t′ ∈ T (F̃ ) | {x′1, . . . , x′m} ⊆ {x′i1 , . . . , x

′
id
}}

=
⋃
i∈I

m⋂
j=1

{t′ ∈ T (F̃ ) | x′j = x′i1 ∨ · · · ∨ x
′
j = x′id}

=
⋃
i∈I

m⋂
j=1

{t′ ∈ T (F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0}

=
⋃
i∈I

m⋂
j=1

Ṽi,j .(1)

Since ϕ is a closed map, Vi,j = ϕ(Wi,j) is a Zariski-closed subset of

T . Moreover, Wi,j(F̃ ) = {(t′, x′) ∈ U(F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0}, so
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Vi,j(F̃ ) = Ṽi,j . It follows that V =
⋃

i∈I
⋂m
j=1 Vi,j is a Zariski-closed subset

of T defined by polynomials with coefficients in F . Moreover, by (1),

V (F̃ ) =
⋃

i∈I
⋂m
j=1 Vi,j(F̃ ) =

⋃
i∈I
⋂m
j=1 Ṽi,j = Ṽ , as desired.

Given a polynomial f with coefficients in Z we consider f for each l also

as a polynomial with coefficients in Fl with the original coefficients replaced

by their residues modulo l. We say that a scheme S over Z is absolutely

integral if SQ̃ = S ×Z Spec(Q̃) is integral.

Lemma 6.2. Let S be an absolutely integral affine scheme in AeZ defined

by polynomials in Z[S], where S = (S1, . . . , Se) is an e-tuple of variables.

Let T be an absolutely integral affine scheme in AkZ defined by polynomials

in Z[T], where T = (T1, . . . , Tk) is a k-tuple of variables. Let f ∈ Z[S,T][X]

be a monic polynomial in X of degree m with coefficients in Z[S,T] and let

d be an integer between 1 and m. Then, for every large prime number l the

reductions SFl
and TFl

modulo l are absolutely integral and for each s ∈ S(F̃l)
there exists a Zariski-closed subset Ul,s of TFl(s) defined by polynomials in

Fl(s)[T] such that Ul,s(F̃l) = {t ∈ T (F̃l) | ν(f(s, t, X)) 6 d}.
Moreover, the number and the degrees of the polynomials in Fl(s)[T] that

define Ul,s as a Zariski-closed subset of TFl(s) are bounded by constants that

depend neither on l nor on s.

Proof. Let SQ = S ×Z Spec(Q) and TQ = T ×Z Spec(Q) be the generic

fibers of S and T . We may write S = Spec(Z[ŝ]) and T = Spec(Z[t̂]), where

ŝ = (ŝ1, . . . , ŝe) and t̂ = (t̂1, . . . , t̂k) are tuples of some field extension of Q
such that Q(ŝ) and Q(t̂) are algebraically independent regular extensions

of Q [FrJ08, p. 175, Corollary 10.2.2(a)]. By [FrJ08, p. 41, Lemma 2.6.7],

Q(ŝ) and Q(t̂) are linearly disjoint over Q, so Z[ŝ]⊗ Z[t̂]∼= Z[ŝ, t̂]. Hence,

S ×Z T ∼= Spec(Z[ŝ, t̂]) and SQ ×Q TQ ∼= Spec(Q[ŝ, t̂]).

By Lemma 6.1, there exists a Zariski-closed subvariety V of SQ ×Q TQ
defined by polynomials h1, . . . , hr in Z[S,T] such that

(2) V (Q̃) = {(s, t) ∈ S(Q̃)× T (Q̃) | ν(f(s, t, X)) 6 d}.

We also have

(3) V (Q̃) = {(s, t) ∈ S(Q̃)× T (Q̃) | h1(s, t) = 0, . . . , hr(s, t) = 0}.

Thus, the following statement about Q̃ is true.

(4) For all s and t, the polynomial f(s, t, X) has at most d distinct roots
if and only if h1(s, t) = 0, . . . , hr(s, t) = 0.
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Note that Statement (4) is elementary. In other words, the statement is

equivalent to a sentence in the language of rings L(ring, Z) with parameters

in Z [FrJ08, p. 135, Example 7.3.1]. Hence, by a consequence of the quantifier

elimination procedure for the theory of algebraically closed fields [FrJ08,

p. 167, Corollary 9.2.2], that statement holds over F̃l for every large prime

number l. In addition, by [FrJ08, p. 179, Proposition 10.4.2], SFl
and TFl

are absolutely integral varieties over Fl for each large l.

For each l as in the preceding paragraph and for every s ∈ S(F̃l), let Ul,s
be the Zariski-closed subset of TFl(s) defined by the polynomials

h1(s,T), . . . , hr(s,T).

Since (4) holds over F̃l, we have

(5) Ul,s(F̃l) = {t ∈ T (F̃l) | ν(f(s, t, X)) 6 d}.

