AN ORDER PROPERTY FOR FAMILIES OF SETS

N. H. WILLIAMS

(Received 17 June 1986)

Communicated by C. J. Ash

Abstract

We develop the idea of a θ-ordering (where θ is an infinite cardinal) for a family of infinite sets. A θ-ordering of the family A is a well ordering of A which decomposes A into a union of pairwise disjoint intervals in a special way, which facilitates certain transfinite constructions. We show that several standard combinatorial properties, for instance that of the family A having a θ-transversal, are simple consequences of A possessing a θ-ordering. Most of the paper is devoted to showing that under suitable restrictions, an almost disjoint family will have a θ-ordering. The restrictions involve either intersection conditions on A (the intersection of every λ-size subfamily of A has size at most κ) or a chain condition on A.

1980 Mathematics subject classification (Amer. Math. Soc.): 03 E 05, 04 A 20.

1. Introduction

The family of sets \mathcal{A} is said to be a (λ, κ)-family if $|A|=\lambda$ and $|A|=\kappa$ for all A in \AA. The family A is said to be almost disjoint if $|A \cap B|<|A|,|B|$ for all distinct, A, B in A. Our interest in this paper is in almost disjoint (λ, κ)-families A which possess what we call a θ-ordering, for various values of θ with $\theta \leq \kappa$.

Definition 1.1. A θ-ordering of the (λ, κ)-family \mathcal{A} is a (strict) well order \prec of A under which there is a family I of pairwise disjoint intervals with $A=U I$ such that $|I| \leq \kappa$ for each $I \in I$, and for each $I \in I$ and $A \in \mathbb{A}$:

$$
\begin{equation*}
A \in I \Rightarrow \mid A \cap \bigcup\{\bigcup J ; J \in I \text { and } J \prec I\} \mid<\theta \tag{1}
\end{equation*}
$$

(C) 1988 Australian Mathematical Society 0263-6115/88 \$A2.00 +0.00

$$
\begin{equation*}
A \in I \Rightarrow|A \cap \bigcup\{B \in I ; B \prec A\}|<\kappa, \tag{2}
\end{equation*}
$$

(where in (1), $J \prec I$ means that $B \prec A$ for all $A \in I$ and $B \in J$).
A (λ, κ)-family clearly has a θ-ordering if $\theta>\kappa$ and so we always assume $\theta \leq \kappa$. Notice that a κ-ordering of the (λ, κ)-family A is just a well ordering \prec of \mathcal{A} such that for each $A \in \mathcal{A}$,

$$
\begin{equation*}
|A \cap \bigcup\{B \in \mathcal{A} ; B \prec A\}|<\kappa, \tag{3}
\end{equation*}
$$

for we can take each interval in the family I to be a singleton set. The special case of an \aleph_{0}-ordering of a family of denumerable sets has appeared previously, see Davies and Erdös ([1], Lemma 3).

Obviously, any (λ, κ)-family which has a θ-ordering where $\theta \leq \kappa$ must be almost disjoint. Any almost disjoint (κ, κ)-family \AA where κ is regular has a θ ordering, for any $\theta \leq \kappa$, since any well ordering of A of order type κ with \mathcal{A} itself the only interval gives a θ-ordering. However, not every almost disjoint (κ^{+}, κ)family possesses even a κ-ordering, for let S be a (κ, κ) -family of pairwise disjoint sets, and let A with $S \subseteq A$ be an almost disjoint $\left(\kappa^{+}, \kappa\right)$-family with $\cup A=\bigcup S$. Any $A \in A$ coming after all the sets in S in a well ordering \prec of A has $A \cap$ $\bigcup\{B \in \mathcal{A} ; B \prec A\}=A$, so A has no κ-ordering. If κ is singular, there are almost disjoint ($\kappa, \kappa)$-families that are maximal with respect to almost disjointness (see Erdös and Hechler [3]). No such maximal family possesses even a κ-ordering (for if \prec is a κ-ordering of the (κ, κ)-family A, choosing $x(A) \in A-\bigcup\{B ; B \prec A\}$ and putting $T=\{x(A) ; A \in \mathcal{A}\}$ gives a set almost disjoint from each member of $A)$. If κ is singular, to ensure that the (κ, κ)-family A has a θ-ordering we need to assume the stronger condition that always $|A \cap B|<\eta$ for some fixed $\eta<\kappa$.

Before we explain our interest in θ-orderings, we need some more terminology. The family A is said to satisfy the intersection condition $C(\eta, \theta)$ if $|\cap B|<\theta$ for all subfamilies B of A with $|B|=\eta$. A set T is called a θ-transversal of the family A if $1 \leq|T \cap A|<\theta$ for all A in A. The family A is said to be sparse if there is a function $f: A \rightarrow P \bigcup A$ with $f(A) \subseteq A$ and $|f(A)|<|A|$ for all A in A, such that $\{A-f(A) ; A \in A\}$ is a pairwise disjoint family.

