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Abstract

We develop the idea of a ^-ordering (where 6 is an infinite cardinal) for a family of infinite
sets. A 0-ordering of the family A is a well ordering of A which decomposes A into a union of
pairwise disjoint intervals in a special way, which facilitates certain transfinite constructions.
We show that several standard combinatorial properties, for instance that of the family A
having a ^-transversal, are simple consequences of A possessing a 0-ordering. Most of the
paper is devoted to showing that under suitable restrictions, an almost disjoint family will
have a 0-ordering. The restrictions involve either intersection conditions on A (the intersection
of every A-size subfamily of A has size at most K) or a chain condition on A.

1980 Mathematics subject classification (Amer. Math. Soc): 03 E 05, 04 A 20.

1. Introduction

The family of sets A is said to be a (A, K)-family if | ^ | = A and |A| = /c for all

A in A. The family A is said to be almost disjoint if \A n B\ < \A\, \B\ for all

distinct, A, B in A. Our interest in this paper is in almost disjoint (A, /c)-families

A which possess what we call a ^-ordering, for various values of 6 with 6 < K.

DEFINITION 1.1. A 0-ordering of the (A, «)-family A is a (strict) well order -<

of A under which there is a family I of pairwise disjoint intervals with A — \J I

such that | / | < K for each I E I, and for each / € I and A € A:

(1) AeI^\An\j{[Jj;Je land J < l}\ <0,
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[2] An order property for families of sets 295

(2) AEI^ A n \J{B E /; B -< A}

(where in (1), J <I means that B •< A for all A G / and B G J) .
A (A, re)-family clearly has a ^-ordering if 9 > re and so we always assume

0 < re. Notice that a re-ordering of the (A, re)-family A is just a well ordering -<
of A such that for each AE A,

(3) An\J{BeA\B<A}\ <re,

for we can take each interval in the family J to be a singleton set. The special
case of an No-ordering of a family of denumerable sets has appeared previously,
see Davies and Erdos ([1], Lemma 3).

Obviously, any (A,/c)-family which has a ^-ordering where 0 < re must be
almost disjoint. Any almost disjoint (re, re)-family A where re is regular has a 9-
ordering, for any 0 < re, since any well ordering of A of order type re with A itself
the only interval gives a ^-ordering. However, not every almost disjoint (re+, re)-
family possesses even a re-ordering, for let S be a (re, re)-family of pairwise disjoint
sets, and let A with S C A be an almost disjoint (re+, re)-family with \JA = \JS.
Any A E A coming after all the sets in S in a well ordering -< of A has A D
\J{B G A; B •< A} = A, so A has no re-ordering. If re is singular, there are almost
disjoint (re, re)-families that are maximal with respect to almost disjointness (see
Erdos and Hechler [3]). No such maximal family possesses even a re-ordering (for
if -< is a re-ordering of the (re, re)-family A, choosing x(A) E A — \J{B; B < A}
and putting T = {x(A);A E A} gives a set almost disjoint from each member of
A). If re is singular, to ensure that the (re, re)-family A has a ^-ordering we need
to assume the stronger condition that always \A n B\ < r) for some fixed r/ < re.

Before we explain our interest in 0-orderings, we need some more terminology.
The family A is said to satisfy the intersection condition C(r), 9) if \f) B\ < 0 for
all subfamilies B of A with \B \ = T?. A set T is called a 0-transversal of the family
A if 1 < \T ("1 A\ < 9 for all A in A. The family A is said to be sparse if there is
a function / : A -» P\JA with f{A) C A and \f(A)\ < \A\ for all A in A, such
that {A — f{A);A E A} is a pairwise disjoint family.

It is a theorem of Erdos and Hajnal ([2], Theorem 7) that every (A,re)-family
satisfying C(2,9) has a #+-transversal, provided A is not too large (and with
some restriction on 9 < re). It was recently shown by Komjath ([5], Theorem
5) that, under similar conditions, every such family is sparse. The proofs of
these two results are little involved. A similar inductive construction is used
in both cases, though the details are different. Our interest in 0-orderings was
aroused by the observation that the families in question possess a 0+-order, and
it is almost trivial to deduce from this that they are sparse and have a 0+-
transversal. Several further properties we looked at turned out to be an easy
consequence of a ^-ordering. For instance, in ([8], Theorem 3.2) we showed that
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provided A is not too large, every almost disjoint (A, /c)-family satisfying certain
chain conditions has a /c-transversal. We shall show in Section 3 that under
these circumstances, the family possesses a K-ordering. The existence of a K-
transversal follows easily from this. Here, by a chain condition we mean the
following. The family A satisfies the /z- chain condition if there is no set D C \J A
and sequence (Aa; a < fx) of sets from A such that DoAaCDnAp whenever
a < 0 < n (where C means strict inclusion).

The main results which we prove concerning the existence of 0-orderings are
the following. (These results appear in Theorems 2.4, 2.6, 3.3 and 3.4 below.)

THEOREM 1.2. Let A be an almost disjoint (\,K)-family.
(a) (GCH) If 6+ < K and either A satisfies C(2,6), or else K is regular and

A satisfies C(K+,0), then A has a 9++-ordering.
(b) (GCH) IfO+<K and cf(fi) ^ cf($) whenever K < ft < A, and A satisfies

the same intersection conditions as in (a), then A has a 9+ -ordering.
(c) (V = L) If B+ < K and A satisfies the same intersection conditions as in

(a), then A has a 0+ -ordering.
(d) / / K is regular and A satisfies the ^o-chain condition, then A has a K-

ordering.

(e) (GCH) If K is regular, and cf(fi) ^ Ko whenever K < p < A, and A
satisfies the K-chain condition, then A has a n-ordering.

(f) (V = L) If K is regular and A satisfies the K-chain condition then A has a
K-ordering.

The paper is organized as follows. We continue this introduction with a
couple of simple observations that provide our constructions for 0-orderings. In
Section 2 we give the existence proofs when the family A satisfies the intersection
conditions. Section 3 is devoted to the results under the chain conditions. And
in Section 4 we give a number of applications.

