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MONOCHROMATIC SEQUENCES WHOSE GAPS BELONG TO
{d,2d,..., md}

BRUCE M. LANDMAN

For m and k positive integers, define a k-term hm-progression to be a sequence
of positive integers {xi,... ,Xk} such that for some positive integer d, Xi+\ — Xj G
{d, 2d,..., md} for i = 1,. . . , k— 1. Let hm(k) denote the least positive integer n such
that for every 2-colouring of {1,2,..., n} there is a monochromatic /im-progression of
length k. Thus, hi(k) = w{k), the classical van der Waerden number. We show that,
for 1 ^ r < m, hm(m + r) ^ 2c(ro + r - 1) + 1, where c = [m/(ro - r)]. We also
give a lower bound for hm(k) that has order of magnitude 2k2/m. A precise formula
for hm(k) is obtained for all m and k such that k ^ 3m/2.

1. INTRODUCTION

Van der Waerden's theorem on arithmetic progressions [13] says that for every pos-
itive integer A; there is a smallest positive integer w(k) such that for every 2-colouring
of [l, w(k)] = | 1 , 2 , . . . , w(k)j there is a monochromatic fc-term arithmetic progression.
The only known non-trivial values of the van der Waerden numbers w(k) are w(3) = 9,
u>(4) = 35, and u>(5) = 178. Furthermore, estimation of the function w(k) remains a
wide open problem (see [4] for a discussion of this).

If F is any family of sequences that includes the arithmetic progressions then by
van der Waerden's theorem we may define, for each k £ Z+, F(k) to be the least posi-
tive integer such that for every 2-colouring of [l, F(k)\ there is a monochromatic A;-term
member of F. One such family of sequences, called the "quasi-progressions" was intro-
duced by Brown, Erdos, and Freedman [1]. A k-term quasi-progression of diameter n is a
sequence of positive integers {x\,..., x^} for which there is a positive integer d such that
xi+l-Xi e {d, d+1,... ,d+n} for i = 1 , . . . ,k — \. If Qn represents the family of all quasi-
progressions of diameter n, it is clear that w(k) = Qo{k) ^ Q\(k) ^ Q2{k) ^ • • • . In [9]
upper bounds were obtained for Qm{k) provided k ^ 3m/2. Examples of other families
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F containing the family of arithmetic progressions, and results on their associated van
der Waerden-type functions F(k), can be found in [5, 6, 7, 8].

In this paper we consider another family of sequences that includes the arithmetic
progressions. Namely, for positive integers m and k, define a k-term hm-progression to
be a sequence of positive integers {x\, X2,..., Xk} such that, for some d £ Z+, xI+i — x; 6
{d,Id,... ,md} for 1 ^ i ^ k — 1. For positive integers m and k, let hm(k) denote the
least positive integer n such that for every 2-colouring of [l,n] there is a monochromatic
fc-term /im-progression. By van der Waerden's theorem, hm{k) exists for all positive
integers m and k. Furthermore, we see that

In terms of gaining more information about w(k), the functions hm(k) may be more
useful than the functions Qm{k), for the following reason. Given positive integers m and
k, define gm(k) to be the least positive integer 5 such that whenever S = {xi, X2,..., x3}
with £,+i — Xi € {1 ,2 , . . . , m} for 1 ^ i ^ s — 1, there is a fc-term arithmetic progression
in 5 (Rabung [11] showed that gm{k) exists for all m and k; further work on gm(k) can
be found in [2] and [10]). Then for all k and m, w(k) ^ hm(gm(k)j. This is because any
2-colouring of ll, hm(gm(k)J I will contain a monochromatic /im-progression with gm(k)
terms, and among these gm(k) terms must be a Ar-term arithmetic progression.

Here we obtain an upper bound for hm(k) for all m and k such that k < 2m. We
also give lower bounds for hm{k) that hold for all m and k. For k ^ 3m/2 we are able to
give an exact formula for hm(k). One could say that we have had a bit more success in
obtaining information about hm(k) than we had in [9] with regard to Qm(k), since the
upper bound for Qm is valid only for k ^ 3m/2 and since an exact formula for Qm{k)
is known only for k ^ m + 2. In Section 3 we include a table of exact values of hm(k)
obtained by computer.

2. RESULTS

It is easy to find a formula for hm(k) when k < m.

P R O P O S I T I O N 1 . hm(k) = 2k- 1 ifk ^ m.