It is a theorem of Erdös and Hajnal ([2], Theorem 7) that every (λ, κ)-family satisfying $C(2, \theta)$ has a θ^{+}-transversal, provided λ is not too large (and with some restriction on $\theta<\kappa$). It was recently shown by Komjáth ([5], Theorem 5) that, under similar conditions, every such family is sparse. The proofs of these two results are little involved. A similar inductive construction is used in both cases, though the details are different. Our interest in θ-orderings was aroused by the observation that the families in question possess a θ^{+}-order, and it is almost trivial to deduce from this that they are sparse and have a θ^{+}transversal. Several further properties we looked at turned out to be an easy consequence of a θ-ordering. For instance, in ($[8]$, Theorem 3.2) we showed that
provided λ is not too large, every almost disjoint (λ, κ)-family satisfying certain chain conditions has a κ-transversal. We shall show in Section 3 that under these circumstances, the family possesses a κ-ordering. The existence of a κ transversal follows easily from this. Here, by a chain condition we mean the following. The family $\&$ satisfies the μ-chain condition if there is no set $D \subseteq \cup \&$ and sequence ($A_{\alpha} ; \alpha<\mu$) of sets from A such that $D \cap A_{\alpha} \subset D \cap A_{\beta}$ whenever $\alpha<\beta<\mu$ (where \subset means strict inclusion).

The main results which we prove concerning the existence of θ-orderings are the following. (These results appear in Theorems 2.4, 2.6, 3.3 and 3.4 below.)

Theorem 1.2. Let A be an almost disjoint (λ, κ)-family.
(a) (GCH) If $\theta^{+}<\kappa$ and either A satisfies $C(2, \theta)$, or else κ is regular and A satisfies $C\left(\kappa^{+}, \theta\right)$, then A has a θ^{++}-ordering.
(b) $(G C H)$ If $\theta^{+} \leq \kappa$ and $c f(\mu) \neq c f(\theta)$ whenever $\kappa \leq \mu<\lambda$, and A satisfies the same intersection conditions as in (a), then $\&$ has a θ^{+}-ordering.
(c) $(V=L)$ If $\theta^{+} \leq \kappa$ and A satisfies the same intersection conditions as in (a), then \AA has a θ^{+}-ordering.
(d) If κ is regular and A satisfies the \aleph_{0}-chain condition, then A has a κ ordering.
(e) $(G C H)$ If κ is regular, and $c f(\mu) \neq \aleph_{0}$ whenever $\kappa<\mu<\lambda$, and \mathcal{A} satisfies the κ-chain condition, then A has a κ-ordering.
(f) $(V=L)$ If κ is regular and \AA satisfies the κ-chain condition then \AA has a κ-ordering.

The paper is organized as follows. We continue this introduction with a couple of simple observations that provide our constructions for θ-orderings. In Section 2 we give the existence proofs when the family \AA satisfies the intersection conditions. Section 3 is devoted to the results under the chain conditions. And in Section 4 we give a number of applications.

Our notation is mostly standard. We use $[A]^{\eta}$ or $[A]^{<\eta}$ for the set of all subsets B of A with $|B|=\eta$ or $|B|<\eta$, respectively, and ${ }^{<\eta} A$ for the set of all sequences of elements of A of length less than η. Weak cardinal exponentiation is indicated by $\kappa^{<\lambda}$. The cofinality of the cardinal κ is written $c f(\kappa)$. The cardinal successor of κ is κ^{+}, and $\kappa^{\alpha+}$ is the iteration of this α times. For cardinal κ, by a κ-sequence we mean a non-decreasing sequence ($\kappa_{\sigma} ; \sigma<c f(\kappa)$) of cardinals $\kappa_{\sigma}<\kappa$ with $\kappa=\sum\left(\kappa_{\sigma} ; \sigma<c f(\kappa)\right)$. The letters $\eta, \theta, \kappa, \lambda, \mu$ will be used for infinite cardinal numbers, and other lower case Greek letters for ordinal numbers (with ω for the least infinite ordinal). The letters i, m, n will be used for finite ordinals.

We conclude this section with two constructions that will be used in the following sections.

LEMMA 1.3. Let $\theta^{+} \leq \kappa$. Suppose the (λ, κ)-family \AA satisfies
(i) every B in $[A]^{<\lambda}$ has a θ^{+}-ordering, and
(ii) for every $C \in[A]^{<\lambda}$ there is $C^{*} \in[\mathcal{A}]^{<\lambda}$ with $C \subseteq C^{*}$ such that

$$
\begin{equation*}
\forall A \in A\left(\left|A \cap \bigcup C^{*}\right| \geq \theta \Rightarrow A \in C^{*}\right) \tag{4}
\end{equation*}
$$

Then \mathcal{A} possesses a θ^{+}-ordering.