Moreover, the degrees of the polynomials h1(s,T), . . . , hr(s,T) that define

Ul,s are at most degT h1(S,T), . . . , degT hr(S,T), respectively. Since the

latter numbers are independent of s, the second statement of the lemma is

also true.

§7. Counting points

Following [Zyw16], we find in this section a set Λ of prime numbers with

positive Dirichlet density such that for all large l ∈ Λ there are “many”

points in Hl(Fl) having 1 as an eigenvalue, where Hl is the reductive

subgroup of GL2g,Fl
introduced in Proposition 4.1. Let n be a positive

integer and let L be a finite Galois extension of K such that ρA,l(Gal(L))

is contained in Hl(Fl) with index 6 n (Proposition 4.1(b)). After fixing an

Fl-split maximal torus T of Hl, each of those points is of the form btn!,

where b ∈ ρA,l(Gal(K)) depends only on l and t is an Fl-rational point of

T such that tn! is a regular element of Hl.

7.1 Reduction modulo maximal ideals

Again, let K be a finitely generated extension of Q, A an abelian variety

over K of positive dimension g, and L the finite Galois extension of K given

by Proposition 4.1. We use Section 3.2 to construct a regular domain R,

which is a finitely generated extension of Z such that Quot(R) =K and the

integral closure RL of R in L is a ring cover. In particular, RL/R is standard

étale.
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Using [Mil85, p. 148, Remark 20.9], we replace R by a ring R[u−1], if

necessary, where u is a nonzero element of R, such that A extends to an

abelian scheme A over R. By Section 5.1, for each p ∈Max(R) the reduction

Ap of A modulo p is an abelian variety over the finite field Kp =R/p.

7.2 Characteristic polynomials

We consider p ∈Max(R) and l ∈ L such that l 6= char(Kp). Then, we

choose a maximal ideal pl of RK(Al) that lies over p and a maximal

ideal pl∞ of RK(Al∞ ) that lies over pl. By Lemma 5.6, reduction modulo

pl (resp. modulo pl∞) maps Al(K̃) (resp. Al∞(K̃)) isomorphically onto

Ap,l(K̃p) (resp. Ap,l∞(K̃p)).

Moreover, by Section 5.7, the decomposition groups Dpl/p and Dpl∞/p are

respectively naturally isomorphic to

Gal(Kp(Ap,l)/Kp) and Gal(Kp(Ap,l∞)/Kp).

Furthermore, these isomorphisms are compatible with the actions of those

groups on Al and Ap,l on the one hand and on Al∞ and Ap,l∞ on the

other hand. By Section 3.3, Kp(Ap,l∞) is an algebraic extension of the finite

field Kp. As usual, we set [K(Al∞ )/K
pl∞

] for the element of Dpl∞/p, which

is mapped under that isomorphism onto the Frobenius element Frobp of

Gal(Kp(Ap,l∞)/Kp). We denote the unit matrix in GLm(B) by 1, whenever

m is a positive integer and B is a ring, which are clear from the context.

Then, we set

(1) PA,p(X) = det

(
X · 1− ρA,l∞

[
K(Al∞)/K

pl∞

])
for the corresponding characteristic polynomial. Since all prime ideals of

RK(Al∞ ) that lie over p are conjugate over K, PA,p(X) is a well-defined

monic polynomial of degree 2g with coefficients in Zl. The compatibility of

the action of the Galois groups on Al∞ and Ap,l∞ mentioned at the beginning

of this paragraph implies that

(2) PA,p(X) = det(X · 1− ρAp,l∞(Frobp)).

Note that the endomorphism ρAp,l∞(Frobp) of Tl(Ap) is induced by the

Frobenius endomorphism of Ap. Hence by [Mum74, p. 180, Theorem 4],

PA,p is actually a monic polynomial of degree 2g with coefficients in Z,

which is independent of l (as long as l 6= char(Kp)).
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7.3 Conjugacy class

Let n, r, l0, and L be the positive integers and the finite Galois extension

of K introduced in Proposition 4.1. Then, in the notation introduced so far

in this section, and in the notation of Section 3, we attach the following

objects to a conjugacy class C of Gal(L/K):

(3a) d(C) is the maximal number of distinct roots of PA,p(X
n!) in Q̃,

where p ranges over the elements of Max(R) that satisfy (L/Kp ) = C.

By Proposition 3.5, the latter set of primes is nonempty. Also, for each

p ∈Max(R), the number of distinct roots of PA,p(X
n!) in Q̃ is at most

the degree of PA,p(X
n!), which is 2g · n! (by Section 7.2). Hence, d(C)

is well defined.

(3b) p(C) is an element of Max(R) such that (L/Kp(C) ) = C and PA,p(C)(X
n!)

has exactly d(C) distinct roots in Q̃.

(3c) β(C) is an element of Gal(K) whose restriction to L belongs to C.