Our notation is mostly standard. We use [A]*1 or [A]<r> for the set of all
subsets B of A with \B\ = r/ or \B\ < q, respectively, and <VA for the set of all
sequences of elements of A of length less than r\. Weak cardinal exponentiation
is indicated by K<X. The cofinality of the cardinal /c is written CJ(K). The
cardinal successor of K is K+, and /ca+ is the iteration of this a times. For
cardinal K, by a /c-sequence we mean a non-decreasing sequence (KC;CT < c/(/c))
of cardinals Ka < K with K = ^2(Ka;a < c/(/c)). The letters ri,9,K, A,/x will be
used for infinite cardinal numbers, and other lower case Greek letters for ordinal
numbers (with u; for the least infinite ordinal). The letters i,m,n will be used
for finite ordinals.

We conclude this section with two constructions that will be used in the
following sections.
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LEMMA 1.3. Let 9+ < K. Suppose the (\,K)-family A satisfies
(i) every B in [A]<x has a 0+ -ordering, and
(ii) for every C € [A]<x there is C* € [A]<x with C C C* such that

(4) VAe

Then A possesses a 9+-ordering.

PROOF. Write A = \J{Aa;a < c/(A)} where always \Aa\ < X. Define
recursively Ba € [A]<x for a < cf(X) by

u|J{Br;r<<7})\

Then A = {){Ba;o < c/(A)}, and for each A € A let a(A) be the least a such
that A 6 Ba. Thus if r < a{A) then A £ BT so \Af\\JBT\ < 9 by (4), since
BT = C* for C = AO\J\J{BT;T < a).

Hence

(5)

since U Bp C (J BT for p < T < a{A).
By (i), there is a 0+-ordering of Ba, say <a with family of intervals Ia. Define

-< on A by:

A •< B •«• a{A) < o(B) or [a{A) = a{B) and A <a(A) B].

Clearly this is a well order of A, and for each / € Ia, if /* = / — U {|J BT\ r < a}
then /* is an interval (possibly empty) of •<. Put I = {/*; 3a < cf(X)(I e !<,)},
so A = U I. Take any A € A. If A € K for some K G I, then there must be J G
-k(A) w i t h -K" = /* and .4 € / . Since {B e K;B < A) Q {B e I\B <a(A) A},
certainly \A D U{^ E K;B < A}\ < K since -<<r(A) is a 0+-ordering. To establish
that -< is a 0+=ordering of A, it remains to show that

(6)

Take L € I with L •< K. The L = J* for some J where either J € IT for some
T < a(A), or J € JCT(A) with J <<T(A) I- Since

| J {(J J*; J € I ^ ) and J <aW i) C (J {|J J; J e Jff(vl) and J ^ ( A ) /}

and <a(A) is a tf+-ordering we have \A n IJ {U J*; J € JCT(A) and J <a(A) l}\ <
9+. Also \J {{) J*;JeIT and T<O-(A)} C U{LJBr;r < <T(A)} SO by (5),
| 4 n ( J { l U * ; ^ e JT and r < <T(A)}| < ^+. Hence (6) holds, and so -< is a
0+-ordering of A.
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LEMMA 1.4. Letcf(X) >w. Suppose the (X,K.)-family A satisfies
(i) every 8 in [A]<x has 6-ordering, and
(ii) there is a family {Up;p < cf{\} with \JA = \J{Up;p < cf(X)} and

Up C UT whenever p < r < cf(X), such that
(a) VA € A3p < cf(X)3n > 1(A C Up+n and \A n Up\ < 0),
(b) Vp < cf(X)(\{A €A;AC Up}\ < A).
Then A possesses a O-ordering.

PROOF. For each a < cf(X) put Ba-{AeA;AC C/w((r+1)} (where u{a
means the ordinal product), so Ba C BT if o < r < cf(X), and Ba e [A]<x with
A = \J{Ba; a < cf(X)}. For each A € A let a{A) be the least a such that A € S,T.
Then by (a), A C UU(T+m for some m > 1, and \A D f/WCT(A)l < -̂ In particular,
since

|J {U flT;r < a(A)} = ( J^r+i ) ! r < °{A)} C
we have |4 n U {(J flT;r < <r(A)}| < ^. By (i), there is a ^-ordering -<„ of Ba-
Define < on A by

(7) A < B «• a(A) < CT(B) or [a(A) = <r(B) and ^ -<„(,!) 5].

Then just as in the proof of Lemma 1.3, -< is a ^-ordering of A.

2. Intersection conditions

We shall make use of the following result, going back to Tarski (for example,
see ([6], Lemma 3.2.3 and Corollary 3.2.4)).

LEMMA 2.1 (GCH). Suppose \S\ = n and let A be a family of subsets of S
satsifying C(n+,0). Then \A\ < y, provided either

(8) 0+ <fi and VA € A(\A\ > 0), or

(9) 0 < n and cf{0) ^ ef(ji) and VA G A{\A\ > 0).

The following two lemmas, combined with Lemma 1.3, will enable us to prove
parts (a) and (b) of Theorem 1.2.

LEMMA 2.2 (GCH). Let 0+ < K. Suppose the (X,K)-family A satisfies
C(K+,0). Then for each C € [A]-K there is C* C A with C C C* and \C*\ = \C\
such that
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PROOF. Take C G [>?]-". Recursively define families d for i < w by pu t t i ng
Co = C and d+i = {A G A;\An\JCi\ > 0}. Define C* = \J{d;i < u}. Al-
ways d C Ci+i so |Cj| > K and hence |lJCt| = \d\. Lemma 2.1 ensures
that \{An\Jd;Aed+i}\ < \\JCi\ = \d\- For each X G \jJCi]>$ we have
\{AeA;An{Jd = X}\ < K since A satisfies C(K+,9). Hence |Ci+1| < nx\d\ =
\d\ so that |Ci+i| = |C<|, for all t < w. Thus |C*| = |C0| = \C\. Also if we have
A e i with \Afl\JC*\ > 9, then since |JC* = \J{(jd;i < <4, we must have
|J4 n Ud\ > 9 for some i < w, so that >1 G Ci+i and thus A G C*. Thus C* has
the required properties.

