6

Expected Runtime Analysis
by Program Verification

Benjamin Lucien Kaminski, Joost-Pieter Katoen and Christoph Matheja
RWTH Aachen University

Abstract:  This chapter is concerned with analysing the expected runtime of
probabilistic programs by exploiting program verification techniques. We intro-
duce a weakest pre-conditioning framework a la Dijkstra that enables to determine
the expected runtime in a compositional manner. Like weakest pre-conditions, it
is a reasoning framework at the syntax level of programs. Applications of the
weakest pre-conditioning framework include determining the expected runtime
of randomised algorithms, as well as determining whether a program is positive
almost-surely terminatiing, i.e., whether the expected number of computation steps
until termination is finite for every possible input. For Bayesian networks, a re-
stricted class of probabilistic programs, we show that the expected runtime analysis
can be fully automated. In this way, the simulation time under rejection sampling
can be determined. This is in particular useful for ill-conditioned inference queries.

6.1 Introduction

In 1976, Michael Rabin published his paper titled Randomized Algorithms in which
he describes a method for solving the closest-pair problem in computational geom-
etry (Rabin, 1976). This work is today considered the seminal paper on randomized
algorithms (Smid, 2000). While a naive deterministic brute-force approach takes
quadratic time, Rabin’s randomized algorithm solves the closest-pair problem in
expected linear time.

One year later, in 1977, Robert Solovay and Volker Strassen presented a ran-
domized primality test that decides in polynomial time whether a given number
is either composite or probably prime, thus proving that primality testing is in
the complexity class coRP (Solovay and Strassen, 1977). In 1992, Leonard Adle-
man and Ming-Deh Huang further reduced the complexity of primality testing
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to ZPP, thus proving that primality testing can be solved efficiently in expecta-
tion (Adleman and Huang, 1992). Turning an inefficient deterministic algorithm
into a randomized algorithm that is — in expectation — more efficient (possibly at
the cost of incorrect results, though with low probability) is a principal motivation
of introducing randomization into the computation. Prime examples are Freivalds’
matrix multiplication verification (Freivalds, 1979) or Hoare’s variant of quicksort
with random pivot selection (Hoare, 1962). Some problems even inherently require
randomized solutions such as various self-stabilization algorithms in anonymous
distributed systems.

Probabilistic programs are, however, not limited to randomized algorithms. In
fact, they are a powerful modeling formalism for describing, amongst others, graph-
ical models, such as Bayesian networks or Markov random fields (Koller and Fried-
man, 2009). This lead to the emergence of probabilistic programming (Gordon et al.,
2014) as a new paradigm for probabilistic modeling. A key feature of probabilistic
programming languages is that they decouple individual models from algorithms
for their analysis, e.g. Bayesian inference techniques. For example, one of the first
approaches to perform inference on probabilistic programs first compiles a pro-
gram into a Bayesian network and then applies standard techniques for graphical
models (Minka and Winn, 2017). Probabilistic programming also enables to resort
to established program analysis techniques, such as slicing (Hur et al., 2014), to
optimize probabilistic models. In this context, analyzing expected runtimes, i.e. the
expected time required for sampling from a complex probability distribution de-
scribed by a probabilistic program, to speed up inference algorithms is of paramount
importance, too.

Reasoning about expected runtimes of probabilistic programs is surprisingly
subtle and full of nuances as we will discuss in detail in this chapter. Thus, there
is a desire for a formal verification technique suited for reasoning about expected
runtimes. The main objective of this chapter is to provide a gentle introduction
to one particular formal method for analyzing expected runtimes of probabilistic
programs: The expected runtime calculus. This approach was originally developed
in Kaminski et al. (2016) and was further studied in Olmedo et al. (2016); Batz
et al. (2018); Kaminski et al. (2018b); Kaminski (2019). The calculus is a weakest-
precondition style calculus a la Dijkstra (see Dijkstra, 1976) to derive runtime
assertions. In a similar vein to Dijkstra’s predicate transformers, our calculus uses
runtime transformers. Its core is the expected runtime transformer ert:

ert[c](t)(o)

captures the expected runtime of program ¢ when started in initial state o. The
t appearing above is the so-called postruntime: t is a function mapping program
states to non-negative reals and captures the expected runtime of the computation
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following program c. Itis hence evaluated in the final states reached after termination
of ¢ on o. In particular, this subsumes the plain expected runtime of program ¢ on
initial state o if ¢ is the constantly zero runtime. For most control structures, ert is
defined in a straightforward compositional manner. The action of the transformer
on loops is given using fixed-point techniques. To avoid the tedious reasoning about
such fixed points and to enhance the calculus’ usability, we provide invariant-based
proof rules that establish bounds on the expected runtime of loops.

A notable feature of the ert-calculus is that it firmly builds upon standard tech-
niques from formal semantics and program verification — in particular denotational
semantics, fixed point theory, and invariants. It provides a useful abstraction from
the semantical intricacies of probabilistic programs and the underlying probability
theory. ert thus enables writing elegant and compositional proofs to bound ex-
pected runtimes (from above and below) on source code level. Furthermore, the
reliance on standard techniques makes ert amenable to a large degree of automa-
tion. The ert-calculus yields comprehensible proofs for the expected runtime of
complex randomized algorithms. For instance, it has been successfully applied
to analyze the Coupon Collector’s problem (Kaminski et al., 2016), a Sherwood
binary search (Olmedo et al., 2016), and expected sampling times in Bayesian
networks (Batz et al., 2018). The latter can be derived fully automatically.

Ngo et al. (2018) have developed an automatic approach for deriving polynomial
runtime bounds, using our ert calculus as an underlying theoretical framework for
proving soundness of their approach. The ert calculus has also been mechanized in
the interactive theorem prover Isabelle/HOL by Holzl (2016). In particular, Holzl
proved that our calculus is indeed sound and complete and that our proof rules for
deriving runtime bounds are correct.

A second asset is that ert enables determining whether the expected runtime
of a randomized algorithm (for all possible inputs) is finite or not. To the best
of our knowledge, this is the first formal verification framework that can handle
both almost-sure termination (does a program terminate with probability one?) and
positive almost-sure termination (does a program terminate within finite expected
time?). The universal positive almost-sure termination problem is complete for level
Hg of the arithmetical hierarchy (Kaminski and Katoen, 2015) and hence strictly
harder to decide than the universal halting problem for deterministic programs
(which is Hg-complete).

Organization of this chapter. We describe a simple probabilistic programming
language in Section 6.2. In Section 6.3, we then present challenges and phenom-
ena encountered when reasoning about expected runtimes. The expected runtime
calculus and our proof rules for loops are presented in Section 6.4. An application
of our calculus to the automated analysis of expected sampling times of Bayesian
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networks is presented in Section 6.6. Finally, in Section 6.7, we conclude with a
discussion of recent research directions.

6.2 Probabilistic Programs

In this chapter, we consider probabilistic programs written in a simple probabilistic
extension of Dijkstra’s Guarded Command Language (GCL) (Dijkstra, 1976). To
that end, we extend GCL with random assignments. Let us briefly go over the
statements in the resulting probabilistic Guarded Command Language (pGCL) by
means of small examples. Furthermore, since we want to reason about (expected)
runtimes of pGCL programs, we also discuss our underlying runtime model, i.e.
the time consumed by each pGCL statement. Our pGCL programs adhere to the

grammar
C — empty | x:= u | C; C
| if (¢) {C} else {C}

| {c1} O{c2}

| while (@) {C}

where empty is a program that has no effect and consumes no time, x is a program
variable, u represents a (discrete) probability distribution, and ¢ a Boolean expres-
sion. We now go over the language constructs and the runtime model. For more
details, in particular on an operational semantics capturing our runtime model,
please refer toKaminski et al. (2016).