(3d) M is a finite Galois extension of Q that satisfies the conditions of

Lemma 4.3 and contains all of the roots of PA,p(C)(X
n!), for all C.

Next, let Λ be the set of prime numbers l with the following properties:

(4a) l splits completely in M ;

(4b) l > l0 and char(R/p(C)) 6= l for each conjugacy class C of Gal(L/K);

(4c) for each conjugacy class C of Gal(L/K), the polynomial PA,p(C)(X
n!)

modulo l has exactly d(C) distinct roots in F̃l; each of them belongs

to Fl.

By the Chebotarev density theorem for number fields, the set of prime

numbers l that satisfy Condition (4a) has a positive density (equal to

1/[M : Q]). By [FrJ08, p. 167, Corollary 9.2.2], PA,p(C)(X
n!) modulo l has

exactly d(C) distinct roots in F̃l, if l is sufficiently large. It follows from (3d)

that if l satisfies (4a), then all of those roots belong to Fl. Thus, Λ has a

positive Dirichlet density.

7.4 Regular elements

We denote the set of Fl-split maximal tori in Hl by Tl and recall that

a semisimple element t of Hl is regular if t belongs to a unique maximal

torus of Hl [Bor91, p. 160, Proposition]. We denote the set of all semisimple

regular elements of Hl by Hl,ssreg. By Section 4.2, the rank of Hl (denoted

by r in Proposition 4.1) is r = dim(T ) for each T ∈ Tl.
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The following lemma generalizes [Zyw16, Section 3.2] from the case where

K is a number field to our case where K is a finitely generated extension

of Q.

Lemma 7.5. In the notation of Section 7.3, let C be a conjugacy class

in Gal(L/K) and let l ∈ Λ. Then:

(a) There exists b ∈ ρA,l(β(C)Gal(L)) ∩ ρA,l((L(Al)/K)/p(C)).

(b) For each T ∈ Tl and every t ∈ T (Fl), we have T (Fl)∼= (F×l )r and tn! ∈
ρA,l(Gal(L)).

(c) If b satisfies (a), then

|{h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}|

>
1

(n!)r

∑
T∈Tl

|{t ∈ T (Fl) | det(1− btn!) = 0 and tn! ∈Hl,ssreg}|.

Proof of (a). By (4b), char(R/p(C)) 6= l, so by Remark 5.3, p(C) is étale

in RK(Al). By Section 3.2, RL is a ring cover of R. Hence, by [FrJ08, p. 110,

Remark 6.1.7], RK(Al)RL is a ring cover of RK(Al); in particular, RK(Al)RL =

RL(Al) is the integral closure of RK(Al) in L(Al). Thus, RL(Al) is étale over

RK(Al), hence also over R.

In particular, p(C) is étale in RL(Al), so ρA,l(
L(Al)/K

p(C) ) makes sense. More-

over, by (3b) and by Section 3.4, (L(Al)/K
p(C) )|L = (L/Kp(C) ) = C. Hence, by (3c),

there exists β′ ∈ (L(Al)/K
p(C) ) such that β′|L = β(C)|L, so β′ ∈ β(C)Gal(L).

Then, b = ρA,l(β
′) ∈ ρA,l(β(C)Gal(L)) ∩ ρA,l(L(Al)/K

p(C) ), as (a) claims.

Proof of (b). Since T belongs to Tl, it splits over Fl. Hence, by Sec-

tion 4.2, T (Fl)∼= (F×l )r. By Proposition 4.1(b), (Hl(Fl) : ρA,l(Gal(L))) 6 n.

Therefore, if t ∈ Tl(Fl), then tn! ∈ ρA,l(Gal(L)).

Proof of (c). For all T ∈ Tl and t ∈ T (Fl), we have by (a) and (b) that

btn! ∈ ρA,l(β(C)Gal(L))ρA,l(Gal(L)) = ρA,l(β(C)Gal(L)).

Therefore, ⋃
T∈Tl

{btn! | t ∈ T (Fl), det(1− btn!) = 0, tn! ∈Hl,ssreg}

⊆ {h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}.(5)
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Claim. The union in (5) is disjoint.

Indeed, consider distinct tori T1, T2 ∈ Tl. Consider elements t1 ∈ T1(Fl) and

t2 ∈ T2(Fl) such that tn!
1 , t

n!
2 ∈Hl,ssreg and btn!

1 = btn!
2 . Then, tn!

1 = tn!
2 , so

tn!
1 and tn!

2 lie in the same maximal torus of Hl. Since tn!
1 ∈ T1(Fl) and

tn!
2 ∈ T2(Fl), we have T1 = T2, as claimed.