LEMMA 2.3 {GCH). Suppose 0+ < K < X andX^ /x+ where cf(6) - c/(/x).
Suppose the (A,/c)-/om% >? satisfies C(K+,0). Then for each C G [A]<X there is
C* G [A]<x with CCC* such that

(10) VAe

PROOF. Suppose first cf($) ^ u. This case is similar to the proof of the pre-
vious lemma. Take C G [>1]<A, and we may suppose \C\ > K. Recursively define
families C* for i < w by putting Co = C and d+\ = {A G A; \A n (J d\ > 9},
and put C* = \J{Ci;i < w}. As before, |(JCi| = \d\. Let \C\ = /i. We show
by induction that always | C» | = A* if cf(fi) ^ cf(8), and always |Ct| < A*+ if
c/(/i) = c/(^). Put A = {AnUCi;AGCi+i}. Suppose c/(/i) ^ c/((?), and
|Cj| = fi. Then |£>*| < n by Lemma 2.1. Since A satisfies C(K+,9), as in the
proof of Lemma 2.2, this ensures that |Cj+i| = \i. Now suppose c/(/z) = cf($).
If \d\ = /x+, since cf{n+) ^ c/(^), just as above this ensures that |Cj+i| = n+.
Whereas if \d\ = A*, since Pi C [lJCi]-e certainly |A| < n+ so still |C<+i| < n+.
This completes the induction. Now C* = U{^«!7 < w ) ' so |C*| = /x < A if
c/(/i) ^ c/(tf). If cf{n) = cf(9) then \C*\ < / i+ , and by hypothesis in this
case n+ ^ A, so still \C*\ < A. To see that (10) holds, take any A in A with
|AnlJC*| > 9. Since \JC* = \J{\JCi\i < w} and cf(9) # w, we must have
1-4 H UCi| > ^ for some i > u, so that A G Ci+i, and hence A G C*.

Now consider the case c/(0) = u. Take C G [̂ ]M where we may assume
K < n < A. This time we recursively define families Ca for a < u\ by putting
C0 = C, CQ+i = { i4e^; | i4nUC Q | > 9}, and Ca = LJ{C0;/9<a} when a is a
limit ordinal. Put C* = \J{Ca;a < u^}. Similarly to the previous case, we show
by induction that always \Ca\ = n iicf(fi) ? cf{0) or \Ca\ < fi+ if c/(/i) = cf{9).
If follows that \C*\ < A (noting that A > Ni, for this case to hold). To see that
(10) holds, take any A € A with \An\JC*\>9. Still UC* = \J{(jCa;a < w j .
Take an increasing ^-sequence (0n;n < w). For each n there is an < wi such
that \A n |J {UCQ; a < a n } | > 9n. Let 0 be the least limit ordinal larger than
all the an, so /? < wi and |yl n U (U Ca;a < 0}\ > 0; thus \A n U C/j| > ^ so
/I G C/3+i and hence /I G C*.
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THEOREM 2.4 (GCH). Let A be an almost disjoint (X,K)-family. Suppose
either A satisfies C(2,6), or else K is regular and A satisfies C(/c+,0).

(a) If6+ < K, then A has a 0++-ordering.
(b) / / 0+ < K, and (K < fi < A => c/(/x) / cf(O)), then A possesses a

0+ -ordering.

PROOF. For A < K, if A satisfies C(2,6) any well order of A of order type A is
suitable, and the same is true if K is regular since A is almost disjoint. For A > K
we proceed by induction on A. Take a suitable (A, /c)-family A. Consider (b) first.
We shall use Lemma 1.3. By the inductive hypothesis, (i) of Lemma 1.3 holds,
and (ii) holds by Lemma 2.3, noting that under the conditions in (b), A ^ fi+

with cf(fi) = cf($). So Lemma 1.3 ensures that A possesses a 9+-ordering.
Similarly for (a), Lemmas 2.2 and 1.3 show that A has a 0++-ordering.
The least A for which (b) in Lemma 2.4 does not apply is when A = KC^0^+.

This method of proof fails for larger A, though the result may still be true.
Indeed, under stronger set theoretic hypotheses the restriction on A may be
lifted. We can continue the transfinite induction if we assume Jensen's principle
• M whenever cf(fi) = cf(O). It is well known that if the axiom of constructibility
(V = L) is assumed, then DM holds for all fi. The statement DM asserts: for each
limit ordinal a < fi+ there is a closed unbounded set Ca C a such that \Ca \ < fi
whenever cf(a) < fi, and Cp = CaC\ 0 whenever 0 is a limit point of CQ. It is
convenient first to isolate the construction from DM that we require.

LEMMA 2.5. Suppose fi is singular, and assume DM. For each limit ordinal
a < (i+ there is a decomposition a = \J{T(a, a); a < cf(fj,)} where each T{a,a)
is cofinal in a with \T(a,ci)\< p and there is a subset D(a) C a with \D{a)\ < fi
such that T(i,a) C T(0,a) whenever £,7 € D{a) with 7 < 0. If c/(a) > u;
then D{a) is cofinal in a and T{a,a) = \J{T({3,a);P e D{a)}.

PROOF. (See Komjath [5].) Let (fia;o < cf(fi)) be an increasing /i-sequence.
For each limit a < fi+, take sets Ca as provided by • , , where we may suppose
0 € Ca, and let (cQ^; f < ot(Ca)) be the increasing enumeration of Ca, where
ot(Ca) means the order type of Ca. Put D{a) = {0 € CQ;/? is a limit point of
Ca}. For 0 € D(a) we have C/j = Ca n /? so cp^ = ca$ whenever f < ot(Cp).
For 7 < 6 < fi+, fix a decomposition {£57 < f < 6} = \J{S(i,6,a);c < cf(fi)}
where always 1 < |5(7, S,o~)\ < fia. For a < cf(fi) and limit a < fi+, put
T(a,<r) = \J{S{cai,cai+1,a);S < ot{Ca)}, so a = \J{T(a,a);a < cf(fi)}.
Whenever 0 6 D(a) we have T(/?,<r) = T(a,a) n 0. Hence T(i,a) C T(0,a)
if /3,7 € D{<x) with 7 < 0. If cf(a) > u, then D(a) is cofinal in a, and so
T(a,a) = \J{T{0,a);0 e D(a)}. Also |£>(a)| < \Ca\ and \Ca\ < fi since fi is
singular. Finally \T{a,a)\ < £( |S(ca € ,ca ? + 1 ,<0|;£ < ot{Ca)) < fia x \Ca\ < fi.
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THEOREM 2.6 (V — L). Suppose 0+ < K. Let A be an almost disjoint (A, K)-
family satisfying either C{2,0), or, if K is regular, C(K+,$). Then A possesses
a 9+ -ordering.