Random assignments. The key feature of pGCL is the ability to sample values
from a (discrete) probability distribution, say y, and assign the sampled value to a
program variable, say x. The corresponding pGCL statement is a random assignment
of the form

X iR u.
For example, the random assignment
heads :~ /3 - (true) + 2/3 - (false)

simulates a biased coin flip: With probability !/3 the value true is assigned to
variable heads and with the remaining probability, i.e. 2/3, the value false is assigned,
respectively. The right-hand side of a random assignment may be any (computable)
discrete probability distribution over the set of possible values of a variable. In
particular, we allow probability distributions to depend on the current program state,
i.e. an evaluation of all program variables. For instance, the random assignment
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y :~ uniform(0, x) samples from a (discrete) uniform distribution over the range
from O to the current value stored in variable x and assigns the thereby obtained
value to variable y. Notice that deterministic assignments, such as x :~ x + 1, are
a special case in which a probability of one is assigned to a single value.

In our runtime model, every random assignment consumes one unit of time. Note
that this is a design choice in order to keep the calculus we are going to present as
clean and simple as possible. It is unproblematic to assume a more nuanced runtime
model for random assignments. The same holds for the runtimes we associate with
the other language constructs below.

Control flow. pGCL is equipped with standard control flow constructs for sequen-
tial composition, conditional choices, and loops:

o The sequential composition cy; c; first executes program c; and then executes
program c;. The composition operation itself consumes no time.

e The conditional choice i £ (¢) {c1} else {2} executes ¢ if the (deterministic)
guard ¢ evaluates to true and c¢; if ¢ evaluates to false, respectively. The guard
evaluation consumes one unit of time.

e The loop while (¢) {c} keeps executing the loop body ¢ as long as the guard
¢ evaluates to true at the loop head. If the guard evaluates to false, the loop
terminates. Every guard evaluation consumes one unit of time.

Let us consider the following probabilistic program inspired by Chakarov and
Sankaranarayanan (2013):

h:=0;t:= 30;
while (h <1){
¢ = 1 -(true) + 1/2 - (false);
if (¢ =true){
h :~ h+uniform[0...10]
} else {empty};
txt+1

}.

Here, empty is a pGCL statement representing the empty program, i.e. the statement
has no effect and consumes no time. The example models a race between a tortoise
and a hare; the variables # and / represent their respective positions. The tortoise
starts with a lead of 30 and advances one step in each round, i.e. each loop iteration.
The hare with probability !/> advances a random number of steps between 0 and 10
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(governed by a uniform distribution) and with the remaining probability remains
still. The race ends when the hare passes the tortoise.

Regarding the runtime, the program requires two units of time for the initial
assignments. In every loop iteration, the program consumes either four or five units
of time: It always takes one unit of time to evaluate the loop guard, flip a coin,
evaluate the conditional, and to update variable ¢, respectively. If the conditional
is evaluated to true, an additional unit of time is consumed to update the value of
variable A.

Nondeterminism. Apart from sampling from a known distribution, pGCL also
supports true nondeterminism: The statement {c;} [J {c,} represents a nondeter-
ministic choice between programs c; and c3, i.e. either ¢; or ¢; is executed, but
there is no probability distribution underlying the choice between the two programs.
Similarly to sequential composition, a nondeterministic choice itself consumes no
additional time in our runtime model.

As an example, consider the program

{x :»# 3} 0{x :» 5};
while (x > 0) {
x:=x-1

}.

This program has two possible executions: One execution initially assigns 3 to x
and has a runtime of 8 units of time. The other execution initially assigns 5 to x and
has a runtime of 12 units of time. When reasoning about the expected runtime of
a pGCL program, we resolve nondeterminism by a demonic scheduler (cf. Mclver
and Morgan, 2004; Dijkstra, 1976). That is, nondeterministic choices are resolved
in a way that maximizes the runtime. In the above example, this means that the
nondeterministic choice is resolved such that 5 is assigned to x. Strictly speaking,
we thus reason about worst-case expected runtimes.

Remark on the runtime model. We stress that the runtime model presented in this
section is one particular design choice for the sake of concreteness. It is straight-
forward to adapt our approach to alternative runtime models, where, for example,
only loop iterations or assignments are considered relevant. The same holds for
alternative resolutions of nondeterminism such as using an angelic scheduler. Fur-
thermore, more fine-grained models that take, for instance, the size of expressions
and distributions that appear in the random assignments into account can easily be
incorporated.
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6.3 Semantic Intricacies

Reasoning about expected runtimes of probabilistic programs is full of nuances.
Let us illustrate this by discussing a few phenomena. To this end, we consider a
fundamental property of ordinary, i.e. non-probabilistic, programs: An ordinary
program terminates, meaning all of its runs are finite, if and only if it has a finite
runtime. What is a probabilistic analog of this property when considering expected
runtimes?

Termination is too strong. A single diverging run of an ordinary program causes
its runtime to be infinite. This is not the case for probabilistic programs. They may
admit arbitrarily long and even infinite runs while still having a finite expected
runtime. For example, the program

Coeor b= 1
while(b = 1){
b~ 14h-(0) +1/-(1)
}.

keeps flipping a fair coin until observing the first heads (represented by 0). It admits
arbitrarily long runs, since — for every natural number n — the probability of not
seeing a heads in the first n trials is non-zero. It even admits a non-terminating
run, namely the one in which the outcome of all coin flips is tails. The runtime
of program cg.,, however, is geometrically distributed and therefore its expected
runtime is finite, even constant: On average, it terminates after two loop iterations.

The classical notion of termination for ordinary programs — all program runs
have to be finite — is thus too strong for probabilistic programs (with respect to the
considered property). In the above example, we observe that the only infinite run of
program c,., has probability zero. A more sensible notion of termination might thus
require that all infinite runs of a program have probability zero. Conversely: The
probability of termination is one. This is referred to as almost-sure termination (Hart
et al., 1983). Does almost-sure termination — instead of classical termination —
capture finite expected runtimes?

Almost-sure termination is too weak. For ordinary programs, termination always
implies finite runtime. For probabilistic programs this is not always true — even if
we consider almost-surely terminating programs only. For example, consider the
program

Crws X := 10;

while (x > 0){
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x = - {x=1)+ 1/ (x+1)
s

which models a one-dimensional random walk of a particle: Starting from position
10, in each step the particle moves randomly one step to the left or one step to
the right, until reaching position 0. The particle reaches position O with probability
one. The program c,, thus terminates almost-surely. However, doing so requires
infinitely many steps on average (cf. Ibe, 2013, Chapter 3.7.3). The expected runtime
of ¢, is thus infinite.

Since an almost-surely terminating program might run — in expectation —infinitely
long, a better probabilistic analog of classical termination might be to require that
a program’s expected runtime is finite. This is referred to as positive almost-sure
termination (Bournez and Garnier, 2005). In fact, having a finite expected runtime
implies almost-sure termination (Olmedo et al., 2016, Theorem 5.3). However,
there are subtle differences between classical termination and positive almost-sure
termination. From a complexity-theoretic view, it is noteworthy that the decision
problem “does a program terminate in finite expected time (on all inputs)?” is Hg—
complete in the arithmetical hierarchy, and thus strictly harder than the universal
halting problem for ordinary programs (Kaminski and Katoen, 2015; Kaminski
et al., 2018a).