If T ∈ Tl and t′ ∈ T (Fl), then by (b), there are at most (n!)r elements t

in T (Fl) for which tn! = t′. It follows from the claim that

|{h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}|

>
∑
T∈Tl

|{btn! ∈GL2g(Fl) | t ∈ T (Fl), det(1− btn!) = 0, tn! ∈Hl,ssreg}|

=
∑
T∈Tl

|{tn! ∈ T (Fl) | t ∈ T (Fl), det(1− btn!) = 0, tn! ∈Hl,ssreg}|

>
1

(n!)r

∑
T∈Tl

|{t′ ∈ T (Fl) | det(1− b(t′)n!) = 0, (t′)n! ∈Hl,ssreg}|,

as claimed.

Remark 7.6. We consider a prime number l ∈ Λ, a point b ∈GL2g(Fl),
and a torus T ∈ Tl. Let W =Wb be the Zariski-closed subset of T defined

by the equation det(1− btn!) = 0. By Proposition 4.1(a), Hl contains the

group of scalar matrices Gm. Since Gm is contained in the center of Hl and

each element of Gm is semisimple, Gm 6 T [Bor91, p. 151, Corollary 11.11].

Let ϕ :W → T/Gm be the restriction to W of the quotient map T →
T/Gm and set t = ϕ(t) for each t ∈ T (F̃l). Then,

(6) ϕ−1(t)(F̃l) = {λt ∈ T (F̃l) | λ ∈ F̃×l , det(1− λn!btn!) = 0}.

Hence, |ϕ−1(t)(F̃l)| is equal to the number of solutions in F̃×l of the equation

det(1−Xn!btn!) = 0, hence also to the number of solutions in F̃×l of the

equation det(Xn!1− btn!) = 0. Since the polynomial det(Xn!1− btn!) is

monic of degree (n!) · 2g, the number of solutions in F̃×l of the latter equation

is at most (n!) · 2g. Therefore,

(7) d= max
t∈W (F̃l)

|ϕ−1(t)(F̃l)|6 (n!) · 2g.

The following result is the analog of [Zyw16, Lemma 3.4] for finitely

generated extensions of Q rather than only for number fields. The use of
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the Chebotarev density theorem in the proof of [Zyw16, Lemma 3.4] is

replaced here by an application of Proposition 3.5.

Lemma 7.7. Let A, L, n, r, l0, and Hl with l > l0 be as in Proposi-

tion 4.1. Let M be as in Lemma 4.3. Let C, d(C), β(C), p(C), and Λ

be as in Section 7.3. We consider T ∈ Tl, suppose in addition that l is a

sufficiently large element of Λ, and use Lemma 7.5(a) to choose a matrix

b ∈ ρA,l(β(C)Gal(L)) ∩ ρA,l(L(Al)/K
p(C) ). Then, in the notation of Remark 7.6,

there exists t ∈ T (Fl) such that ϕ−1(t)(F̃l) consists of d distinct points, each

belonging to W (Fl).

Proof. By (3b), the polynomial PA,p(C)(X
n!) with coefficients in Z has

exactly d(C) distinct roots in Q̃. Moreover, by (1), for each maximal ideal

P(C) of RL(Al) that lies over p(C) the reduction of PA,p(C)(X
n!) modulo l

is the polynomial det(Xn!1− ρA,l[L(Al)/K
P(C) ]) in Fl[X]. The latter is equal to

det(Xn!1− b), because b ∈ ρA,l(L(Al)/K
p(C) ). By (4c), the reduced polynomial

has exactly d(C) distinct roots in F̃l, each belonging to Fl. By (6), this

means that

ϕ−1(1)(F̃l) = {λ1 ∈ T (F̃l) | λ ∈ F̃×l , det(1− λn!b) = 0}

consists of d(C) distinct points, each belonging to W (Fl). Hence, by (7),

d(C) 6 d. Thus, the unit matrix 1 will be the desired element t of T (Fl) as

soon as we prove that d6 d(C).

We consider two systems B and T of variables for GL2g (consid-

ered as a Zariski-closed subset of A(2g)2+1) and the monic polynomial

det(Xn!1−BTn!) in X with coefficients in Z[B,T]. By Lemma 6.2, for

each large l ∈ L and all b′ ∈GL2g(Fl) there exists a Zariski-closed subset

Vl,b′ of GL2g,Fl
such that

Vl,b′(F̃l) = {t ∈GL2g(F̃l) | det(Xn!1− b′tn!) has at most

d− 1 distinct roots in F̃l}.

Moreover, Lemma 6.2 gives positive integers c′1 and c′2, which are indepen-

dent of l and b′ such that Vl,b′ is defined by at most c′1 polynomials of degree

at most c′2.