PROOF. AS in the proof of Theorem 2.4(b), we may suppose X > K and
proceed by induction on A. The previous argument holds unless A = fi+ where
cf(fi) = cf{6). So suppose indeed that A = fi+, with c/(/z) = cf(0). Let
A = {Ag;S < /z+}, and we may suppose \J A = / i+ . We have the sets D(a) and
T(a, a) for a < n+ and a < cf(fi), as in Lemma 2.5.

Define limit ordinals Ze < n+ by transfinite recursion for e < /i+ as follows.
Let lo be the least limit ordinal 7 > \JAQ, and for e a limit ordinal, put le =
\J{ls;6 < e}. At successor stages, put

B£ = {A € A; 3 limit a < le3cr < cf{n){\Af\T{a,a)\ > 9)},

and define le+1 to be the least ordinal 7 > l£ U|J Ae U|J U Be with 0/(7) > w. To
see that then /e+i < / i+ , note that since |r(a,ff)| < fi we have |[T(a,o-)]fl| < /x,
and for each X € [T(a,a)]e since A satisfies C(/c+,0) we have \{A e A; A n
T{a,o) = X}\ < K, so that |/3e| < /i and hence Ze+i < n+.

Take A e A, and we show by induction on e < / i+ that if |A D l£\ >6+ then
A € Be. If c/(Ze) > w, by Lemma 2.5, le = \J{T(le,a);a < cf(n)} so there
must be a < cf{n) such that \A D T(/£,CT)| > 6+, since c/(/x) = cf{9) < 9+.
Now r(/e)<T) = \J{T{fi,o);p E D(le)} and Tfrtr) C r(/J,<r) for ,9,7 € £>(/e)
with 7 < /?, so there must be 0 € I>(/e) such that \AnT(/3,a)\ > 9. And
0 € I>(/£) C le, so A € Be as claimed. If cf(l£) = w there are e(n) < e such
that Ze = \J{le(n)',n < w ) and since \A D /e| > 9+ there must be n < w with
|An/e(n)| > 9+. Then the inductive hypothesis gives that A € Se(n)> so A € Se.

For i4gj(, define e(A) to be the least e such that 4̂ G Be. (Such e(A) exists,
for if A = As we have A C Zg+i, so A € B«+i by the previous observation.)
Now e(A) is not a limit ordinal, since for limit e we have le — \J{ls;S < e}
so Be - [j{Be : 6 < e}. And if p < e(A) we must have \A n lp\ < 9+, for if
\A n lp\ > 9+ then A e flp by the observation above. Also since A € S£(A) and
UUSe(A) Q Z£(i4)+1 we have A C Ze(A)+1.

We show that the conditions of Lemma 1.4 are satsified for A to possess a
0+-ordering. Every B in [A]<x has a 0+-ordering by the inductive hypothesis, so
(i) of Lemma 1.4 holds. For (ii), define Up = lp, for p < fi+ = c/(A). Certainly
\JA = H+ = \J{UP; p<n+} and Up CUT i f p < r </u+. Take any A € A. Since
e(A) is not a limit ordinal, we can put p = e(A) — 1. Since A C le(A)+i, we have
A C Up+2, and since p < e(A) we have \A D Up\ < 9+. Hence (iia) holds. For
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(iib), suppose p < n+ is given. If A C Up = lp then A € Bp, but \BP\ < /x and so
(iib) is satisfied. Hence by Lemma 1.4, A possesses a 0+-ordering.

3. Chain conditions

We shall need the following lemma, from Williams [8].

LEMMA 3 .1 . Let K be regular and suppose A is an almost disjoint (A,K)-

family which satisfies either
(a) the iio-chain condition, or
(b) (GCH) the K-chain condition.

Then\< \\}A\.

PROOF. For (b), suppose A = {Aa;a < A} is such a family, satisfying the
K-chain condition. For a contradiction, suppose HJ-̂ I = A* where fi < A, so
K < fi+ < A. We consider two cases.

Case 1. cf(fi) < K. Write \JA = \J{Xa;a < c/(//)} where alway \Xa\ < n.
For each A in A there must be a{A) < cf(fi) such that \A n -Xa(A)l = Ki and
there must be a < cf(fi) and B Q A with B\ > n+ such that o~(A) — a for all
A € B. Since A is almost disjoint, then \{AnXa;A e B}\ = \B\ > fi+ which is
impossible since |[Xff]"| < \Xa\

+ < /x.
Case 2. K < c/(/i). For sequences s,t € <K/i, write t < s if t is an initial

segment of s. For each sequence s 6 <Kn we define an ordinal a(s) < fi+

and, provided the length of s is a successor ordinal, an element x(s) € U A, by
recursion on the length of s as follows. Put \JA—\J{Aa^t)-,t < • s} — {x{s~~'i);~i <
/i}, (noting that this set has cardinality fi since A is almost disjoint), where by
s~7 we mean that sequence extending s by one place and having value 7 at its
last place. If there is a G n+ - {a(t);t < • s} such that x(t) e AQ for all t < • s
of successor length, then a(s) is to be the least such a, and otherwise a(s) = 0.

By GCH, \<Kfi\ = n and we can choose /3 € n+ - {a(s);s € <Kn}. For
every s € <Kfi, since A is almost disjoint \A$ n\J{Aa(ty,t < • s}\ < K SO
Ap D (U A — \J{Aa(ty, t < • s}) is non-empty. Hence there is 7 < /x such that
x(s^l) € Ap. This means we can define a sequence r € K/i by recursively defin-
ing r(6) for each 6 < K to be the least 7 such that x((r\6)^) € Ap, where
by r\6 we mean the sequence (r(e);e < 6). Put xg = x(r\(26 + 1)) and a(6) =
a(r\(26+l)). The definition of a{a) ensures that xg € Aa(a) whenever 6 < a < K,
whereas the definition of xg ensures that xg £ Aa^) whenever a < 6 < K.
Hence Aa(a) n {xg;6 < K} = {xg;6 < a}. Thus if D = {xg;6 < K}, we have
D n i4Q((T) C D n J4Q(T) whenever a < r < K, contradicting that A satisfies the
K-chain condition.
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The proof of (a) proceeds as Case 2 above, defining a(s) and x(s) for sequences

s G <u>fi.