Proof. Write $A=\bigcup\left\{A_{\sigma} ; \sigma<c f(\lambda)\right\}$ where always $\left|A_{\sigma}\right|<\lambda$. Define recursively $B_{\sigma} \in[A]^{<\lambda}$ for $\sigma<c f(\lambda)$ by

$$
B_{\sigma}=\left(A_{\sigma} \cup \bigcup\left\{B_{\tau} ; \tau<\sigma\right\}\right)^{*}
$$

Then $A=\bigcup\left\{B_{\sigma} ; \sigma<c f(\lambda)\right\}$, and for each $A \in A$ let $\sigma(A)$ be the least σ such that $A \in B_{\sigma}$. Thus if $\tau<\sigma(A)$ then $A \notin B_{\tau}$ so $\left|A \cap \bigcup B_{\tau}\right|<\theta$ by (4), since $B_{\tau}=C^{*}$ for $C=A_{\sigma} \cup \bigcup\left\{B_{\tau} ; \tau<\sigma\right\}$.

Hence

$$
\begin{equation*}
\left|A \cap \bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}\right|<\theta^{+} \tag{5}
\end{equation*}
$$

since $\bigcup B_{\rho} \subseteq \bigcup B_{\tau}$ for $\rho<\tau<\sigma(A)$.
By (i), there is a θ^{+}-ordering of B_{σ}, say \prec_{σ} with family of intervals I_{σ}. Define $<$ on A by:

$$
A \prec B \Leftrightarrow \sigma(A)<\sigma(B) \text { or }\left[\sigma(A)=\sigma(B) \text { and } A \prec_{\sigma(A)} B\right] .
$$

Clearly this is a well order of A, and for each $I \in I_{\sigma}$, if $I^{*}=I-\bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma\right\}$ then I^{*} is an interval (possibly empty) of \prec. Put $I=\left\{I^{*} ; \exists \sigma<c f(\lambda)\left(I \in I_{\sigma}\right)\right\}$, so $A=\bigcup I$. Take any $A \in A$. If $A \in K$ for some $K \in I$, then there must be $I \in$ $I_{\sigma(A)}$ with $K=I^{*}$ and $A \in I$. Since $\{B \in K ; B \prec A\} \subseteq\left\{B \in I ; B \prec_{\sigma(A)} A\right\}$, certainly $|A \cap \bigcup\{B \in K ; B \prec A\}|<\kappa$ since $<_{\sigma(A)}$ is a θ^{+}-ordering. To establish that \prec is a $\theta^{+}=$ordering of A, it remains to show that

$$
\begin{equation*}
\mid A \cap \bigcup\{\bigcup L ; L \in I \text { and } L \prec K\} \mid<\theta^{+} \tag{6}
\end{equation*}
$$

Take $L \in I$ with $L \prec K$. The $L=J^{*}$ for some J where either $J \in I_{\tau}$ for some $\tau<\sigma(A)$, or $J \in I_{\sigma(A)}$ with $J \prec_{\sigma(A)} I$. Since
$\bigcup\left\{\bigcup J^{*} ; J \in I_{\sigma(A)}\right.$ and $\left.J \prec_{\sigma(A)} I\right\} \subseteq \bigcup\left\{\bigcup J ; J \in I_{\sigma(A)}\right.$ and $\left.J \prec_{\sigma(A)} I\right\}$
and $\prec_{\sigma(A)}$ is a θ^{+}-ordering we have $\mid A \cap \bigcup\left\{\bigcup J^{*} ; J \in I_{\sigma(A)}\right.$ and $\left.J \prec_{\sigma(A)} I\right\} \mid<$ θ^{+}. Also $\bigcup\left\{\bigcup J^{*} ; J \in I_{\tau}\right.$ and $\left.\tau<\sigma(A)\right\} \subseteq \bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}$ so by (5), $\mid A \cap \bigcup\left\{\bigcup J^{*} ; J \in I_{\tau}\right.$ and $\left.\tau<\sigma(A)\right\} \mid<\theta^{+}$. Hence (6) holds, and so $<$is a θ^{+}-ordering of \AA.

LEMMA 1.4. Let $c f(\lambda)>\omega$. Suppose the (λ, κ)-family A satisfies
(i) every B in $[A]^{<\lambda}$ has θ-ordering, and
(ii) there is a family $\left\{U_{\rho} ; \rho<c f(\lambda\}\right.$ with $\bigcup A=\bigcup\left\{U_{\rho} ; \rho<c f(\lambda)\right\}$ and $U_{\rho} \subseteq U_{\tau}$ whenever $\rho<\tau<c f(\lambda)$, such that
(a) $\forall A \in A \exists \rho<c f(\lambda) \exists n \geq 1\left(A \subseteq U_{\rho+n}\right.$ and $\left.\left|A \cap U_{\rho}\right|<\theta\right)$,
(b) $\forall \rho<c f(\lambda)\left(\left|\left\{A \in A ; A \subseteq U_{\rho}\right\}\right|<\lambda\right)$.