Positive almost-sure termination is not compositional. Running two ordinary
terminating programs in sequence yields again a terminating program. Termina-
tion is thus closed under sequential composition. This is not true for probabilistic
programs when considering positive almost-sure termination. Consider the pair of

programs
c1: x:=1; b= 1; cp: while(x > 0){
while(b = 1){ x:=x-1
b~ 1/2-(0) +1/2-(1); ¥
X = 2x
}

Both programs terminate positive almost-surely: As the loop in C; terminates on
average in two iterations, it has a finite expected runtime. Furthermore, program c;
performs at most [x] iterations for any initial value of x, i.e. its expected runtime is
finite, too. However, the composed program c;; ¢, has an infinite expected runtime
— even though it almost-surely terminates. This is intuitively due to the fact that
the expected value of x after termination of c; is infinite and ¢, needs x steps to
terminate.
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6.4 The Expected Runtime Calculus

We now present a sound and complete calculus that enables rigorous reasoning about
expected runtimes of probabilistic programs. Apart from programs, the two central
objects used within our calculus are program states and runtimes. A program state
o is an evaluation of program variables, i.e. a mapping from variables — collected in
the set Var — to possible values, such as integers or rationals, which are collected in
the set Val. A runtime is a function mapping every program state o to a non-negative
real number or infinity. Formally, the sets of program states and runtimes are given
by

L ={o:Var—Val} and T = {r: X — RZ,}.

Our goal is to associate with every program c¢ a runtime ¢ mapping every program
state o~ to the average or expected runtime of executing program c on initial state o.
To this end, we express the expected runtime of programs in a continuation-passing
style by means of the runtime transformer

ert[-]: pGCL — (T - T).

The number ert[c](z)(o) is the expected runtime of executing program c on initial
state o~ assuming that ¢ captures the runtime of the computation following c. The
ert-transformer thus applies backward reasoning. The runtime ¢ is usually referred
to as the continuation (or postruntime) and we can think of it as being evaluated
in the final states that are reached upon termination of c¢. Thus, the plain expected
runtime of executing ¢ on initial state o is ert[c](0)(c"), where O is a shortcut for
the constant runtime Ao 0.! In general, we write k to denote the constant runtime
Ao k for k € RS),.

The ert-transformer is defined by induction on the structure of pGCL programs
and adheres to our simple runtime model described in Section 6.2. That is, ert[c](0)
captures the expected number of assignments and guard evaluations. A summary
of the ert definitions is found in Table 6.1. Let us briefly go over the definitions for
each pGCL statement.

Empty program. Since the empty program empty has no effect on the program
state and consumes no time, the expected runtime of empty with respect to contin-
uation ¢ corresponds to the identity, i.e.

ertfempty](t) = ¢.

! We use A-expressions to denote functions: Function AX. f applied to an argument a evaluates to f in which
every free occurrence of X is replaced by a.
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Table 6.1 Rules for defining the expected runtime transformer ert.

c ert[c] (¢)

empty t

x i p 1+ A0 Syeva Priugion) - 1lx/v)()
cii € ert[ci |(ert[c2](2))

if (¢) {e1} else {ca} 1 + [g]-ert[c](t) + [-¢]-ert[ca](7)
{e1} O {2} max {ert[c; |(¢), ert[c2](1)}

while (¢) {c’} Ifp F;, where

F(X) =1+ [¢]-ert[c'|(X) + [-¢] -1

Random assignment. For the random assignment x :x g, one unit of time is
consumed. Moreover, the remaining expected runtime represented by continuation
t has to be considered after updating ¢ to take the possible new values of variable x
— weighted according to their probabilities — into account. Formally, we define

ertlx i~ p((@) = 1+ > Prpgo() - t(olx/v]),

veVal

where Prp,j(v) is the probability that — for state o~ — distribution expression p
evaluates to value v. Moreover, o[x/v] is the program state o in which the value
assigned to variable x is updated to v. The above definition does, unfortunately,
depend on the program state o . If the distribution expression u is agnostic of
the program state, we can obtain a simpler definition. To this end, we define the
“syntactic replacement” of a variable x in a runtime ¢ by value v as t[x/v] =
Ao t(o[x/v]). Then, since the probability distribution u is independent of o,
we can write the expected runtime of the random assignment without referring
explicitly to a program state:

ertlx :~ u](t) = 1+ Z Pryq(v) - t[x/v]

veVal

For example, consider a biased coin flip x := !/3- (0) + 2/3- (x + 1). Since the
probability distribution does not depend on the program state, we have

ert[x = -0y +25- (x + 1)](t) =1+ 15-t[x/0] + 2p-t[x/x+1].
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S

ert[C1](ert[C2](r)) C ert[C,](1) G t

expected time needed to execute C|
and then let time ert[C,](¢) pass postruntime
or in other words: evaluated in final states

expected time needed to execute Cy; C after termination of Cp

and then let time ¢ pass

expected time needed to execute Cy
and then let time ¢ pass

Figure 6.1 Continuation-passing style expected runtime transformer.

Sequential composition. For the composition ¢1; ¢; of pGCL programs c; and
¢y, it becomes evident that we reason backwards: We first determine the expected
runtime of ¢, with respect to continuation ¢, i.e. ert[c;](¢). Afterwards, we determine
the expected runtime of ¢; with respect to continuation ert[c;](f). As a diagram,
the intuition behind this is depicted in Figure 6.1. Formally, we define the ert of
sequential composition as

ertlcr; e2](r) = ert[er](ert[c2](2)) -

Conditional choice. For the conditional i £ (¢) {c1} else {cz}, one unit of time is
consumed to account for the guard evaluation. Furthermore, the expected runtime of
c1 (with respect to continuation ¢) is added if guard ¢ evaluates to true. Otherwise,
the expected runtime of ¢; is added. The truth value of a Boolean expression & is
captured by the indicator function, also called Iverson bracket,

[£]: X —{0,1},

which, for a given state o, evaluates to 1 if € evaluates to true in state 0. Otherwise,
it evaluates to 0. Using Iverson brackets, the ert of the conditional choice statement
is given by

ert[1f (¢) {c1} else {c2}|(1) = 1 + [¢]-ertci](t) + [-¢] - ertlca](r) .
Nondeterminism. For the nondeterministic choice {c1} [0 {c;}, either ¢; or c;

is executed. In particular, no probability distribution guiding which of the two
programs is executed is known. Since the choice itself consumes no time, the
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expected runtime of {c;} [0 {c} is either the expected runtime of ¢; or the
expected runtime of ¢;. Following the “demonic nondeterminism" school of thought
(cf. Mclver and Morgan, 2004; Dijkstra, 1976), we assume that the program with
the worst expected runtime will be executed, i.e. we take the maximum of both
expected runtimes. Formally, we define

ert| {c1} O {c2} |(1) = max {ert[c;](¢),ert[c2](1)} .

Loops. For the loop while (¢) {c}, we exploit the fact that the expected runtime
of the loop coincides with the expected runtime of its unrolling

if (@) {c; while (¢) {c}} else {empty} .