LEMMA 3.2. Let K be regular and suppose A is an almost disjoint (A,/c)-
family.

(a) / / A satisfies the \io-chain condition, then for every C G [A]-K there is
C* QA with CCC* and \C*\ = \C\ such that

(11) VA e ,

(b) (GCH) If A satisfies the K-chain condition, then for every C G [A]-K with
cf(\C\) > K there is C* C A with CCC* and \C*\ - \C\ such that (11) holds.

PROOF. Take C G [AY where K < n < A, and cf(n) > /c if (b) holds.
(Obviously if /x = A, we can take C* = A.) To cover both (a) and (b) at once,
put r) = No if (a) holds, and r) = K if (b) holds. Recursively define families
Ca G [AY for a < r) as follows. Put Za = \J{\JCp;P < a}, so \Za\ = /x. For
each S 6 [Za\

<ri, choose A(a,S) e A - \j{C0\0 < a) with 5 C A(a,S) if
such a set A(a, S) exists; otherwise let A(a, S) be empty. Put Xa = |J C U
Za \J\J{A(a,S);S G [Za]

<T>}. Our assumptions ensure that n<v = fi, so that
\Xa\ = /x. Now define Ca = {A G A; \A n Xa\ = K}. Since {A nXa;Ae Ca}
is an an almost disjoint decomposition of Xa satisfying the r?-chain condition,
by Lemma 3.1 we have |{̂ 4 fl Xa;A G Ca}\ < \Xa\ = /x, and hence since A is
almost disjoint we have \Ca\ < /x, so |CQ| = H- Note that the definition of Ca

ensures that C C Ca and {J{C0;/3 < a} C Ca. Also Za C Xa C Za+1. Define
C* = {Ca;a < r)} so C C C* C A and |C*| = M-

We show C* has the required property. Take A € A such that \A C\ \JC*\ =
K. Now \JC* = | J{Z a ;a < r/}, and we claim that there is 6 < r) such that
\A D Z(\ = K. If so, \A 0 Xg\ = K so A € Cg C C* and the proof would be
complete. So for a contradiction, suppose \A(1 Zg\ < K tor all 8 < i]. There must
then be an increasing sequence (a(o~);a < r)} such that A n (Za(a+i) - Za^)
is non-empty for each a < r), and (by deleting every second term if necessary)
we may in fact suppose A fl (Za(a+^ — ZQ((T)+1) is non-empty. Choose xa G
i4n(Za ( f f + 1) - ZQ(<,)+i), and put Sa = {xr;r < a} . Then Sa € [ZQ(CT+1)]

<".
Now Sa C A and A £ \J{C0;0 < a(a + 1)} so Sa C ^(a(<r + l),5ff) G 4. Put
A, = A(a(o -I- l ) ,5 a ) . Then A,, C Xa ( ( 7 + 1 ) C Z Q ( < T + 1 ) + 1 . If a < r < K then
a(a + 1) < a(r) < a(r) + 1 and xT ^ Za(T)+1 so xT (fc Za^+i)+i, and hence
xT ^ A^. Thus A,, fl {xT;r < ?;} = {xT;r < a} . Put D = {xT;r < r/}, so
DnAa c DF\AT whenever a < T < r/, contradicting that >J satisfies the r7-chain
condition.
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THEOREM 3.3 . Let K be regular and suppose A is an almost disjoint (A,/c)-
family. Suppose either

(a) A satisfies the No-c/iatn condition, or
(b) A satisfies the K-chain condition and A < K?+ .

Then A has a K-ordering.

PROOF. If A < K, then A has a /c-ordering since A is almost disjoint. For
A > K we proceed by induction on A. Let (Xa;a < e/(A)) be a A-sequence of
cardinals with K < Xo < X± < • • • and ^2(Xa;a < r) < AT for each T < cf(X),
with always c/(A<T) > /c if (b) holds. (Note such a sequence can be found except
when X = n+ where c/(/x) < /c.) Put 7/ = No if (a) holds, and n = K if (b)
holds. Take an almost disjoint (A, /c)-family A with the rj-chain condition. Write
A = \J{Ay,a < c/(A)} where always \A<,\ = Xa. Use Lemma 3.2 to define
families Ba C A for a < cf{X) by Bo = {A,, uU{Sr ; r < a})*, and it follows
from Lemma 3.2 that always \Ba\ = Xff. Thus Bp C 0a if p < a < c/(A), and
A = \J{B*,a<cf{\)}.

We proceed as in the proof of Lemma 1.3. For each A let a{A) be the least a
such that A € Ba. By the inductive hypothesis, there is a /c-ordering •<„ of Ba.
Define < on A by

A<Bo a{A) < a(B) or [o(A) = a{B) and A <a(A) B].

Just as in the proof of Lemma 1.3, this will be a /c-ordering of A provided that

(12)

If r < a(A) then A£BT = C* where C = AT U (J{SP; P < r} , so by (11) we have
I-A n (J BT\ < zc. So if c/(A) < /c, certainly (12) holds. And if a(A) is a successor
ordinal, cr(A) = £ + 1, then |J {(J ST; r < er(A)} = U B? so there is no difficulty.
We are left with the case that o(A) is a limit ordinal (and /c < c/(A), though
we won't make use of this condition). Suppose for a contradiction that (12) is
false, so \An\J{\JBT;T<<r{A)}\ = K. Since {JBP C \JBT if p < T < o{A),
there must be an increasing sequence {p{o);a < K) of ordinals below o(A) such
that A n ly}Bp(a+i) -\jBp(a)) is non-empty for each a < K. Choose xa G
^ n (U5p(<r+i) -\JBp(a)), and put Sa = {xr;r < <r}, so Sa C \JBK<r+1). Put
C = Ap^+i) U U{Sr;r < />(ff + 1)}, so BP(<H-I) = C*, and 5^ C |JC*. Consider
the construction of C* in the proof of Lemma 3.2. We have C* = \J{Ca;a < n}
so \JC* = \J{\JCa;a < r}}, and \JC0 C \JCa whenever 0 < a < r/. When
a < r) we have 5CT e [|JC*]<'' so there must be a < n such that 5^ C \JCa-
Thus Sff € [Za +i]< T ' and so Sa C A(a + l,5ff) and A(a + l,Sff) E C*. (Note
that A(a -I-1,5CT) can't be empty since S<, C A and .A ^ IJ{C^; /9 < a} because
A £ Bp(a+i) = C*.) Put Aa = A(a + l,Sa). Thus for a < n, we have ^ €
Bp(a+i) with 5,r C Aa. And if c < r < r/ then xT ^ U &P(T) SO i r
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and hence xT £ Aa. Thus Aa D {xT;r < r\) = {xT;r < a}. Put D = {XT;T < rf},
so D D Aa C D D AT whenever a < r < r), contradicting that A satisfies the
r/-chain condition. Hence (12) holds, and the proof is complete.