Then A possesses a θ-ordering.
Proof. For each $\sigma<c f(\lambda)$ put $B_{\sigma}=\left\{A \in \mathscr{A} ; A \subseteq U_{\omega(\sigma+1)}\right\}$ (where $\omega(\sigma+1)$ means the ordinal product), so $B_{\sigma} \subseteq B_{\tau}$ if $\sigma<\tau<c f(\lambda)$, and $B_{\sigma} \in[A]^{<\lambda}$ with $A=\bigcup\left\{B_{\sigma} ; \sigma<c f(\lambda)\right\}$. For each $A \in A$ let $\sigma(A)$ be the least σ such that $A \in B_{\sigma}$. Then by (a), $A \subseteq U_{\omega \sigma+m}$ for some $m \geq 1$, and $\left|A \cap U_{\omega \sigma(A)}\right|<\theta$. In particular, since

$$
\bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}=\bigcup\left\{U_{\omega(\tau+1)} ; \tau<\sigma(A)\right\} \subseteq U_{\omega \sigma(A)}
$$

we have $\left|A \cap \bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}\right|<\theta$. By (i), there is a θ-ordering \prec_{σ} of B_{σ}. Define $<$ on A by

$$
\begin{equation*}
A \prec B \Leftrightarrow \sigma(A)<\sigma(B) \text { or }\left[\sigma(A)=\sigma(B) \text { and } A \prec_{\sigma(A)} B\right] . \tag{7}
\end{equation*}
$$

Then just as in the proof of Lemma $1.3, \prec$ is a θ-ordering of A.

2. Intersection conditions

We shall make use of the following result, going back to Tarski (for example, see ([6], Lemma 3.2.3 and Corollary 3.2.4)).

Lemma $2.1(G C H)$. Suppose $|S|=\mu$ and let \AA be a family of subsets of S satsifying $C\left(\mu^{+}, \theta\right)$. Then $|\mathcal{A}| \leq \mu$ provided either

$$
\begin{equation*}
\theta^{+} \leq \mu \text { and } \forall A \in \mathcal{A}(|A|>\theta), \text { or } \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\theta \leq \mu \text { and } c f(\theta) \neq c f(\mu) \text { and } \forall A \in \mathscr{A}(|A| \geq \theta) \tag{9}
\end{equation*}
$$

The following two lemmas, combined with Lemma 1.3, will enable us to prove parts (a) and (b) of Theorem 1.2.

LEMMA $2.2(G C H)$. Let $\theta^{+} \leq \kappa$. Suppose the (λ, κ)-family A satisfies $C\left(\kappa^{+}, \theta\right)$. Then for each $C \in[A] \geq \kappa$ there is $C^{*} \subseteq \AA$ with $C \subseteq C^{*}$ and $\left|C^{*}\right|=|C|$ such that

$$
\forall A \in A\left(\left|A \cap \bigcup C^{*}\right| \geq \theta^{+} \Rightarrow A \in C^{*}\right)
$$

Proof. Take $\mathcal{C} \in[A] \geq \kappa$. Recursively define families C_{i} for $i<\omega$ by putting $\mathcal{C}_{0}=C$ and $\mathcal{C}_{i+1}=\left\{A \in A ;\left|A \cap \bigcup \mathcal{C}_{i}\right|>\theta\right\}$. Define $C^{*}=\bigcup\left\{\mathcal{C}_{i} ; i<\omega\right\}$. Always $\mathcal{C}_{i} \subseteq \mathcal{C}_{i+1}$ so $\left|\mathcal{C}_{i}\right| \geq \kappa$ and hence $\| C_{i}\left|=\left|\mathcal{C}_{i}\right|\right.$. Lemma 2.1 ensures that $\left|\left\{A \cap \bigcup C_{i} ; A \in C_{i+1}\right\}\right| \leq\left|\bigcup \mathcal{C}_{i}\right|=\left|C_{i}\right|$. For each $X \in\left[\bigcup C_{i}\right]^{>\theta}$ we have $\left|\left\{A \in \mathscr{A} ; A \cap \bigcup \mathcal{C}_{i}=X\right\}\right| \leq \kappa$ since A satisfies $C\left(\kappa^{+}, \theta\right)$. Hence $\left|C_{i+1}\right| \leq \kappa \times\left|\mathcal{C}_{i}\right|=$ $\left|C_{i}\right|$ so that $\left|C_{i+1}\right|=\left|C_{i}\right|$, for all $i<\omega$. Thus $\left|C^{*}\right|=\left|C_{0}\right|=|\mathcal{C}|$. Also if we have $A \in A$ with $\left|A \cap \bigcup C^{*}\right|>\theta$, then since $\bigcup C^{*}=\bigcup\left\{\bigcup C_{i} ; i<\omega\right\}$, we must have $\left|A \cap \bigcup C_{i}\right|>\theta$ for some $i<\omega$, so that $A \in \mathcal{C}_{i+1}$ and thus $A \in C^{*}$. Thus \mathcal{C}^{*} has the required properties.