By Lemma 4.3, T is defined in A4g2+1
Fl

by at most c1 polynomials of

degree at most c2, where c1 and c2 are positive integers that do not depend

on l. Hence, by the preceding paragraph, V = Vl,b′ ∩ T is a Zariski-closed
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subset of T , which is defined by at most c′′1 = c′1 + c1 polynomials of degree

at most c′′2 = max(c′2, c2). Again, c′′1 and c′′2 are positive integers that do

not depend on l nor on b′. By Lemma 4.6, this implies that the number

of absolutely irreducible components of Vl,b′ is bounded by a constant c′3,

which is independent of l and b′. Moreover,

V (F̃l) = {t ∈ T (F̃l) | det(Xn!1− btn!) has at most

d− 1 distinct roots in F̃l}.

By (7), there exists t ∈W (F̃l) r V (F̃l). In particular, V is a Zariski-

closed proper subset of T . Since T is absolutely integral of dimension r

(Section 4.2), dim(V ) 6 r − 1.

By Proposition 4.4, |V (Fl)|6 c3l
r−1, where again c3 is a positive inte-

ger that depends neither on l nor on b. By Lemma 7.5(b), |T (Fl)|=
(l − 1)r. Thus, for sufficiently large l ∈ Λ there exists t1 ∈ T (Fl) such

that the polynomial det(Xn!1− btn!
1 ) with coefficients in Fl has exactly

d distinct roots in F̃l. By Lemma 7.5(b), tn!
1 ∈ ρA,l(Gal(L)), so btn!

1 ∈
ρA,l(β(C)Gal(L))ρA,l(Gal(L)) = ρA,l(β(C)Gal(L)). Thus, there exists σ ∈
Gal(L) such that btn!

1 = ρA,l(β(C)σ). We consider the conjugacy class C ′ of

(β(C)σ)|L(Al) of Gal(L(Al)/K) and note that C ′|L = C.

By Proposition 3.5, there is p ∈Max(R) such that l 6= char(R/p) and

((L(Al)/K)/p) = C ′. Then, ((L/K)/p) = C and btn!
1 ∈ ρA,l((L(Al)/K)/p).

By (1), det(Xn!1− btn!
1 ) is equal to the reduction of PA,p(X

n!) modulo l.

By the preceding paragraph, the former polynomial has d distinct roots in

F̃l. Hence PA,p(X
n!) has at least d distinct roots in Q̃. It follows from (3a),

that d6 d(C). Combining this inequality with the inequality proved in the

first paragraph of the proof, we have d= d(C), as claimed.

Lemma 7.8. Let l, T , and W be as in Remark 7.6, and let b ∈GL2g(Fl)
be the matrix chosen in Lemma 7.7.

(a) If l is sufficiently large, then each irreducible component of WF̃l
has

dimension r − 1 and is defined over Fl.
(b) There exists a real constant c6 that does not depend on l nor on b such

that |W (Fl)|> lr−1 − c6l
r−3/2.

Proof of (a). (After [Zyw16, Proof of Lemma 3.5]) By Remark 7.6, WF̃l

is the intersection of TF̃l
with the hypersurface defined by the equation

det(1− btn!) = 0. This hypersurface does not contain TF̃l
, because 1 ∈
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T (F̃l), so λ1 ∈ T (F̃l) for each λ ∈ F̃×l (Remark 7.6), and there exists λ ∈ F̃×l
with det(1− b((λ1)n!)) 6= 0. Since T is absolutely irreducible of dimension

r, each of the irreducible components W1, . . . , Wm of WF̃l
is of dimension

r − 1 [Lan58, p. 36, Theorem 11]. It remains to prove that each of the Wi’s

is defined over Fl.
To this end, we set T = (T/Gm)F̃l

. Recall that ϕ :W → T/Gm is the

restriction to W of the quotient map T → T/Gm. Let ϕ̃ :WF̃l
→ T be the

morphism obtained from ϕ by base change from Fl to F̃l. For each 1 6 i6m,

let ϕi :Wi→ T be the restriction of ϕ̃ to Wi. By Remark 7.6 for t ∈W (F̃l),
we have that |ϕ̃−1(t)(F̃l)| is finite and bounded by a constant d, which is

independent of l. Since both Wi and T are irreducible algebraic varieties of

dimension r − 1, the morphism ϕi is dominant.

By [Mil80, p. 26, Theorem 3.14], T has a nonempty Zariski-open subset

T 0 and each Wi has a nonempty Zariski-open subset Wi0 such that the

restriction ϕi0 of ϕi to Wi0 is a standard étale morphism onto T 0. In

particular, ϕi0 is a finite morphism [FrJ08, p. 109, Lemma 6.1.2 and

Definition 6.1.3]. Let di = deg(ϕi0) be the degree of the function field of

Wi0 over the function field of T . By [Liu06, p. 176, Exercise 1.25(a) of

Chapter 5],

(8) |ϕ−1
i0 (u)(F̃l)|= di for each u ∈ T 0(F̃l).

Next, we observe that for i 6= j we have dim(Wi ∩Wj) 6 r − 2. Hence,

dim

(⋃
i 6=j

Wi ∩Wj

)
6 r − 2.