The transfinite induction in Theorem 3.3(b) breaks down first when A =
«.(u>+i)+. As was the case with Theorem 2.4(b) we can continue the induction if
• ^ holds for appropriate fi.

THEOREM 3.4(V = L). Let K be regular and suppose A is an almost disjoint
(\,K.)-family satisfying the K-chain condition. Then A has a K-ordering.

PROOF. We proceed by transfinite induction on A, as in the proof of Theorem
3.3(b). The previous argument works unless No < K < A = /z+ and cf(fi) < K,
so suppose this to be the case. Let A = {As; 6 < fi+}, where we may suppose
U A — n+. We have the sets D(a) and T(a,o~) for a < fi+ and a < cf(fi) as in
Lemma 2.5. Define families Be € [A]-1* and limit ordinals le with n < l£ < /z+
by transfinite recursion for e < /x+ as follows. Put So — {-̂ o} and let fo be the
least limit ordinal 7 > U^4o- Suppose Bs defined for all 6 < e (for e > 0). If e
is a limit ordinal, define le = \J{lg;8 < e}. If £ is a successor, define l£ to be the
least ordinal 7 > l£-i U\J{Bs; 6 < e}. So lE < /x+. For each limit a <le and for
each a < cf{n), for each S e [T(a,a)}<K choose A{e,a,a,S)eA-U{S«;S < e}
with S C A(e, a, a, S) if such a set A(e, a, a, S) exists; otherwise let A(e, a, a, S)
be empty. Put

Xe = le U A£ u{J{A{e,a,a,S);3 limit a < l£3a < c/(/i)(5 € [T{a,a)]<K)}

and finally put

We have to check that \B£\ < fi. Note if 6 < e then \J Bs C l£ C X£, so
Bs Q B£. Always \T(a,a)\ < fi, so | [ r(a ,<r)]< / c | < fi and hence \X£\ < fi. Since
{A D X£\A S BE) is an almost disjoint decomposition of X£ with the K-chain
condition, | { j 4nX £ ; . / l e B£}\ < fi by Lemma 3.1. Hence, since A is almost
disjoint, we have \Be\ < fi.

For A € A, define e(A) to be the least e such that \A n l£\ = K. (Such e(A)
exists, for if A = As we have A € Bs so A C \JBs Q h+i-) We claim that
e{A) is not a limit ordinal. For suppose on the contrary that e{A) is a limit.
Write £ = 1£{A), so £ = U 0 « ; £ < e ( ^ ) } and c/(£) = c/(e(A)) since the h
increase with 6. There must be an increasing sequence (8(a); a < c / (^)) with
6(<T) < e(A) such that {ls(o)\°~ < c / ( 0 } ^s cofinal in $. Since \A f) ls\ < K
for 6 < e(A), yet \A D ^| = K, we must have c / ( f ) = K and we may suppose
•<4 n {IS(<T+I) — /«(<7)+i) is non-empty for each a < K. Also since c / ( f ) = K > UJ,

we have £>(£) cofinal in ^. Define recursively 8(v) e i ? ( 0 and p{a) < e(A) for
a < K as follows. Let 7(0) be the least element of D(£), and if a is a limit let 7(<r)
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be the least 7 in D(£) with 7 > \J{"){T);T < a}. Suppose 7(<r) is defined. Let
p(a) be the least p < e(A) such that 7(0-) < lg(p), and then define 7(<r + 1 ) to be
the least 7 in £>(£) with 7 > l « ( ( ) W + i ) . Choose xa € An{lS(pM+i) -I6(p{a))+i),
s o i f f 6 A n (7(cr + 1) - i(a)) since 7(0- + 1) > h(P(o)+i) and ~t(cr) < lg(p(a))-
Now 7(<r + 1) = \J{T(i((j + l ) , f ) ; f < cf(n)} so there is f(<r) < c/(/i) such
that xa e T{i{a + 1), ${<?)). Because cf{(i) < /c, there are H € [/c]K and
f < c/(/i) such tht f (<T) = f for all a € i7. By re-indexing, we may suppose
f(<r) = f for all CT < K. For each ff < K, put 5ff = {xT;r < <r}. Since all
7(0-) € £>(£), from Lemma 2.5 T(7(r + 1), f) C T(7(a) , f) whenever r < o < K,
so 5ff C T(7(a) , f ) . Put ACT = AiSipia)),^*),!^*). Note 5ff C ^ G >?,
since So C A and A £ \J{BS;S < S(p(a))} (for if A e Bg then A C i 6 + 1 so
1̂4 n /«+i| = K, yet 6(p(a)) < e{A)). Thus A^ C X«(P(CT)), so A^ € S«(p(cr)), and
hence A^ C /«(p((T))+i. And if r < a then xff ^ i«(p(T))+i so xa £ AT. Thus
^4<7n{xT;r < K} = Sff = {XT;T < <̂ }- Put D = {a;T;r < K}, SO DC\Aa C DnAT

whenever a < r < K contradicting that A satisfies the K-chain condition. This
establishes our claim that e(A) is not a limit ordinal.