Lemma $2.3(G C H)$. Suppose $\theta^{+} \leq \kappa<\lambda$ and $\lambda \neq \mu^{+}$where $c f(\theta)=c f(\mu)$. Suppose the (λ, κ)-family A satisfies $C\left(\kappa^{+}, \theta\right)$. Then for each $C \in[\mathcal{A}]^{<\lambda}$ there is $\left.C^{*} \in[A]\right]^{<\lambda}$ with $C \subseteq C^{*}$ such that

$$
\begin{equation*}
\forall A \in A\left(\left|A \cap \bigcup C^{*}\right| \geq \theta \Rightarrow A \in C^{*}\right) \tag{10}
\end{equation*}
$$

Proof. Suppose first $c f(\theta) \neq \omega$. This case is similar to the proof of the previous lemma. Take $C \in[A]^{<\lambda}$, and we may suppose $|C| \geq \kappa$. Recursively define families \mathcal{C}_{i} for $i<\omega$ by putting $\mathcal{C}_{0}=\mathcal{C}$ and $\mathcal{C}_{i+1}=\left\{A \in A ;\left|A \cap \bigcup \mathcal{C}_{i}\right| \geq \theta\right\}$, and put $\mathcal{C}^{*}=\bigcup\left\{\mathcal{C}_{i} ; i<\omega\right\}$. As before, $\left|\bigcup \mathcal{C}_{i}\right|=\left|\mathcal{C}_{i}\right|$. Let $|C|=\mu$. We show by induction that always $\left|\mathcal{C}_{i}\right|=\mu$ if $c f(\mu) \neq c f(\theta)$, and always $\left|\mathcal{C}_{i}\right| \leq \mu^{+}$if $c f(\mu)=c f(\theta)$. Put $D_{i}=\left\{A \cap \bigcup C_{i} ; A \in \mathcal{C}_{i+1}\right\}$. Suppose $c f(\mu) \neq c f(\theta)$, and $\left|C_{i}\right|=\mu$. Then $\left|D_{i}\right| \leq \mu$ by Lemma 2.1. Since A satisfies $C\left(\kappa^{+}, \theta\right)$, as in the proof of Lemma 2.2, this ensures that $\left|C_{i+1}\right|=\mu$. Now suppose $c f(\mu)=c f(\theta)$. If $\left|C_{i}\right|=\mu^{+}$, since $c f\left(\mu^{+}\right) \neq c f(\theta)$, just as above this ensures that $\left|C_{i+1}\right|=\mu^{+}$. Whereas if $\left|\mathcal{C}_{i}\right|=\mu$, since $D_{i} \subseteq\left[\bigcup \mathcal{C}_{i}\right]^{\geq \theta}$ certainly $\left|D_{i}\right| \leq \mu^{+}$so still $\left|\mathcal{C}_{i+1}\right| \leq \mu^{+}$. This completes the induction. Now $C^{*}=\bigcup\left\{C_{i} ; i<\omega\right\}$, so $\left|C^{*}\right|=\mu<\lambda$ if $c f(\mu) \neq c f(\theta)$. If $c f(\mu)=c f(\theta)$ then $\left|C^{*}\right| \leq \mu^{+}$, and by hypothesis in this case $\mu^{+} \neq \lambda$, so still $\left|\mathcal{C}^{*}\right|<\lambda$. To see that (10) holds, take any A in A with $\left|A \cap \bigcup C^{*}\right| \geq \theta$. Since $\bigcup C^{*}=\bigcup\left\{\bigcup \mathcal{C}_{i} ; i<\omega\right\}$ and $c f(\theta) \neq \omega$, we must have $\left|A \cap \bigcup C_{i}\right| \geq \theta$ for some $i>\omega$, so that $A \in C_{i+1}$, and hence $A \in \mathcal{C}^{*}$.