PROOF: Any partition of [1,2k - 2] into sets A and B, where |A| = \B\ = k - 1,
avoids monochromatic A;-element sets, so hm(k) ^ 2k — 1. On the other hand, every
2-colouring of [1,2k — 1] contains a monochromatic sequence x i , . . . ,Xk with x1+1 — z,- £
{l,2,...,)fc}C { l ,2 , . . . ,m}fo r 1 ^ i < f c - l (for otherwise xk-Xi > k+l + (k-2)). D

We are able to give an upper bound for hm(m + r) provided r < m. The smaller
that r is, in proportion to m, the lower the upper bound we have. The result is described
in the next theorem.
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THEOREM 2 . Letm>r^l.Letc = c(m, r) = \m/(m - r ) ] . Then

hm{m + r) ^ 2c(m + r - 1) + 1.

PROOF: Let L = 2c(m + r - 1) + 1 and let \ be any 2-colouring of [1, L). We shall
show that under x there is a monochromatic (m + r)-term /im-progression. It is clear
that [1, L] contains some monochromatic set of size at least m + r, all of whose elements
are congruent to 1 modulo c. Let X = {xi,x2, • • • ,xm+r} consist of the least m + r
members of this monochromatic set, with x,- < x1+i for i — 1 , . . . , m + ?— 1, and assume

X(X) = 1-
If z1+i — X{ ^ cm for each i € { l , . . . , m + r — 1}, then X serves as the desired

monochromatic /im-progression, since X{+\ — z; € {c,2c,. . . ,mc} for all i. Thus, we
assume that there is a k € { 1 , . . . , m + r — 1} such that Xk+\ — zjt = cs ^ c(m + 1).

Let A = {zfc + ci : 1 ^ i ^ s - 1}. Then x(^) = 0 and \A\ ^ m. We consider two
cases.

CASE I. c ^ 3. Note that either x^ > m — c or z^+i < L — (m — c) + 1, since otherwise

Yi (xi+i — Xi) ^ 2(m — c — 1) which would contradict the fact that £ (zi+i — %i) ^

c(m + r — 2). We shall assume Xk > m — c, as the case of zjt+i < L — (m — c) + 1 may
be done by a symmetric argument.

Let
B = {i ^ l(mod c) :xjt — m + c < i < ar/t+i}.

We see that for each b £ B there is some a £ A such that |o — 6| ^ max{c, m} = m. Thus,
if there is a set BQ C B with |i?o| = r and x(-^o) = 0, then A U Bo ' s a monochromatic
/im-progression with length at least m + r. We therefore assume that at most r — 1
members of B have colour 0. Let Y = {j/i , . . . , yt} be those members of B having colour
1, listed in increasing order. To complete the proof of this case we show that Y gives us
the monochromatic /im-progression we seek by showing:

(1) yi+1 - j/i ^ m for i = 1 , . . . ,t - 1

and
(2) t > m + r.

To establish (1), note that for any two elements bj and bj+e, of 5 ,

Hence, since \B — Y\ ^ r — 1, for all i we have

(3)
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Also, c ^ m/(m — r ) implies

(4) ^

By (3) and (4) we see that (1) is true.
To show (2), we first observe that \B\ ^ (c - l)(m + \m/c\). Since \B - Y\ ^ r,

(2) will follow if we can show

(5) (c -2)m + (c-1) Cm/el+ 1 >2r.

Since m > r, (5) is obvious for c ^ 4. Inequality (5) also holds when c = 3, since in this
case, using (4),

m + 2 | - | + l > | -

^ 2r.

CASE II. c = 2. In this case we have xm+r - a?i ^ 4(m + r — 1). Therefore, if i ^ k,
then z,+i — Xi $J m, for otherwise we would have

Xm+r — Xl >

= 5m + 2 r - 3

^ 4m + 4r - 3.

Let B' = {xk + 2i + 1 : 0 < i ^ s — 1}. As in Case I, we may assume at most r — 1
members of £' have colour 0. Therefore, if Y - {yu • • • ,Vj} - {b € B' : x{b) = 1}, then
we have that 0 < yl+i - yt < 2r for i — 1,..., j — 1, and xk+1 - y, < 2r and j/i - xk ^ 2r.
Since 2r ^ m (in this case), X u y forms a monochromatic /im-progression with at least
m + r terms.

D
REMARK. The proof of Theorem 2 actually shows a somewhat stronger result: that every
2-colouring of ll, 2c(m + r — l) + l | has a monochromatic sequence {xi,..., xjt} such that
either xi + 1 - x,- G {1 ,2 , . . . , m} for all i, 1 < i ^ k — 1, or x1+i — x, G {c, 2c,..., me} for
all i, 1 ^ i ^ k - 1.

For a fixed m, the largest value of k for which Theorem 2 gives an upper bound is
k — 2m — 1. We single out this case as the next corollary.

COROLLARY 3 . For edl positive integers m, hm(2m — 1) ^ 4(m2 — m) + 1.
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P R O O F : Letting r = m—l in Theorem 2 yields c — m, and the corollary is immediate
from Theorem 2. D

The following theorem gives a formula for hm{m + 1). The formula depends on the
parity of m. We note that it gives a generalisation of the trivial fact that w{2) — /ii(2) =
3.