We complete the proof that A has a /c-ordering by appealing to Lemma 1.4.
Every B in [A]<x has a /c-ordering by the inductive hypothesis, so (i) of Lemma
1.4 holds. For (ii), define Up = lp, for p < n+ = cf(X). Certainly \JA = n+ =
(J{UP; P < H+} and Up C UT if p < T < /*+. Take any A € A. Since e(A) is not
a limit, we can put p = e(A) — 1. Now \A D l€(A)\ = K, SO A€ BE(A) and hence
A C le(A)+i = Up+2- Since p < e(A) we have \A n Up\ < K. Hence (iia) holds.
To verify that (iib) holds, suppose A C Up = lp. Then A € Bp. Since \BP\ < /i,
this means that (iib) holds. Hence by Lemma 1.4, A has a /c-ordering.

4. Applications

In this section we present several applications of the idea of a ^-ordering. The
first is a trivial observation, but when combined with Theorems 2.4 and 2.6, it
gives a proof of Komj&th's theorem mentioned in the introduction ([5], Theorem
5).

THEOREM 4 . 1 . If A is a (A, K.)-family which possesses a K-ordering, then A
is sparse.

PROOF. Let -< be a /c-ordering of A. Define / : A -»• P\JA by

f(A) = A D \J{B e A; B -< A}.

By (3), f{A) € [J4]<K and clearly {A-f(A);A € A} is a pairwise disjoint family,
so / shows A is sparse.
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The next couple of results concern transversals of the family A. The case

K = No of Theorem 4.2 is essentially due to Davies and Erdos ([1], Proposit ion

A), and their construction carries over to larger K.

THEOREM 4 .2 . Every (A,/c)-family A which, possesses a K-ordering can be
split into K subfamilies, A = \J{Af,£ < K}, where each subfamily A$ has a
2-transversal T$, and moreover (J A = U { ^ ! £ < K ) -

PROOF. Let -< be a K-ordering of A. For each A G A, write A — \J{B G
A;B < A) = {a(A, a); a < /c}, where a(A, a) / a(A, /?) if a ^ j3. By transfinite
recursion on -<, for each A G A use induction to choose £(.4, a) for a < K SO that

£{A,a) G K-({£(B,P);B< A and /? < K and a(B,/3) G A}U{e(A,7);7 < a}).

(Since \An\J{B;B < A}\ < K and a(B,/3) ^ a(C,i) if {B,0) ^ (C,-?), such a
choice is possible.) For each f < K, pu t

i ) = O, and

A$ = {A € A; £(A, a) — f, for some a < K}.

Clearly A = \J{Af, £ < K} and U A = \J{Tf, f < K}. We show that |T? n A\ = 1
for each J4 in A$, so T̂  is a 2-transversal of A^. If A £ A$, then o(A, a) 6
for that a with £(A,a) = £. Take any x € Af)T^ with x ^ a(>i,a) for this a.
Then either (i) a: = a{B, 0) and £(S, /?) = £ for some 5 with B < A, which is
contrary to the choice of £(A, a), or (ii) x = a(B, /?) and £(5, /3) — ^ for some S
with A -< B, which is contrary to the choice of £(B, a), or (iii) x = a(A, /?) and
£(A, /?) = £ for some /? ̂  a, contrary to £(.4, a) = £. Hence there is no such x,
and thus \A n T$ \ = 1 as required.

THEOREM 4.3. Le< A be a (A, /c)-family with a 0-ordering, and suppose for
every subfamily B € [A]K the family {B — R{B); B E B} has a 0-transversal, for
every choice of R(B) € [B}<9. Then A has 8-transversal.

PROOF. Let -< be a ^-ordering of A, with family of intervals I. For each
I E I, put /* = U / - U {U J; J £ I and J -< I}. Take A € A, and suppose
A El. Put R(A) = A n U (U J; J G I and J < 1} so i?(A) G [A)<e by (1), and
An/* = A-i?(j4). Since |/| < K, by assumption there is a ^-transversal, say T(I),
for {AnP; A G / } , and we may assume T{I) C /*. But then T = [J{T{I);I € 1}
is a ^-transversal for A, since for each A in A, if A G / then i4 = ( iD/*)U /?(>!)
so AnT C (An/* nT(/)) U/Z(A), and consequently 1 < \AC\T\ < 0 as required.

Combining Theorems 3.3 and 4.3, together with the observation that for reg-
ular K, every almost disjoint («, /c)-family has a /c-transversal provides a proof of
([8], Theorem 3.2) (which can be extended by using Theorem 3.4 as well).
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Results on the existence of ^-transversals for families A when A satisfies inter-
section conditions were first studied extensively by Erdos and Hajnal [2]. (Having
a 0-transversal was there referred to as possessing property B (0).) We can deduce
their results from Theorem 4.3, as follows.

COROLLARY 4 .4 . Let A be an almost disjoint (\,K)-family. Take 0 < K and
suppose either A satisfies C(2,6), or else K is regular and A satisfies C(K,6).

Then

(a) {GCH) A has a 9++-transversal.
(b) {GCH) Suppose either 0+ = K or else 0+ < K but rc ^ /x+ where cf{0) =

cf(fi), and suppose cf{q) ^ cf(O) whenever K < r) < A. Then A has a 0+-
transversal.

(c) (V = L) A has a 0+ -transversal.

PROOF. The result will follow from Theorems 4.3, 2.4 and 2.6 once we show
that every (K, /c)-family B satisfying these conditions has a tf+"l"-transversal or
a 0+-transversal, respectively. For (b), take the appropriate (/c,/c)-family B =
{Ba;a < K} and we show that B has a 0+-transversal. (This is essentially ([2],
Result 4.9).) If 0+ = K, the result is immediate since K is regular and A is
almost disjoint. So suppose 0+ < K. Recursively define elements x0 €\JB for
/? < K, as follows. Choose XQ € Bo- For /? > 0, put X0 = {x-,;i < /?} and let
Cp = {B e B; \BnX0\ > 0}. Choose X0EB0-\JC0 if B0-\JC0 is non-empty,
and otherwise put xp = XQ.

We claim that \Cp\ < K for all /3 < K. Certainly \{B n Xp\B G Cp}\ < K,
for this is immediate if \Xp\+ < K, and if \Xp\+ = K it follows from Lemma 2.1
since in this case {Bf\Xp\ B € Cp} satisfies C{\X0\

+,6) and cf(\Xp\) ^ cf(0) by
hypothesis. Also, for any Z e [Xp]e, we have \{B € S; Z C B n X0}\ < K since
B satisfies C(/c, 0), and in fact \{B E B; Z C B C\ Xp}\ < 2 if /c is singular since
then B satisfies C{2,0). Hence \Cp\ < K. Thus, if B0 <£ Cp then \B0-\JCp\ = K,
and so then x0 e Bp.