Applying ert to this program then yields (for a fixed continuation ¢):

ertfwhile (@) {c}](?)
ert[if (¢) {c; while (¢) {c}} else {empty}](¥)

= 1+ [¢]-ertfc; while () {c}]() (Definition of ert)
+ [—¢] - ert[empty](?)
= 1+ [¢] - ert[c](ert[while (¢) {c}]| (@) + [~¢] -1 . (Definition of ert)

Every solution of this equation is a fixed point of the transformer
F: T->T, X - 1+ [¢]-ert[c](X) + [~¢]-t,

in which we substituted ert[while (¢) {c}](f) by X. In fact, as is standard in denota-
tional semantics, we are interested in the /east fixed point. The underlying intuition
is that, for every natural number n,

FN0) = F(F(..(0)...)

precisely captures the expected runtime when allowing at most n loop iterations.
Consequently, we approximate the expected runtime of the loop from below and
take the first solution capturing the expected runtime for all loop iterations, i.e. the
least fixed point of F;. The least fixed point of the characteristic functional F; is
guaranteed to exist for every loop while (¢) {c} and every continuation #, because
T (with pointwise ordering of runtimes) is a complete lattice and F; is continuous
(and hence also monotonic). The Kleene Fixed Point Theorem (Kleene, 1952) then
ensures by continuity that the least fixed point of F;, which we denote by Ifp F;,
exists and coincides with the limit of F/'(0) for n — co. Hence, we define the
expected runtime of loop while (¢) {c} with respect to continuation ¢ as

ertfwhile (¢) {cH() = pF = lim F/(0).
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Remark on soundness. Our expected runtime calculus is sound with respect to
a simple operational semantics based on Markov Decision Processes, where each
state corresponds to a program statement and each transition corresponds to one
execution step. The time consumed by a statement is modeled using state rewards.
More precisely, one can show that for every pGCL program c, every continuation
¢t and every program state o, the expected runtime ert[c](¢)(c) coincides with
the maximal expected reward (assuming demonic nondeterminism) of the unique
Markov Decision Process corresponding to c, ¢, and o as defined by the operational
semantics. We refer the interested reader to Kaminski et al. (2016) for further details.

A loop-free example. Consider the program crync:

cr: x = 1h - (true) + 1/2 - (false);

c: if(x = true){

c3: x = lh-(true) + 1/2 - (false)

c4: if(x = true){

cs: x = 1. (true) + /2 - (false)

}else {empty}
}else {empty}
It simulates a geometric distribution that is truncated after the third coin flip. To

determine its expected runtime, i.e. ert[ctrunc ](0), it suffices to apply the rules of the
ert-transformer (see Table 6.1). Throughout this chapter, we will use the notation

to express the fact that s = ert[c](¢) and moreover that s” = s. It is thus more intuitive
to read annotated programs from bottom to top, just like the ert-transformer moves
from the back to the front. Using this notation, we can annotate the program cirync
simply by applying the ert rules from Table 6.1 as shown below in Figure 6.2.
Hence, on average, running program cirync takes '3/4 units of time.

6.5 Proof Rules for Loops

Reasoning about the runtime of loop-free programs, such as the program c¢rync in
the above example, amounts mostly to syntactic reasoning. The runtime of a loop,
however, is defined as the least fixed point of its characteristic functional F;. It can
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3
a-..
M1+ 3-(1+ [x=true]- 3)[x/true]
+ 3-(1 + [x = true] - 3)[x/false]
X = 12 (true) +1/2- (false);
M1+ [x=true]-3
M1+ [x=true]-3 + [x =false]-0
if(x = true){

3

M1+ 3-(1+1) + 1-(1+0)

M1+ 1. (1+[true = true]) + 1. (1+ [false = true])
M1+ 1. (1+[x = true])[x/true]

+ 1+ (1 +[x = true])[x/false]
X = 2. (true) +1/2- (false)
N1+ [x =true]
N1+ [x=true]-1 + [x =false]-0
if(x = true){
M
M1+ }-0[x/true] + % -0[x/false]
X = 1p-(true) + 12 - (false)
o
telse{
o
empty
o
}
o
telsef
/L
empty
/L
}
/A

Figure 6.2 Runtime annotations for the program c,,,.. It is more intuitive to read the annotations
from bottom to top. The postruntime after executing the whole program is 0; the a priori expected
runtime of executing the whole program is !3/4.
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thus be obtained by fixed point iteration using Kleene’s fixed point theorem (Kleene,
1952), i.e.

lfo F; = sup F/'(0),
neN
where F}'(X) denotes n-fold application of F; to X. However, the fixed point is
not necessarily reached within a finite number of iterations. We thus study various
proof rules for approximating the expected runtime of loops.

6.5.1 Proof Rule for Upper Bounds

We first present a simple, yet powerful, proof rule for determining upper bounds
on expected runtimes of loops. This rule is based on an alternative characterization
of the least fixed point due to Tarski and Knaster (see Tarski et al., 1955): Any X
that satisfies F(X) < X is called a pre-fixed point of the function F. The least fixed
point of F can be characterized as its smallest pre-fixed point, i.e. the smallest X
such that F(X) < X. Consequently, every pre-fixed point is greater than or equal to
the least fixed point of F.

How does this lead us to a proof rule? Let F; be the characteristic functional of
some loop while (¢) {c} with respect to a continuation ¢ € T. In the context of
runtimes, we refer to a pre-fixed point I € T of F; as an upper invariant of loop
while (¢){c} and continuation . By the above observation, we can then formulate
our first proof rule as follows:

F() <1 implies ertfwhile (p) {c}|(t) = lipF, < I .
[
1 is an upper invariant 1 is an upper bound of the expected runtime

In particular, since the exact expected runtime of a loop itself is an upper invariant,
completeness of the above proof rule is immediate.

Example: The geometric distribution. Let us consider an application of our proof
rule. The loop cgeo below has a geometrically distributed runtime as it keeps flipping
a fair coin until it hits tails (¢ = 0).
Cgeo': while (¢ = 1){
c = 1h-{0)y+1/-(1)
}

How can we apply our proof rule to verify an upper bound on the expected run-
time of cgeo? The corresponding characteristic functional with respect to postrun-
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time ¢ = 0 is:

Fo(X)

I + [c#1]-0 + [c=1]-ert[c := - {0) + /- (1)](X)
1+ [c= 1]-(1+%~(X[c/0]+X[c/l])).

By the calculations below we verify that I = 1 + [¢ = 1] - 4 is an upper invariant of
the loop (with respect to 0):

Fo) = 1 + [c:1]-(1+%-(1[c/0]+1[c/1]))
-1+ [c=1]-(1+%-(1+[0=1]-4 + 1+[1=1]-4))
S— S—
= 1+[c=1]-4 - B
-1 <1

Hence, I is an upper invariant. By our proof rule, we then obtain
ert[cgeo|(0) < 1+[c=1]-4.

In words, the expected runtime of cgeo is at most 1 +4 = 5 from any initial state
where ¢ = 1 and at most 1 + 0 = 1 from any other state. Notice that if the loop
body is itself loop-free, as in the above example, verifying that some runtime / is
an upper invariant is usually fairly easy. Inferring the invariant, in contrast, is one
of the most involved part of the verification effort.

6.5.2 Proof Rule for Lower Bounds

It is tempting to use the converse version of our proof rule based on upper in-
variants to reason about lower bounds on the expected runtime. That is, one
would like to check I < F,(I) for some runtime I € T in order to verify that
I < ert[while (¢) {c}](0). Such a rule is unfortunately not sound as is, but we can
add further premises to make it sound.