Now consider the case $c f(\theta)=\omega$. Take $C \in[\mathcal{A}]^{\mu}$ where we may assume $\kappa \leq \mu<\lambda$. This time we recursively define families C_{α} for $\alpha<\omega_{1}$ by putting $C_{0}=\mathcal{C}, C_{\alpha+1}=\left\{A \in A ;\left|A \cap \bigcup C_{\alpha}\right| \geq \theta\right\}$, and $C_{\alpha}=\bigcup\left\{\mathcal{C}_{\beta} ; \beta<\alpha\right\}$ when α is a limit ordinal. Put $C^{*}=\bigcup\left\{\mathcal{C}_{\alpha} ; \alpha<\omega_{1}\right\}$. Similarly to the previous case, we show by induction that always $\left|\mathcal{C}_{\alpha}\right|=\mu$ if $c f(\mu) \neq c f(\theta)$ or $\left|\mathcal{C}_{\alpha}\right| \leq \mu^{+}$if $c f(\mu)=c f(\theta)$. If follows that $\left|C^{*}\right|<\lambda$ (noting that $\lambda>\mathcal{N}_{1}$, for this case to hold). To see that (10) holds, take any $A \in A$ with $\left|A \cap \bigcup C^{*}\right| \geq \theta$. Still $\bigcup C^{*}=\bigcup\left\{\bigcup \mathcal{C}_{\alpha} ; \alpha<\omega_{1}\right\}$. Take an increasing θ-sequence ($\theta_{n} ; n<\omega$). For each n there is $\alpha_{n}<\omega_{1}$ such that $\left|A \cap \bigcup\left\{\bigcup \mathcal{C}_{\alpha} ; \alpha<\alpha_{n}\right\}\right| \geq \theta_{n}$. Let β be the least limit ordinal larger than all the α_{n}, so $\beta<\omega_{1}$ and $\left|A \cap \bigcup\left\{\bigcup \mathcal{C}_{\alpha} ; \alpha<\beta\right\}\right| \geq \theta$; thus $\left|A \cap \bigcup \mathcal{C}_{\beta}\right| \geq \theta$ so $A \in \mathcal{C}_{\beta+1}$ and hence $A \in \mathcal{C}^{*}$.

THEOREM $2.4(G C H)$. Let A be an almost disjoint (λ, κ)-family. Suppose either \mathcal{A} satisfies $C(2, \theta)$, or else κ is regular and A satisfies $C\left(\kappa^{+}, \theta\right)$.
(a) If $\theta^{+}<\kappa$, then A has a θ^{++}-ordering.
(b) If $\theta^{+} \leq \kappa$, and $(\kappa \leq \mu<\lambda \Rightarrow c f(\mu) \neq c f(\theta))$, then A possesses a θ^{+}-ordering.

Proof. For $\lambda \leq \kappa$, if A satisfies $C(2, \theta)$ any well order of \nexists of order type λ is suitable, and the same is true if κ is regular since A is almost disjoint. For $\lambda>\kappa$ we proceed by induction on λ. Take a suitable (λ, κ)-family A. Consider (b) first. We shall use Lemma 1.3. By the inductive hypothesis, (i) of Lemma 1.3 holds, and (ii) holds by Lemma 2.3, noting that under the conditions in (b), $\lambda \neq \mu^{+}$ with $c f(\mu)=c f(\theta)$. So Lemma 1.3 ensures that \AA possesses a θ^{+}-ordering.

Similarly for (a), Lemmas 2.2 and 1.3 show that A has a θ^{++}-ordering.
The least λ for which (b) in Lemma 2.4 does not apply is when $\lambda=\kappa^{c f(\theta)+}$. This method of proof fails for larger λ, though the result may still be true. Indeed, under stronger set theoretic hypotheses the restriction on λ may be lifted. We can continue the transfinite induction if we assume Jensen's principle \square_{μ} whenever $c f(\mu)=c f(\theta)$. It is well known that if the axiom of constructibility ($V=L$) is assumed, then \square_{μ} holds for all μ. The statement \square_{μ} asserts: for each limit ordinal $\alpha<\mu^{+}$there is a closed unbounded set $C_{\alpha} \subseteq \alpha$ such that $\left|C_{\alpha}\right|<\mu$ whenever $c f(\alpha)<\mu$, and $C_{\beta}=C_{\alpha} \cap \beta$ whenever β is a limit point of C_{α}. It is convenient first to isolate the construction from \square_{μ} that we require.

LEMMA 2.5. Suppose μ is singular, and assume \square_{μ}. For each limit ordinal $\alpha<\mu^{+}$there is a decomposition $\alpha=\bigcup\{T(\alpha, \sigma) ; \sigma<c f(\mu)\}$ where each $T(\alpha, \sigma)$ is cofinal in α with $|T(\alpha, \sigma)|<\mu$ and there is a subset $D(\alpha) \subseteq \alpha$ with $|D(\alpha)|<\mu$ such that $T(\gamma, \sigma) \subseteq T(\beta, \sigma)$ whenever $\beta, \gamma \in D(\alpha)$ with $\gamma<\beta$. If $c f(\alpha)>\omega$ then $D(\alpha)$ is cofinal in α and $T(\alpha, \sigma)=\bigcup\{T(\beta, \sigma) ; \beta \in D(\alpha)\}$.