Put T = {x0; 0 < K}, SO always \T n Bp\ > 1. And if for any B € B we have
\B D Xp\ = 0 then for all 7 > 0 it follows that B e C7 so either a;-, = XQ or
a;-, £ B, and hence \T n B\ = 0. Thus for all B € S we have 1 < \T D B\ < 0, so
T is a 0+-transversal of B.

The argument for (a) is similar, putting Cp = {B e S; \B C\Xp\ > 0}.
Case (b) also covers case (c), except when K = n+ > 0+ where cf(fi) = cf{0).

For this situation we use Dw. As in case (b), write B = {Ba;a < K}, and we
may suppose \JB = n+. We have the sets D(a) and T(a,a) for a < /x+ and
a < cf(fi), as in Lemma 2.5. Recursively define elements x0 € (Jfl for /? < /c,
ensuring that i 7 < a^ whenever 7 < /9 (unless x^ = io)- Choose io € Bo- For
0 > 0, put X/j = {a:-,; 7 < 0} and let /# be the least ordinal £ with c/(f) > w
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and £>\JXp. Define

Cp = {Be B; 3 limit a < Ip3a < cf(fi)(\B DXp nT{a,a)\ > 9)}.

Since |[T(a,<r)]e| < n and \{B e B;BnT{a,a) = X}\ < K for each X e
[T(a,a)]e, we have \Cp\ < /z. Hence if Bp <£ Cp then \Bp -\JCp\ = K since 8 is
almost disjoint, and we can choose xp € Bp — \J Cp with xp > x^ for all 7 < 0.
If Bp € Cp, put xp = x0.

Put T = {xp; 0 < K}, SO always \Bp n T| > 1. We claim that \B D T| < 9 for
each B € B, so T is a 0+-transversal of B. Suppose for a contradiction that there
is B e B with \B n T\ > 0+. There must be 6 < K such that \BnXg\>9+, for
otherwise we could choose /?(£) for £ < 0+ such that { z ^ ) ; f < ^+} was cofinal
in B, and hence in K (since 5 e [«]K), which is impossible with C/(K) = /<+ > ^+.
Hence |B n X6 n 16\ > 6+. Since ls = \J{T{l6\a)\a < c/(/z)} and cf{n) =
cf(9) < 9+ there must be a < cf(/j,) such that \B f)Xs nT(ls,<r)\ > 9+. And
T{k,<f) = \J{T(0,a);0€ D(ls)} with T(i,<r) C T(/3,(T) whenever /?,-y e £>(/«)
with 7 < /?, so there must be /? e !>(/«) such that \BnXsDT{l3,a)\ > 9. Let (3*
be the least limit ordinal such that 3a < cf{n)(\BnXsnT(0*,a)\ = 9). Let 7 be
least such that x^>0*, so \BnX^nT(0*,a)\ = 9. Also BeCp whenever 0 > 7,
since then X, C X ĵ and 0* < x~, < /^+1 < lp, so that xp £ B unless xp = XQ.
Hence B f i r c i T By the choice of /?*, we have |B n X j DT(/3*,r)| < 9 for all
r < c/(/x) and hence \BV\X^\ < 6 since Br\XnC0* = |J{T(/3*,r);r < c/(//)}.
Hence |BnT | < 9, contradicting that | B n T | > 9+. Thus T is a 0+-transversal
of B, and the proof is complete.

The final result concerns the existence of A-families. The family B is said
to be a A-family if there is a fixed set Z such that B n C = Z for all distinct
B,CeB.

THEOREM 4 .5 . Suppose K<K = K, and let A be a (K+ ,K)-family which pos-
sesses a K-ordering. Then there is a A-family B C A with \B\ = K+.

PROOF. Let -< be a /c-ordering of A, and we may suppose A = {Aa; a < /c+}
is the enumeration of A in increasing -<-order, so always

(13) \Aan\J{Ap;0<a}\<K.

Recursively choose subsets X , C K+ (possibly empty) for 7 < K as follows:
put X(7) = \J{Xp;0 < 7} and Afr) = \J{Aa;a e X{i)}, and choose X1 C
K+ —X(7) maximal such that the family {Aa —A(i); a 6 X-,} is pairwise disjoint.
We claim there is 7 < «: with \X~,\ = K+. For if not, \Xp\ < K for all 0 < K, and
so |X(K) | < K. Take 6 € K+ with 6 > a for all a G X(*c), then by the maximality

https://doi.org/10.1017/S1446788700032110 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032110


310 N. H. Williams [17]

of Xp, for each 0 < K there must be a(0) e Xp such that (Ag — A(0)) n {Aa(p) ~

A(0)) is non-empty, so we can choose xp € {Ag D Ai(/?)) — A(0). Now xp ^ a;-,

if 7 < /? < /c, since x^ e -̂ a(-Y) C A(0). Since

this contradicts (13), and proves the claim.

Let 7 be least such that |X , | = K+. Then \X(i)\ < K and \A(i)\ = K,

and if X = {0 € X ^ V a € X(f ) (o < /?)} then \X\ = K+ . For /? e X, since

-4/»ni4(7) C Apfl\J{AQ;a< 0}, by (13) A0nA(i) € [>1(7)]<K- Since /c<K = K,

there must be Z in [>1(7)]<K and y G [A"]K+ such that A^ D ̂ (7) = Z for all

0 € y . However, { ^ — ^(7);/? G y } is pairwise disjoint, so {Ap;0 € Y} is a

A-family of size K + .

Combining Theorems 4.5 and 2.4 proves a result of Erdos, Milner and Rado

([4], Theorem 1), that for K regular, every almost disjoint (K+ , /c)-family satisfy-

ing C(K+,0) where 0 < K contains a A-family of size K+. Combining Theorems

4.5 and 3.3 gives a result of Williams ([7], Corollary 2.9), that for K regular, every

almost disjoint (K+ , /c)-family with the /c-chain condition contains a A-family of

size K+.
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