THEOREM 4 . For all m^ 2, hm(m + 1) = 4m - 1 ifm is odd, and hm(m + 1) =
4m + 1 ifm is even.

PROOF: Note first that letting r = 1 in Theorem 2 shows that hm(m + 1) ^ 4m + 1
for all m ^ 2. Thus to establish that the given expressions serve as upper bounds for
their respective cases, we need only deal with the case of m odd.

Let m be odd and let x be any 2-colouring of [1,4m — 1]. By Proposition 1 there is
a monochromatic /im-progression X = {xi,...,xm} C [m + 1,3m - 1] with xi+i — xt €
{ 1 , . . . , m} for 1 < i < m — 1. Without loss of generality, we shall assume x(X) = 1. We
consider two subcases:

(i) X{+i — Xi > 1 for some i £ { 1 , . . . , m — 1};

(ii) xi+i - Xi = 1 for all i € { 1 , . . . , m - 1}.

First assume (i) holds. Let j be the least such i. If x(xj +1) = 1, then X U {z, + 1}
is a monochromatic (m + l)-term /im-progression. So we may assume x(xj + 1) = 0-
Likewise, we can assume that each of xx — 1 , . . . ,xi - m have colour 0. Then A =

- m, xi - ll U {XJ + 1} C [1,4m — 1] is monochromatic, and since

A is an /im-progression.

Now assume (ii) holds. Clearly, we may assume

x([xi - m, xi - 1] U [xm + 1, xm + m]) = 0.

Let

B = Ixi - (2i - 1) : 1 ^ i ^ ™——| U <xm + (2i - 1) : 1 ^ i ^ ^ - t

Then B C [ 1 , 4 m — 1] has size m + 1, has colour 0, and each pair of consecutive elements
of B has difference 2 or m + 1. Hence, since m + 1 is even and m -I- 1 ^ 2m, B is a
monochromatic /im-progression.

To complete the proof we shall provide, for m odd, a 2-colouring of [1,4m — 2] which
avoids (m + l)-term monochromatic /im-progressions; and, for m even, a 2-colouring of
[1,4m] which avoids such progressions.

Let m be odd. Color [1,4m - 2] with the colouring a denned as follows:

m—l m m m—l
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Let X = {xi, ...,xe} be a maximum length monochromatic hm -progression. By the
symmetry of the colouring we may assume a(X) = 1. Let d = min{xi+i — a:,- : 1 <
i ^ £ — 1}. If d = 1, then Xi+i — x,- Sj m for each i. It is then clear from the way a is
defined that £ ^ m. If d ^ 2, then each of the two blocks of l's in the representation of a
contains at most m/2 members of X, so again i $J m. Hence, there is no monochromatic
(m -+• l)-term /im-progression under a.

Now assume m is even. Then the same explanation as that used in the odd case
shows that the colouring of [1,4m] defined by the string

has no monochromatic (ra + l)-term /im-progression. D

We now shift our attention to lower bounds for hm(k).

The next theorem gives a lower bound for hm(k) for all m and k.

THEOREM 5 . Let m be a fixed positive integer and let X(k,m) = \ (k — 1)/

\k/m]]. Then

PROOF: Let k and m be given. Let A = X(k,m) and let M = 2(k - l)(\k/\] - lV
Color [1, M] with the colouring ABAB.. .AB where A and B each appear \k/X\— 1 times,
and where A represents a block of k — 1 ones and B represents a block of k — 1 zeros. To
prove the theorem we show that under this colouring there is no fc-term monochromatic
/im-progression.

Assume X = {x i , . . . ,x^} is a fc-term /im-progression. Let d be a positive integer
such that x,+i — a;,- € {d, 2d,..., md} for all i, 1 ^ i ^ k — 1. Since each block has size
k — 1, there is some « such that x1+1 — x, ^ k. Therefore d ^ [fc/m]. Hence, each block
contains at most \(k — l)/d] ^ A members of X. It follows that at most \(\k/X] — l j
members of X can be of the same colour. Since (for any positive integers k and A)
A( \k/X\ — 1J ^ k — 1, the proof is complete. D

REMARK. For a fixed integer i, 0 ^ i ^ k - 2, define \(k,m,i) to be |(k — i — 1)/

\{k — i)jrri\\. Then a slight modification of the proof of Theorem 5 gives us the more

general inequality

(6) M f c ) > 2 ( f c _ i _

That is, we change the colouring so that there are |A;/A(A;,m,i)j — 1 blocks of each
colour, and each block has length k — i — 1. The lower bounds of (6) do not improve
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the asymptotic lower bound of Theorem 5, but do improve the lower bound for some
particular values of k and m. For example, by Theorem 5, h^ll) ^ 41. Taking i = 1 in
(6) gives /i4(ll) ^ 55.