Therefore, the dimension of the Zariski closure Z of ϕ(
⋃
i 6=j Wi ∩Wj)

in T is also 6 r − 2, so dim(Z) 6 r − 2< r − 1 = dim(T ); in particular,

T (F̃l) r Z(F̃l) is nonempty.

By Remark 7.6, ϕ̃−1(u)(F̃l) is finite for each u ∈W (F̃l), that is, ϕ̃ is a

quasi-finite morphism. Let t be the element of T/Gm given by Lemma 7.7

with the property that

(9) ϕ−1(t)(F̃l) consists of d points of W (F̃l), each lying in W (Fl).

By [Gro66, p. 231, Proposition 15.5.1(i)], the set of all u ∈ T such that

|ϕ̃−1(u)|> |ϕ̃−1(t)|= d is Zariski-open. Hence, there exists u ∈ T 0(F̃l) r
Z(F̃l) such that |ϕ̃−1(u)(F̃l)|> d. It follows from (7), that |ϕ̃−1(u)(F̃l)|= d.
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Then, ϕ−1
0 (u)(F̃l) =

⋃
· mi=1 ϕ

−1
i0 (u)(F̃l), so, by (8),

(10) d= |ϕ−1
0 (u)(F̃l)|=

m∑
i=0

|ϕ−1
i0 (u)(F̃l)|=

m∑
i=0

di.

By [Gro66, p. 231, Lemme 15.5.2], |ϕ−1
i (t)(F̃l)|6 di for i= 1, . . . , m.

Since ϕ−1(t)(F̃l) =
⋃m
i=1 ϕ

−1
i (t)(F̃l), we have

d= |ϕ−1(t)(F̃l)|6
m∑
i=1

|ϕ−1
i (t)(F̃l)|6

m∑
i=1

di = d.

Hence,

(11)

|ϕ−1
i (t)(F̃l)|= di > 1 for each i between 1 and m

and ϕ−1(t)(F̃l) =
m⋃
·
i=1

ϕ−1
i (t)(F̃l).

In other words, each point in ϕ−1(t)(F̃l) belongs to Wi(F̃l) for a unique

i between 1 and m and ϕ−1
i (t)(F̃l) = ϕ−1(t)(F̃l) ∩Wi(F̃l) is nonempty.

Finally we consider i between 1 and m and choose wi ∈Wi(Fl) (by (9)).

Then, for each σ ∈Gal(Fl) we have wσ
i = wi, so wi ∈Wi(Fl) ∩Wi(Fl)σ. It

follows from the uniqueness property mentioned in the preceding paragraph,

that W σ
i =Wi. Since Fl is a perfect field, it follows from [Lan58, p. 74, the

equivalence between the conditions C2 and C6] that Wi is defined over Fl,
as claimed.

Proof of (b). Statement (b) follows from (a) and from Lemma 4.6 and

Proposition 4.4.

Lemma 7.9. There exists a positive real number c4 that depends only on

r such that |T (Fl) rHl,ssreg(Fl)|6 c4l
r−1 for all l ∈ Λ and every maximal

torus T of Hl.

Proof. Our lemma coincides with [Zyw16, Lemma 3.6], which depends

only on the fact that the Hl’s are split reductive groups over Fl of rank r,

which is independent of l. By Proposition 4.1, this fact holds in our case.

Alternatively, Proposition 4.1 ensures that the groups Hl arise from an

abelian variety A0 of dimension g over a number field. Hence, we may use

[Zyw16, Lemma 3.6] for our abelian variety A.
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Nevertheless, for the convenience of the reader we highlight the main

points of Zywina’s proof. For references and more details, the reader is

referred to the original proof.

Let X(T ) be the group of all characters α : T →Gm,Fl
of T and let R

be the finite set of weights of T . By definition, each α ∈R is an element of

X(T ) for which there exists a nonzero v ∈ F2g
l such that tv = α(t)v for all

t ∈ T . One knows that an element t ∈ T (Fl) is regular if and only if α(t) 6= 1

for each α ∈R, so

{t ∈ T (Fl) | t is not regular in Hl}=
⋃
α∈R

Ker(α)(Fl).

Thus, it suffices to bound the order of R and the order of Ker(α)(Fl) for

each α ∈R in terms of r only.

One also knows that Ker(α) =D0
α × Fα, where D0

α is a split torus over Fl
of rank r − 1 and Fα is finite. Since dim(T ) = r, the group Fα is isomorphic

to a subgroup of F̃×l , so Fα is cyclic. It follows that |Ker(α)(Fl)|6 |Fα|lr−1.

Thus, it suffices to bound |R| and |Fα| for each α ∈R in terms of r only.