Proof. (See Komjáth [5].) Let $\left(\mu_{\sigma} ; \sigma<c f(\mu)\right)$ be an increasing μ-sequence. For each limit $\alpha<\mu^{+}$, take sets C_{α} as provided by \square_{μ} where we may suppose $0 \in C_{\alpha}$, and let ($c_{\alpha \xi} ; \xi<\operatorname{ot}\left(C_{\alpha}\right)$) be the increasing enumeration of C_{α}, where ot $\left(C_{\alpha}\right)$ means the order type of C_{α}. Put $D(\alpha)=\left\{\beta \in C_{\alpha} ; \beta\right.$ is a limit point of $\left.C_{\alpha}\right\}$. For $\beta \in D(\alpha)$ we have $C_{\beta}=C_{\alpha} \cap \beta$ so $c_{\beta \xi}=c_{\alpha \xi}$ whenever $\xi<\operatorname{ot}\left(C_{\beta}\right)$. For $\gamma<\delta<\mu^{+}$, fix a decomposition $\{\xi ; \gamma \leq \xi<\delta\}=\bigcup\{S(\gamma, \delta, \sigma) ; \sigma<c f(\mu)\}$ where always $1 \leq|S(\gamma, \delta, \sigma)| \leq \mu_{\sigma}$. For $\sigma<c f(\mu)$ and limit $\alpha<\mu^{+}$, put $T(\alpha, \sigma)=\bigcup\left\{S\left(c_{\alpha \xi}, c_{\alpha \xi+1}, \sigma\right) ; \xi<o t\left(C_{\alpha}\right)\right\}$, so $\alpha=\bigcup\{T(\alpha, \sigma) ; \sigma<c f(\mu)\}$. Whenever $\beta \in D(\alpha)$ we have $T(\beta, \sigma)=T(\alpha, \sigma) \cap \beta$. Hence $T(\gamma, \sigma) \subseteq T(\beta, \sigma)$ if $\beta, \gamma \in D(\alpha)$ with $\gamma<\beta$. If $c f(\alpha)>\omega$, then $D(\alpha)$ is cofinal in α, and so $T(\alpha, \sigma)=\bigcup\{T(\beta, \sigma) ; \beta \in D(\alpha)\}$. Also $|D(\alpha)| \leq\left|C_{\alpha}\right|$ and $\left|C_{\alpha}\right|<\mu$ since μ is singular. Finally $|T(\alpha, \sigma)| \leq \sum\left(\left|S\left(c_{\alpha \xi}, c_{\alpha \xi+1}, \sigma\right)\right| ; \xi<o t\left(C_{\alpha}\right)\right) \leq \mu_{\sigma} \times\left|C_{\alpha}\right|<\mu$.

Theorem $2.6(V=L)$. Suppose $\theta^{+} \leq \kappa$. Let \mathcal{A} be an almost disjoint (λ, κ) family satisfying either $C(2, \theta)$, or, if κ is regular, $C\left(\kappa^{+}, \theta\right)$. Then A possesses a θ^{+}-ordering.

Proof. As in the proof of Theorem 2.4(b), we may suppose $\lambda>\kappa$ and proceed by induction on λ. The previous argument holds unless $\lambda=\mu^{+}$where $c f(\mu)=c f(\theta)$. So suppose indeed that $\lambda=\mu^{+}$, with $c f(\mu)=c f(\theta)$. Let $A=\left\{A_{\delta} ; \delta<\mu^{+}\right\}$, and we may suppose $\cup \mathcal{A}=\mu^{+}$. We have the sets $D(\alpha)$ and $T(\alpha, \sigma)$ for $\alpha<\mu^{+}$and $\sigma<c f(\mu)$, as in Lemma 2.5.

Define limit ordinals $l_{\varepsilon}<\mu^{+}$by transfinite recursion for $\varepsilon<\mu^{+}$as follows. Let l_{0} be the least limit ordinal $\gamma>\bigcup A_{0}$, and for ε a limit ordinal, put $l_{\varepsilon}=$ $\bigcup\left\{l_{\delta} ; \delta<\varepsilon\right\}$. At successor stages, put

$$
B_{\varepsilon}=\left\{A \in \mathcal{A} ; \exists \operatorname{limit} \alpha<l_{\varepsilon} \exists \sigma<c f(\mu)(|A \cap T(\alpha, \sigma)| \geq \theta)\right\}
$$

and define $l_{\varepsilon+1}$ to be the least ordinal $\gamma>l_{\varepsilon} \cup \bigcup A_{\varepsilon} \cup \bigcup \bigcup B_{\varepsilon}$ with $c f(\gamma)>\omega$. To see that then $l_{\varepsilon+1}<\mu^{+}$, note that since $|T(\alpha, \sigma)|<\mu$ we have $\left|[T(\alpha, \sigma)]^{\theta}\right| \leq \mu$, and for each $X \in[T(\alpha, \sigma)]^{\theta}$ since A satisfies $C\left(\kappa^{+}, \theta\right)$ we have $\mid\{A \in \mathcal{A} ; A \cap$ $T(\alpha, \sigma)=X\} \mid \leq \kappa$, so that $\left|\beta_{\varepsilon}\right| \leq \mu$ and hence $l_{\varepsilon+1}<\mu^{+}$.