In some instances the following lower bound is better than that provided by (6). For
example, according to Theorem 6, /i<i(8) ^ 29, while the best lower bound by means of
inequality (6) is /i.j(8) ^ 25.

THEOREM 6 . If k > m + l, then hm(k) > 4(fc - 1) + 1.

PROOF: We consider two cases.

C A S E I. k is odd. Using the notation of Theorem 5, since \k/m\ ^ 2, X(k,m) ^
(A; - l ) /2 . Hence, by Theorem 5, hm(k) ^ 2(jfc - 1)(3 - 1) + 1.

C A S E II. k is even. Color [l,4(A; — 1)1 as follows:

11 OJh^n^^OO^^lL^^J, 00.
k-2 k-2 k-2 k-2

Let X = { I I , . . . , I M } be a maximal length monochromatic /im-progression. By the
symmetry of the colouring we may assume X has colour 1. We know there is a positive
integer d such that z;+1 — x,- S {d,2d,... ,md} for all i, 1 ^ i ^ M — 1. If d = 1 then,
since fe — 1 ^ m + 1, all members of X must belong to the same block of l's, so that
M ^ k — 2. If <f ^ 2, then at most (k — 2)/2 members of X belong to each of the long
blocks of l's, so M ^ k - 1. D

We see that the lower bound given by Theorem 6 coincides with the upper bound
of Theorem 2 whenever c = 2. This gives us a precise formula for hm(m -f r) whenever
m ^ 2r, which we state in the following corollary.

COROLLARY 7 . Let r ^ 2 and m > IT. Then hm(m + r) = 4(m + r - 1) + 1.

3. COMPUTATIONS AND FINAL REMARKS

We have run a computer program to calculate hm{k). The program also gives the
2-colourings of |l,/im(fc) — ll that contain no monochromatic fc-term /im-progressions.
Table I below shows the known values of hm(k) for m ^ 8 and k ^ 13. Of course, by
Proposition 1, Theorem 4, and Corollary 7, we know the value of hm{k) for all m and k
such that k ^ 3m/2. The first row of the table contains the known values of w(k) (these
may be found in [3] and [12]). The symbol ^ appearing before a number means that
computer time became excessive and that at the point at which the program was halted,
we were able to infer from the output of the program that the value of hm(k) was not
less than this number.

We notice from the table that hm(k) = 6(k — 1) + 1 for each of the following pairs
(m,jfc): (3,6), (5,9), (6,10), (6,11), (6,12), (7,12), (7,13). Only in the case of (6,10) does
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this value agree with the upper bound of Theorem 2. We wonder if there is some natural
extension of Corollary 7 for which 6(A; - 1) + 1 is the value of hm(k). It is reasonable
to think that for those cases in which hm(k) = 6(fc — 1) + 1 there must be some simple
colouring of [l,6(fc — 1)] that is similar to those used in the proofs of Theorem 5 or 6.
However for none of the pairs (m, k) listed above are there any obvious patterns in the
colourings of [l,6(fc - 1)1 that avoid monochromatic fc-term /im-progressions. This is the
case even though, for example, there are thirty six different colourings of [1,48] that avoid
9-term /^-progressions; and there are twenty six different colourings of [1,54] that avoid
10-term monochromatic /^-progressions.

We also notice that for each m £ {3,4,5,6}, hm{2m) = 6(2m — 1) + e where e = 1
or 2. Perhaps hm(2m) = 12m(l + o(l)j. The only values of k and m in the table for
which hm(k) = 8(fc - 1) + 1 are (m, k) = (2,5) and (m, k) = (4,9). We wonder if it holds
for (m, k) = (6,13) or more generally, for (m, k) = (2j, 4j + 1).

A study analogous to that of this paper can be made where instead of using 2-
colourings we use r-colourings. If one denotes the corresponding function by hm(k,r),
then the van der Waerden numbers for r colours satisfy the inequality w(k,r) ^
hm(gm(k),r), where g is the function defined in Section 1. We have no idea of the
rate of growth of hm(k, r).

Table I. Values of hm(k)

m 1 k
1
2
3
4
5
6
7
8

2
3
3
3
3
3
3
3
3

3
9
9
5
5
5
5
5
5

4
35
17
11
7
7
7
7
7

5
178
33
19
17
9
9
9
9

6
?

55
31
21
19
11
11
11

7
7

^87
71
35
25
25
13
13

8
?

^ 125
97
44
33
29
27
15

9
7

> 177
^ 117
65
49
33
33
33

10
?
7
7

^75
56
55
37
37

11
?

7
7

^84
^69
61
47
41

12
?

7
7
7

> 76
67
67
45

13
7
7
7
?
7

^ 73
73
71
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