In order to do this we assume that Hl, T , and Ker(α) are defined over

F̃l. Then, using the theory of root datum and the fact that Fα is cyclic, one

finds β ∈X(T ) such that α= nβ for some positive integral multiple n of

|Fα|. Then, with α∨ being the dual of α we have 2 = 〈α, α∨〉= n〈β, α∨〉 ≡ 0

mod |Fα|. It follows that |Fα|6 2.

Finally, we view R as a root system in a Euclidean space of dimension

at most r. Using the correspondence between such systems and Dynkin

diagrams, one recalls that there are only finitely many root systems of rank

6 r (up to isomorphisms). In particular, |R| is bounded in terms of r only,

as desired.

Lemma 7.10. Let l be a sufficiently large element of Λ, C a conjugacy

class of Gal(L/K), and b a matrix in GL2g(Fl) that satisfies Condition (a)

of Lemma 7.5. Then, there exists a positive real number c5 not depending

on the choice of l and b such that |{t ∈ T (Fl) | det(1− btn!) = 0 and tn! ∈
Hl,ssreg}|> lr−1 − c5l

r−(3/2).

Proof. We consider the set D = {t ∈ T (Fl) | tn! /∈Hl,ssreg}. Since T (Fl)∼=
(F×l )r (Lemma 7.5(b)), for each t′ ∈ T (Fl) there exist at most (n!)r elements

t ∈ T (Fl) such that tn! = t′. Hence, by Lemma 7.9 we have for sufficiently

large l in Λ that

(12) |D|6 (n!)r|{t′ ∈ T (Fl) | t′ /∈Hl,ssreg}|6 c4(n!)rlr−1.
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Note that the group F×l acts on D by multiplication. Indeed, let t ∈D
and λ ∈ F×l . Then, there exists a torus T ′ ∈ Tl such that T ′ 6= T and tn! ∈
T (Fl) ∩ T ′(Fl). Hence, λt ∈ T (Fl) and (λt)n! ∈ T (Fl) ∩ T ′(Fl), so λt ∈D.

By (7), for each t ∈D there are at most d values of λ in F×l such that

λt ∈W (Fl). Hence, by (12), |{t ∈W (Fl) | tn! /∈Hl,ssreg}|6 d|D|/(l − 1) 6
dc4(n!)rlr−2. It follows from Lemma 7.8(b) that there exists a real positive

constant c5 such that

|{t ∈ T (Fl) | t ∈W (Fl) and tn! ∈Hl,ssreg}|> lr−1 − c5l
r−(3/2),

as claimed.

§8. Main result

The results achieved so far lead in this section to the proof of the main

theorem of our work: For almost all σ ∈Gal(K), there are infinitely many

l ∈ L such that Al(K̃(σ)) 6= 0. The proof uses an analog of a combinatorial

argument that appears in [Zyw16, Section 1].

Lemma 8.1. Let K be a finitely generated extension of Q, and let A

be an abelian variety over K of positive dimension g. Let L, n, r be as in

Proposition 4.1. Let Λ be the set of prime numbers of positive Dirichlet

density introduced in Section 7.3. Then, there exists a positive real number

c such that after deleting finitely many elements from Λ, the following hold:

(a) For all l ∈ Λ and β ∈Gal(K), we have

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|
|ρA,l(βGal(L))|

>
c

l
.

(b) The family (L(Al))l∈L of Galois extensions of L is linearly disjoint.

Proof. Statement (b) holds by virtue of Proposition 4.1(b) and

Remark 2.3, so we only have to prove (a).

We consider an element β ∈Gal(K) and the conjugacy class C of

Gal(L/K) that contains β|L. Then β(C) = β satisfies (3c) in Section 7.3.

Let p(C) be the chosen element of Max(R) that satisfies (3b) in Section 7.3.

Next we consider l ∈ Λ and use Lemma 7.5(a) to choose a point b ∈
ρA,l(βGal(L)) ∩ ρA,l(L(Al)/K

p(C) ).
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By Lemma 7.5(c) and Lemma 7.10,

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

>
1

(n!)r

∑
T∈Tl

|{t ∈ T (Fl) | det(1− btn!) = 0, tn! ∈Hl,ssreg}|

>
1

(n!)r

∑
T∈Tl

(lr−1 − c5l
r−3/2),(1)

where c5 is a positive constant that does not depend on l.

We consider T ∈ Tl. Since Hl is a reductive group (Proposition 4.1), T

coincides with its centralizer in Hl [Bor91, p. 175, Corollary 2(c)]. Hence,

denoting the normalizer of T in Hl by N , we get that WHl
=N/T is the

Weyl group of Hl. It follows that the subgroup Nl = {h ∈Hl(Fl) | Th = T}
of Hl(Fl) satisfies Nl/T (Fl) 6WHl

.

By Section 4.2, all elements of Tl are conjugate in Hl(Fl) and |T (Fl)|=
(l − 1)r. Hence,

|Tl| =
|Hl(Fl)|
|Nl|

=
|Hl(Fl)|

(Nl : T (Fl))|T (Fl)|

=
|Hl(Fl)|

(Nl : T (Fl))(l − 1)r
>

|Hl(Fl)|
|WHl

|(l − 1)r
.