Metering Functions

We would like first to point out that it is not self-evident that the simple lower bound
rule suggested above must necessarily fail: For non-probabilistic programs, Frohn
et al. (2016) have shown that this very lower bound rule is indeed sound. They call
an I, such that I < F,(I), a metering function. Whenever I is a metering function, /
is a lower bound on the runtime of a non-probabilistic loop, just as I being an upper
invariant implies that / is an upper bound on the (expected) runtime of a loop — be
it probabilistic or not.
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The intuition behind the soundness of the metering function rule is that for
non-probabilistic programs there exists some n € N such that

(fo F)(o) = (FO)(e),

in case that the loop terminates on o (this is not true if the loop diverges, but then
any lower bound is a lower bound). Existence of n allows for proving soundness
of the metering function rule by induction on n. This is not true for probabilistic
programs: We may well have the situation that we need to take the limit for n, so
that

(Ifp F;)(o) = sug(F,”(O))(O'),

but for all n € N

(e F)(o) > (F'(0) (o),

even for a fixed initial state o-. Indeed, for probabilistic programs, the metering func-
tion approach is unfortunately unsound, as the following counterexample shows:
Consider the loop ¢, given by

while (y =1){
y = a0y + 12 (1);

x:=x+1

X

X

}

where we assume that x ranges over N for simplicity. Suppose we want to reason
about a lower bound on the expected runtime of ¢ by a metering function. The
characteristic functional of the while loop with respect to postruntime 0 is given by

FoX) = 1+ [y =11+ (2 H(XDx/x + Uly/0] + X[x/x + 1[y/1]) )
We now propose two fixed points of Fy, namely
I = 1+[y=1]6 and L = 1+[y=1](6+2"),

for any constant @ > 0, are both a fixed point of F and hence also a metering
function. /; is in fact the least fixed point of Fy and we clearly have /; < . Thus, if
we prove I, < Fy(I,), we cannot possibly have proven that I is a lower bound on the
least fixed point of Fy, since /) is a fixed point strictly smaller than I,. The intuitive
reason is that the expected runtime of c is completely independent of x but x has an
influence on the value that I, assumes. For more details on the connections between
the ert calculus and metering functions, we refer the interested reader Kaminski
(2019, Sections 7.6.3 and 7.6.4).
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Table 6.2 Rules for obtaining upper or lower bounds on the (expected) runtime of
a loop while (@) {c} with respect to postruntime t.

ertfwhile (@) {c}l(#) < I I < ert[while () {c}1(¢)

¢ non-probabilistic F() <1 1

IA

Fi(I)

I < F,(I) and

¢ probabilistic F) <1 Ao ert[c](|1(o) - 1) (o) < ¢

Probabilistic Metering Functions
We call a runtime 7 that satisfies I < F;(I) a lower invariant. We have learned above
that / being a lower invariant is not enough of a premise to ensure that / is a lower
bound on ert[while (¢) {c}](¢). The additional premise that we have to add is that
the expected change of I after performing one iteration of the loop body is bounded
by a constant, i.e. for every initial state o,;, we have

Exp(|1(0-init) - I(O-ﬁnal)l) <c,

for some positive constant ¢ (Hark et al., 2020). This property is called conditional
difference boundedness. It is easy to show that the above expected value is upper
bounded by Ao ert[c](|I(c) — I|)(co) and hence we can add

Ac.ert[c](|I(oc) = 1])(o) < ¢, for some constant ¢ > 0
as a premise (additionally to / < F;(1)), to ensure that / is a lower bound on
ert[while (¢) {c}](¢).? The overall situation is summarized in Table 6.2.
Example: The geometric distribution revisited. Let us consider an application

of the lower bound proof rule by revisiting the loop cgeo:

Cgeo': while (¢ = 1){
c = 1h-(0)y+1/-(1)
}

We have already shown that / = 1 + [c¢ = 1] - 4 is not only a prefixed point of the
corresponding characteristic function

FoX) =1+ [c= 1]-(1+%-(X[c/0]+X[c/1])),

2 Technically, we have to check a few finiteness conditions too, but those are easy to check.
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and thus an upper bound on the expected runtime of the loop, but indeed a true
fixed point. Thus, if we show that there exists a constant ¢, such that

Ao ert[body](|I(0) = I])(o) < ¢,

then [ is also a lower bound and hence the exact expected runtime. We can check
the above condition as follows:

Ac. ertfe =~ 12 (0) + 12 - (Y](1(e) - 1) (o)
= Ao (1+%-(|I(0’) I[e/0]| + | i(o) - I[c/1]|))(0')

= e b (= te/0l] + |1 - 1e/1])

141 (|1+ =1]-4-1-[0=1]-4]

+ |1+[c=1]~4—1—[1=1]-4|)

( [c=1]-4] + |[c:1]-4—4|)
4

+ 1.
+3
+1-(4+4)

IA

Thus we have established that

ert[cgeo](0) = 1 = 1+[c=1]-4.

6.5.3 Another Proof Rule for Lower Bounds

One can show that the lower bound rule we presented in the previous section is
incomplete in the sense that there exist lower bounds which are not conditionally
difference bounded. Furthermore, that proof rule is incapable of verifying infinite
expected runtimes. We present in this section a third proof rule, which is more
difficult to apply but in turn complete for verifying lower bounds on expected
runtimes, in particular infinite expected runtimes.

Recall that, by Kleene’s fixed point theorem (Kleene, 1952), the least fixed point
characterizing the expected runtime of a loop with characteristic functional F;
is given by

lfo F; = sup F;'(0).
neN
It can thus be obtained by fixed point iteration: Starting at 0, we iteratively apply
the characteristic functional and take the limit of this iteration process. We now
under-approximate each step of this fixed point iteration. To this end, we use a
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0 < F@O0 < F0) < F0) < ...c< sup F''(0) = lfp F,
Y 2 \Y nett \%
I Fi (1) Fi(I) Jlim Fi(In)
2 \Y \%
b I lim I,
R—00

Figure 6.3 Illustration of approximating each step of a fixed point iteration of F; on initial value
0 with a lower w-invariant I,,. The chain 0 < F,(0) < F, ,2(0) < ... ontop is a consequence of
the monotonicity of F; which in turn is a consequence of its continuity.

runtime I, € T that is parameterized in a natural number n. Then, [, is called a
lower w-invariant of while (¢) {c} with respect to runtime ¢ if and only if

L < FO) and Vnx1: Iy < F().

Intuitively, a lower w-invariant I,, under-approximates the n-th step of a fixed point
iteration that determines the exact expected runtime of a loop. It thus represents
a lower bound on the expected runtime of those executions that finish within n
loop iterations, weighted according to their probabilities. Intuitively, the limit of 7,,
consequently represents a lower bound on the expected runtime for any number of
loop iterations. More formally, we can show by induction that

In+l < Ft(ln) < an+1(0)-

An illustration of a fixed point iteration approximated by /,, is given in Figure 6.3.
Formally, we obtain the following proof rule based on w-invariants: If /,, is a lower
w-invariant of loop while (¢){c} with respect to runtime ¢ and the limit of I,, exists
then

lim I, < ert[while (¢) {c}](?).

n—oo

This rule is obviously complete as we can always choose the exact fixed point
iteration sequence I,, = F;*(0) as lower w-invariant.

It is worthwhile to note that for upper bounds there is no need for w-invariants,
even though a dual rule exists: I, is called an upper w-invariant of while (¢) {c}
with respect to runtime ¢ if and only if

F©) < I and Von>1: F(I,) < L.

If 7,, is an upper w-invariant of loop while (¢) {c} with respect to runtime ¢ and

https://doi.org/10.1017/9781108770750.007 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.007

6.5 Proof Rules for Loops 205

the limit of 7,, exists, then indeed
ertfwhile (¢) {c}](r) < lim I, .
n—oo

However, one can show that in this case lim,,_,, I, itself is already an upper (global)
invariant, i.e.

F,(lim In) < lim I,

n—oo n—oo

and thus, there is no need to guess such a sequence and then find the limit. Instead,
we can just immediately guess a limit and check whether this limit is an upper
invariant, without having to perform an additional induction on n.