Therefore, by (1),

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

>
1

(n!)r
|Hl(Fl)|(lr−1 − c5l

r− 3
2 )|

|WHl
|(l − 1)r

.(2)

Note that

lr−1 − c5l
r− 3

2

(l − 1)r
=
lr−1(1− c5l

− 1
2 )

(l − 1)r
>
lr−1(1− c5l

− 1
2 )

lr
=

1− c5l
− 1

2

l
.

Therefore, by (2),

(3) |{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|> 1

(n!)r
|Hl(Fl)|(1− c5l

− 1
2 )

|WHl
| · l

.

Using the relations |Hl(Fl)|> |ρA,l(Gal(L))|= |ρA,l(βGal(L))|, we get from

(3) that

(4)
|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

|ρA,l(βGal(L))|
>

1

(n!)r|WHl
|
1− c5l

− 1
2

l
.
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By [Zyw16, end of Section 3.2], there exists a positive constant c7 such

that |WHl
|6 c7 for all l ∈ L. Hence, using (4), we get for c= 1/(2(n!)rc7),

that for each l ∈ Λ with l > (2c5)2, we have

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|
|ρA,l(βGal(L))|

>
c

l
,

as claimed.

This allows us to prove our main result.

Theorem 8.2. Let K be a finitely generated extension of Q, and let A

be an abelian variety over K of positive dimension. Then, for almost all σ ∈
Gal(K) there are infinitely many prime numbers l such that Al(K̃(σ)) 6= 0.

Proof. Let L and Λ be as in Lemma 8.1. Let µK be the normalized Haar

measure of Gal(K) and for each β ∈Gal(K), let µL,β be the measure of

the space βGal(L) defined for each measurable set B of Gal(K), which is

contained in βGal(L) by µL,β(B) = [L :K]µK(B). In particular, µL = µL,1
is the normalized Haar measure of Gal(L). Since µK is a Haar measure, the

map τ 7→ β−1τ is a measure-preserving homeomorphism from βGal(L) onto

Gal(L).

For l ∈ L, let Uβ,l = {σ ∈ βGal(L) | det(1− ρA,l(σ)) = 0}. The condition

det(1− ρA,l(σ)) = 0 holds if and only if 1 is an eigenvalue of ρA,l(σ). The

latter condition is equivalent to the existence of a nonzero point a of Al(K̃)

such that σa = a. It follows that Uβ,l = {σ ∈ βGal(L) |Al(K̃(σ)) 6= 0}.
By definition, β−1Uβ,l ⊆Gal(L) and (ρA,l|Gal(L))

−1(ρA,l(β
−1Uβ,l)) =

β−1Uβ,l. Let c be the constant mentioned in Lemma 8.1. Then, by (a) of

that lemma,

µL,β(Uβ,l) = µL(β−1Uβ,l) =
|ρA,l(β−1Uβ,l)|
|ρA,l(Gal(L))|

=
|ρA,l(Uβ,l)|
|ρA,l(βGal(L))|

=
|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

|ρA,l(βGal(L))|
>
c

l
.(5)

Now let Uβ be the set of all σ ∈ βGal(L) that belong to infinitely many

of the sets Uβ,l with l ∈ Λ. Since the Dirichlet density of Λ is positive, (5)
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implies that
∑

l∈Λ µL(β−1Uβ,l) >
∑

l∈Λ (c/l) =∞ [FrJ08, first paragraph of

Section 6.3]. It follows from (b) of Lemma 8.1 and from Borel–Cantelli

[FrJ08, Lemma 18.3.4] that the set of all σ ∈Gal(L) that belong to infinitely

many sets β−1Uβ,l has µL-measure 1. Hence, by the first paragraph of the

proof, µL,β(Uβ) = 1.

Finally, we choose a set of representatives B for Gal(K) modulo

Gal(L). Thus, Gal(K) =
⋃
· β∈B βGal(L) and |B|= [L :K]. Moreover, since

Uβ ⊆ βGal(L), the sets Uβ,l, where β ranges over B, are disjoint.

Therefore, by the preceding paragraph, µK(
⋃
· β∈B Uβ) =

∑
β∈B µK(Uβ) =∑

β∈B (µL,β(Uβ)/[L :K]) =
∑

β∈B (1/[L :K]) = |B|/[L :K] = 1. By the def-

inition of the Uβ’s, for each element of
⋃
β∈B Uβ there are infinitely many

l ∈ Λ with Al(K̃(σ)) 6= 0. Hence, the set of all σ ∈Gal(K) for which there

exist infinitely many l ∈ L with Al(K̃(σ)) 6= ∅ has µK-measure 1, as claimed.
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