Example: Disproving positive almost-sure termination. The expected runtime
transformer ert enables proving positive almost-sure termination by verifying a
finite upper bound on the expected runtime of a program. With the help of w-
invariants, it can also be employed to prove that infinity is a lower bound on the
expected runtime. In other words, we can verify that a given program does not
terminate positively almost-surely. As an example, let us verify that the concatena-
tion of two positively almost-surely terminating programs may itself not terminate
positively almost-surely. We already presented a counterexample, but without proof,
namely the program

Ceex: L x:=1;b:=1;
2: while (b=1){b := 12(0) +1{1); x :=2x};
3: while(x >0){x :=x—1}.

Our goal is to formally prove that ccex has an infinite expected runtime, i.e. co <
ert[ccex](0). To this end, let us denote the program in the i-th line of ccex by ¢;. By
the rule for sequential composition, we then obtain

ertlceex](0) = ert[ci](ert[c2](ert[c3](0))) .

Let us thus start by analyzing the second loop, i.e. program cs. Its characteristic
functional with respect to continuation 0 is given by

Fo(X) = 1+[x>0]-(1+X[x/x-1]).

Since the variable x is decremented in each loop iteration and every iteration con-
sumes two units of time (one for the guard evaluation and one for the assignment),
we use the lower w-invariant

I, =14+[0<x<n-1]-2x+[x>n-1]-2n-3)
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of the loop c3 to conclude that

ertfc3](0) > lim I, = 1+ [x>0]-2x

n—oo

We now have an under-approximation of the expected runtime of c3. We can continue
reasoning about ¢, using this under-approximation because the ert-transformer
satisfies a fundamental property: it is monotonic. Hence,

ert[c3](0) = 1+[x>0]-2x implies
ertfca 5 ¢3](0) = ert[ca](ert[c3](0)) > ert[c2](1 + [x > 0] - 2x) .

Our next step is therefore to analyze the expected runtime of the first loop, i.e. 7,
with respect to continuation # = 1 + [x > 0] - 2x. The corresponding characteristic
functional is given by

G/(X) = 1+[b#1]-(1+[x>0]-2x)
+[b=1]-(2+ 3 X[x/2x][b/0] + § - X[x/2x][b/1]) .

As a lower w-invariant of ¢;, we propose
Jo = 1+[b#1]-(1+[x>0]-2x)
+[b=1]-(T-55+(0-1)-[x>0]-2x).
The calculations establishing that J,, is a lower w-invariant go as follows:
G/(0) = 1+[b#1]- (1 +[x>0]2x)
+[b =11+ (2+ 4 - 0L/2x1[b/0] + § - 0Lx/2x1[b/1])
= 1+[b#1]-(1+[x>0]-2x)+[b=1] -2
=L >hL Vv

Gi(Jn)

|
+

Il
—_
+

1+[b#1]-(1+[x>0]-2x)
+[b:1]-(7—znfﬁ+(n+l—l)-[x>0]-2x)
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= Iy 2 Lin v
Hence, our proof rule for lower w-invariants yields

ertfco](1 +[x > 0] -2x) > lim J,

n—oo

1+[b#1]- (1 +[x>0]-2x)
+[b=1]-(7T+[x>0]- ).

Again appealing to monotonicity of the ert-transformer, we can complete the run-
time analysis of program ccex:

ert[ccex](0)

ert[c](ert[c2](ert[c3](0)))
> ert[ci](ert[c2](1 + [x > 0] - 2x))

ert[cl](l +[b# 1] (1+[x> 0] 2x)

[\

+[b= 117 +[x > 0] - 0))
= ert[x :=1](ert[b 1= 1](
L+[b#1]-(1+[x>0]-2x)
+[b =117 +[x > 0] - 0)))
— ertfx := 1](1 + 8+ [x > 0] - o)
=1+1+8+[1>0] 00

Overall, we obtain that the expected runtime of program ccex is infinite even though
it terminates with probability one. In other words, ccex terminates almost-surely,
but not positively almost-surely. Furthermore, notice that both sub-programs ¢, and
c3 for themselves have finite expected runtimes, since

ertfc2](0) = 1+[b=1]-4 and ert[c3](0) = 1+ [x>0]-2x.

We emphasize that the ert-calculus allows for reasoning about positive almost-sure
termination (PAST) although PAST itself is not compositional.

6.5.4 Independent and Identically Distributed Loops

So far, we have studied two classes of complete proof rules. However, both rules rely
on finding invariants, which is usually the hardest part of the verification process.
We now consider a restricted class of loops whose exact expected runtime can be
analyzed without invariants or other user-supplied artifacts. That class thus offers
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while((x - 5)2 + (y - 5)2 < 25) { m% ><X \

x = uniform[0...10]; ] x
y :~ uniform[0. .. 10] N\ .
} 1 X X

Figure 6.4 A probabilistic program sampling a point within a circle uniformly at random using
rejection sampling. The picture on the right-hand side visualizes the procedure: In each iteration
a point (x) is sampled. If we obtain a point within the white area inside the square, we terminate.
Otherwise, we resample.

w
X

R

Q

a high degree of automation. Intuitively, the key concept underlying our next proof
rule are loops without data flow across different loop iterations. For deterministic
programs, such loops are not very interesting: They either terminate after exactly
one iteration or never. This is not the case for probabilistic programs. Consider, for
example, the probabilistic program depicted in Figure 6.4. It samples a point within
a circle with center (5,5) and radius 5 uniformly at random by means of rejection
sampling: In each loop iteration, we sample a point (x,y) € [0,10]> with some
fixed precision. If the sampled point lies within the circle, we terminate; otherwise,
we resample. Although our program admits arbitrarily long runs, the program
terminates within finite expected time. Moreover, there is no data flow across loop
iterations. This is an example of an independent and identically distributed (i.i.d.)
loop. In the remainder of this section we develop a proof rule to determine exact
expected runtimes of i.i.d. loops.

Towards a rigorous proof rule, let us first formally characterize i.i.d. loops. Let
Var(f) denote the set of all variables that “occur in” runtime f € T, i.e.

x € Var(f) iff Jo Iv,v": f(O'[x/v]) # f(o-[x/v']).

Furthermore, let the set Mod(c) be the collection of all variables that occur on the
left-hand side of an assignment in a program c. We then call a runtime f unaffected
by program c, denoted

fie
if and only if Var(f) N Mod(c) = 0. Moreover, let us denote by
pc(f)

the expected value of f after executing program c. This value can be computed simi-
larly to expected runtimes with our ert-calculus by assuming that the time consumed
by each statement is zero (this corresponds to the weakest preexpectation calculus
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of Mclver and Morgan, 2004). With these notions at hand, a loop while (¢) {c} is

f-i.i.d. for some postruntime f € T if and only if

(i) the probability of loop guard ¢ being true after one execution of loop body c is
unaffected by c, i.e.

pc(lel) fc,

(ii) the probability of violating the loop guard and continuing with runtime f after
one execution of loop body c is unaffected by c, i.e.

pc([~¢l- f)Mc,  and

(iii) every loop iteration runs in the same expected time, i.e.
ert[c](0) A c .

For example, the program in Figure 6.4 that samples a point in a circle is f-
i.i.d. for every postruntime f € T. How does the fact that a loop is f-i.i.d. help
us when analyzing the expected runtime of a program? Intuitively, since each loop
iteration has the same expected runtime, we can characterize the expected runtime
of the whole loop as the expected runtime of a single loop iteration divided by
the probability of termination, i.e. 1 minus the probability of satisfying the loop
guard after execution the loop body. Formally, we additionally have to take the
time consumed by guard evaluations and the possibility that the loop guard is never
satisfied into account. This leads us to the following proof rule (Batz et al., 2018):

Proof rule for f-i.i.d. loops. Let while (¢) {c} be an f-i.i.d. loop such that the
loop body ¢ terminates almost-surely, i.e. ¢c(1) = 1. Then, the expected runtime
of while (¢) {c} with respect to postruntime f € T is

L+ertlel(~¢]-f) |
T—Prcl(¢]

where we define % = 0 and 4/o = oo for a # 0.

ertfwhile (¢) {c}(f) = 1 + [¢]-

[—e]- f,

6.6 Application: Bayesian networks

The notion of f-i.i.d. loops prevents data flow across loop iterations. While this
might seem like a severe restriction, it naturally applies to certain classes of prob-
abilistic models. In particular, Bayesian networks (Koller and Friedman, 2009) are
probabilistic graphical models representing joint probability distributions of sets of
random variables with conditional dependencies. Graphical models are popular as
they allow to succinctly represent complex distributions in a human-readable way.
For example, Bayesian networks have applications in machine learning (Heckerman,

https://doi.org/10.1017/9781108770750.007 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.007

210 Kaminski, Katoen and Matheja: Expected Runtime Analysis

2008), speech recognition (Zweig and Russell, 1998), sports betting (Constantinou
etal., 2012), gene regulatory networks (Friedman et al., 2000), medicine (Jiang and
Cooper, 2010), and finance (Neapolitan and Jiang, 2010).

The central problem for Bayesian networks is probabilistic inference, i.e. deter-
mining the probability of an event given observed evidence. This problem is often
approached using sampling-based techniques, such as rejection sampling: Repeat-
edly sample from the joint distribution of the network until the obtained sample
complies with all observed evidence. However, a major problem with rejection
sampling is that for poorly conditioned data, many samples have to be rejected to
obtain a single compliant sample. In fact, Gordon et al. (2014) point out that “the
main challenge in this setting [i.e. sampling based approaches] is that many samples
that are generated during execution are ultimately rejected for not satisfying the ob-
servations.” If too many samples are rejected, the expected sampling time grows so
large that sampling becomes infeasible. The expected sampling time of a Bayesian
network is therefore a key figure for deciding whether sampling based inference is
the method of choice. In other words, we are concerned with the question:

“Given a Bayesian network with observed evidence, how long does it take to obtain
a single sample that satisfies the observations?”

In this section, we present how this question can be addressed fully automatically:
We translate a Bayesian network into an equivalent pGCL program such that the
expected runtime of the resulting program corresponds to the expected sampling
time of the network. The expected runtime is then determined using the ert-calculus
and our proof rule for f-i.i.d. loops.

6.6.1 From Bayesian Networks to Probabilistic Programs

Letus briefly introduce Bayesian networks by means of an example. Further details —
including formal definitions — are found in Batz et al. (2018); Koller and Friedman
(2009). A Bayesian network is a directed acyclic graph in which every node is
a random variable and every edge between two nodes represents a probabilistic
dependency between these nodes. As a running example, consider the network
depicted in Figure 6.5 (inspired by Koller and Friedman, 2009) that models the
mood of students after taking an exam. The network contains four random variables.
They represent the difficulty of the exam (D), the level of preparation of a student
(P), the achieved grade (G), and the resulting mood (M). For simplicity, let us
suppose that each random variable assumes either value 0 or 1. The underlying
dependencies express that the mood of a student depends on the achieved grade
which, in turn, depends on the difficulty of the exam and the amount of preparation
before taking it. Every node is accompanied by a conditional probability table that
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D=0,P=0 0.95

D=1,P=1 0.05

D=0,P=1 0.5

D=1,P=0 0.6

Figure 6.5 A Bayesian network

provides the probabilities of a node given the values of all the nodes it depends
upon. We can then use the Bayesian network to answer queries such as "What is the
probability that a student is well-prepared for an exam (P = 1), but ends up with a
bad mood (M = 0)?"

It can be shown that every Bayesian network with observed evidence can be
translated into an equivalent pGCL program, i.e. a program describing the same
conditional probability distribution (Batz et al., 2018). For instance, Figure 6.6
shows the probabilistic program corresponding to the Bayesian network in Fig-
ure 6.5 and observation P = 1. Here, the statement repeat { ¢ } until (¢) is a
shortcut for ¢; while (¢) {c}. Essentially, every node in a network corresponds to
a variable. It is then straightforward to encode the (discrete) conditional probability
table of every node using conditional branching and random assignments.

To deal with observations, one could syntactically enrich the programming lan-
guage to allow for observe-statements. This approach is taken in, for exam-
ple,Katoen et al. (2015); Olmedo et al. (2018); Bichsel et al. (2018). However,
taking that approach would not give us an insight on how long it would take to
obtain an execution trace that complies with the observations. Instead, we wrap
around the original program a global loop that implements rejection sampling.
That is, the whole program is re-run until all observations are satisfied. Since no
variable inside the loop body of such a program is accessed before it is set by a
probabilistic assignment, there is no data flow across loop iterations. In other words,
all loops that model Bayesian networks are f-i.i.d. for every postruntime f € T.
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1 repeat { 10 telse{

2 xp =~ 0.6-(0)+0.4-(1); 11 xGg = 0.6-(0) +0.4-(1)
3 xp := 0.7-(0) +0.3-(1) 12 IS

4 if(xp =0Axp =0){ 13 if(xg =0){

5 xG :~ 0.95-(0) +0.05-(1) 14 xy =~ 0.9-(0) +0.1-(1)
6 Yelseif(xp =1 Axp =1){ 15 telse{

7 xG :~ 0.05-(0) +0.95-(1) 16 Xy~ 0.3-(0) +0.7-(1)
8 telseif(xp =0Axp =1){ 17 }

9 xG = 0.5-(0) +0.5-(1) 18 }until(xp =1)

Figure 6.6 The probabilistic program obtained from the network in Figure 6.5.

Consequently, the expected runtime of programs obtained from Bayesian networks
can be analyzed fully automatically by applying the rules of the ert-calculus.

6.6.2 Implementation

We implemented a prototype to analyze expected sampling times of Bayesian
networks (cf. Batz et al., 2018). More concretely, our tool takes as input a Bayesian
network together with observations in the popular Bayesian Network Interchange
Format.3 The network is first translated into a probabilistic program. The expected
runtime of the resulting program is then determined fully automatically by applying
our ert-calculus together with our proof rule for f-i.i.d. loops.

The size of the resulting program is linear in the total number of rows of all
conditional probability tables in the network. The program size is thus not the bot-
tleneck of our analysis. As we are dealing with an NP-hard problem (Cooper, 1990;
Dagum and Luby, 1993), it is not surprising that our algorithm has a worst-case
exponential time complexity. However, also the space complexity of our algorithm
is exponential in the worst case: As an expectation is propagated backwards through
an if-clause of the program, the size of the expectation is potentially multiplied.
This is also the reason that our analysis runs out of memory on some benchmarks.

We evaluated our implementation on the largest Bayesian networks in the
Bayesian Network Repository (Scutari, 2017) that consists — to a large extent — of
real-world Bayesian networks including expert systems for, e.g., electromyography
(munin) (Andreassen et al., 1989), hematopathology diagnosis (hepar2) (Onisko
et al., 1998), weather forecasting (hailfinder) (Abramson et al., 1996), and
printer troubleshooting in the Windows 95 operating system (win95pts) (Ramanna
etal., 2013, Section 5.6.2). All experiments were performed on an HP BL685C G7.

3 http://www.cs.cmu.edu/ fgcozman/Research/InterchangeFormat/
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Although up to 48 cores with 2.0GHz were available, only one core was used apart
from Java’s garbage collection. The Java virtual machine was limited to 8GB of
RAM.

Our experimental results are shown in Table 6.3. The number of nodes of the
considered networks ranges from 56 to 1041. For each Bayesian network, we
computed the expected sampling time (EST) for different collections of observed
nodes (#obs). EST = co means that our implementation automatically infers that
the expected sampling time is in fact infinite, which is the case if and only if
the probability of complying with all observed evidence is precisely 0. #obs = 0
means that no evidence is observed; the repeat-until loop would thus be executed
exactly once. For #obs > 0, observations were picked at random. Note that the time
required by our prototype varies depending on both the number of observed nodes
and the actual observations. Thus, there are cases in which we run out of memory
although the total number of observations is small. Furthermore, Table 6.3 provides
the average Markov Blanket size, i.e. the average number of parents, children and
children’s parents of nodes in the Bayesian network (Pearl, 1985), as an indicator
measuring how independent nodes in the network are.

In order to obtain an understanding of what the EST corresponds to in actual ex-
ecution times on a real machine, we also performed simulations for the win95pts
network. More precisely, we generated Java programs from this network analo-
gously to the translation from Bayesian networks into pGCL programs. This allowed
us to approximate that our Java setup can execute 9.714 - 10° steps (in terms of
EST) per second. For the win95pts with 17 observations, an EST of 1.11 - 10"
then corresponds to an expected time of approximately 3.6 years in order to obtain
a single valid sample. We were additionally able to find a case with 13 observed
nodes where our tool discovered within 0.32 seconds an EST that corresponds to
approximately 4.3 million years. In contrast, exact inference using variable elimina-
tion was almost instantaneous. This demonstrates that knowing expected sampling
times upfront can indeed be beneficial when selecting an inference method.

6.7 Conclusion and Future Directions

We presented a weakest-precondition-style calculus for reasoning about the ex-
pected runtime of probabilistic programs. Our calculus demonstrates how standard
techniques from program verification — in particular denotational semantics and
invariants — enable elegant proofs of (non)positive-almost sure termination. Fur-
thermore, both lower and upper bounds on the expected runtime can be determined.
We studied the restricted class of independently and identically distributed loops,
which enable a fully automated runtime analysis. In particular, Bayesian networks
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Table 6.3 Experimental results. Time is in seconds. MO denotes out of memory.
#obs refers to the number of observed nodes.

Network #obs Time EST #obs Time EST #obs Time EST

earthquake #nodes: 5, #edges: 4, avg. Markov Blanket: 2.00

0 0.09 8.000-10° 2023 9.276- 10 4 024 1.857-10?
cancer #nodes: 5, #edges: 4, avg. Markov Blanket: 2.00

0 0.09 8.000-10° 2 022 1.839-10 5 020 5.639-10°
survey #nodes: 6, #edges: 6, avg. Markov Blanket: 2.67

0 0.09 1.000- 10! 2 021 2.846-10° 5 022 9.113-10°
asia #nodes: 8, #edges: 8, avg. Markov Blanket: 2.50

0 0.26 1.400- 10! 2 025 3.368-10° 6 025 8.419-10*
sachs #nodes: 11, #edges: 17, avg. Markov Blanket: 3.09

0 0.13 2.000-10' 3 024 7.428-10° 6 272 5.533-107
insurance #nodes: 27, #edges: 52, avg. Markov Blanket: 5.19

0 0.17 5.200- 10! 3 031 5.09-10° 5 091 1.373-10°
alarm #nodes: 37, #edges: 46, avg. Markov Blanket: 3.51

0 0.14 6.200-10' 2 MO — 6 40.47 3.799-10°
barley #nodes: 48, #edges: 84, avg. Markov Blanket: 5.25

0 0.46 8.600- 10! 2 053 5.246-10* 5 MO —

hailfinder #nodes: 56, #edges: 66, avg. Markov Blanket: 3.54

0 0.23 9.500- 10! 5 0.63 5.016-10° 9 046 9.048-10°
hepar2 #nodes: 70, #edges: 123, avg. Markov Blanket: 4.51

0 022 1.310-10° 1 1.84 1.579-10% 2 MO —
win95pts #nodes: 76, #edges: 112, avg. Markov Blanket: 5.92

0 020 1.180-107 1 036 2.284-10° 3 036 4.296-10°

7 091 1.876-10° 12 042 3.973-107 17 61.73 1.110-105

pathfinder #nodes: 135, #edges: 200, avg. Markov Blanket: 3.04

0 037 217 1 0.53 1.050-10* 3 3131 2.872-10*

5 MO — 7 544 o 7 480.83 oo
andes #nodes: 223, #edges: 338, avg. Markov Blanket: 5.61

0 046 3.570-10% 1 MO — 3 1.66 5.251-10°

5 141 9.862-103 7 099 8.904-10* 9 090 6.637-10°
pigs #nodes: 441, #edges: 592, avg. Markov Blanket: 3.66

0 0.57 7.370-10% 1 074 2952-103 3 0.88 2.362-103

5 0.85 1.260-10° 7 1.02 1.511-10° 8 MO —
munin #nodes: 1041, #edges: 1397, avg. Markov Blanket: 3.54

0 129 1.823-10° 1 147 3.648-10* 3 1.37 1.824-107

5 143 o 9 1.79 1.824-10'° 10  65.64 1.153-10'%
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— if interpreted as probabilistic programs — are covered by this class. Hence, exact
expected sampling times of Bayesian networks can be determined automatically.

Since the original development of the expected runtime calculus (Kaminski et al.,
2016), there has been ongoing research into several further directions. We conclude
with a brief discussion of recent developments.

Applications. The main application of our calculus is the analysis of randomized
algorithms. However, many randomized algorithms rely on advanced programming
features that are not supported by the simplistic language considered in this chap-
ter. There have been various extensions of weakest-precondition-style calculi for
probabilistic programs that attempt to support additional features while maintaining
elegant and applicable proof rules. In particular, recursion (Olmedo et al., 2016)
and dynamic data structures (Batz et al., 2019) have been incorporated into our
probabilistic guarded command language. An important feature that is still missing
is support for concurrent randomized algorithms.

Automation. While finding invariants is a challenging task, we were usually able
to find correct invariants by considering a few loop unrollings. Hence, there is hope
that the proof rules presented in this chapter provide a foundation for automated
reasoning about expected runtimes. As a first step, our calculus has been mecha-
nized in the theorem prover IsaBeLLE (Holzl, 2016). Furthermore, the class of i.i.d.
loops is a further step towards automation for a restricted class of programs. More
recently, Ngo et al. (2018) extended work on automated amortized resource analysis
to automatically reason about bounds on the expected runtime of a larger class of
probabilistic programs. They reduce inference of upper bounds to a linear program-
ming problem. In fact, their work can be considered an extension of our ert-calculus
by specialized rules. In particular, soundness of their approach explicitly relies on
the soundness of the expected runtime transformer presented here.

Almost-sure termination. Our calculus allows for proving positive almost-sure
termination, i.e. finite expected runtimes. A weaker notion is plain almost-sure ter-
mination, i.e. termination with probability 1. Powerful rules for proving almost-sure
termination of a large class of programs have been developed (Mclver et al., 2018),
and for certain subclasses of probabilistic programs even automated approaches for
proving almost-sure termination exist (Esparza et al., 2012; Chatterjee et al., 2016,
2017; Agrawal et al., 2017).
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