Take $A \in A$, and we show by induction on $\varepsilon<\mu^{+}$that if $\left|A \cap l_{\varepsilon}\right| \geq \theta^{+}$then $A \in B_{\varepsilon}$. If $c f\left(l_{\varepsilon}\right)>\omega$, by Lemma 2.5, $l_{\varepsilon}=\bigcup\left\{T\left(l_{\varepsilon}, \sigma\right) ; \sigma<c f(\mu)\right\}$ so there must be $\sigma<c f(\mu)$ such that $\left|A \cap T\left(l_{\varepsilon}, \sigma\right)\right| \geq \theta^{+}$, since $c f(\mu)=c f(\theta)<\theta^{+}$. Now $T\left(l_{\varepsilon}, \sigma\right)=\bigcup\left\{T(\beta, \sigma) ; \beta \in D\left(l_{\varepsilon}\right)\right\}$ and $T(\gamma, \sigma) \subseteq T(\beta, \sigma)$ for $\beta, \gamma \in D\left(l_{\varepsilon}\right)$ with $\gamma<\beta$, so there must be $\beta \in D\left(l_{\varepsilon}\right)$ such that $|A \cap T(\beta, \sigma)| \geq \theta$. And $\beta \in D\left(l_{\varepsilon}\right) \subseteq l_{\varepsilon}$, so $A \in B_{\varepsilon}$ as claimed. If $c f\left(l_{\varepsilon}\right)=\omega$ there are $\varepsilon(n)<\varepsilon$ such that $l_{\varepsilon}=\bigcup\left\{l_{\varepsilon(n)} ; n<\omega\right\}$ and since $\left|A \cap l_{\varepsilon}\right| \geq \theta^{+}$there must be $n<\omega$ with $\left|A \cap l_{\varepsilon(n)}\right| \geq \theta^{+}$. Then the inductive hypothesis gives that $A \in B_{\varepsilon(n)}$, so $A \in B_{\varepsilon}$.

For $A \in \mathcal{A}$, define $\varepsilon(A)$ to be the least ε such that $A \in B_{\varepsilon}$. (Such $\varepsilon(A)$ exists, for if $A=A_{\delta}$ we have $A \subseteq l_{\delta+1}$, so $A \in B_{\delta+1}$ by the previous observation.) Now $\varepsilon(A)$ is not a limit ordinal, since for limit ε we have $l_{\varepsilon}=\bigcup\left\{l_{\delta} ; \delta<\varepsilon\right\}$ so $B_{\varepsilon}=\bigcup\left\{B_{\delta}: \delta<\varepsilon\right\}$. And if $\rho<\varepsilon(A)$ we must have $\left|A \cap l_{\rho}\right|<\theta^{+}$, for if $\left|A \cap l_{\rho}\right| \geq \theta^{+}$then $A \in B_{\rho}$ by the observation above. Also since $A \in B_{\varepsilon(A)}$ and $\bigcup \bigcup B_{\varepsilon(A)} \subseteq l_{\varepsilon(A)+1}$ we have $A \subseteq l_{\varepsilon(A)+1}$.

We show that the conditions of Lemma 1.4 are satsified for A to possess a θ^{+}-ordering. Every B in $[A]^{<\lambda}$ has a θ^{+}-ordering by the inductive hypothesis, so (i) of Lemma 1.4 holds. For (ii), define $U_{\rho}=l_{\rho}$, for $\rho<\mu^{+}=c f(\lambda)$. Certainly $\bigcup A=\mu^{+}=\bigcup\left\{U_{\rho} ; \rho<\mu^{+}\right\}$and $U_{\rho} \subseteq U_{\tau}$ if $\rho<\tau<\mu^{+}$. Take any $A \in A$. Since $\varepsilon(A)$ is not a limit ordinal, we can put $\rho=\varepsilon(A)-1$. Since $A \subseteq l_{\varepsilon(A)+1}$, we have $A \subseteq U_{\rho+2}$, and since $\rho<\varepsilon(A)$ we have $\left|A \cap U_{\rho}\right|<\theta^{+}$. Hence (iia) holds. For
(iib), suppose $\rho<\mu^{+}$is given. If $A \subseteq U_{\rho}=l_{\rho}$ then $A \in B_{\rho}$, but $\left|B_{\rho}\right| \leq \mu$ and so (iib) is satisfied. Hence by Lemma 1.4, A possesses a θ^{+}-ordering.

3. Chain conditions

We shall need the following lemma, from Williams [8].
Lemma 3.1. Let κ be regular and suppose A is an almost disjoint (λ, κ) family which satisfies either
(a) the \aleph_{0}-chain condition, or
(b) $(G C H)$ the κ-chain condition.

Then $\lambda \leq|\cup A|$.
Proof. For (b), suppose $A=\left\{A_{\alpha} ; \alpha<\lambda\right\}$ is such a family, satisfying the κ-chain condition. For a contradiction, suppose $\| \mathcal{A} \mid=\mu$ where $\mu<\lambda$, so $\kappa<\mu^{+} \leq \lambda$. We consider two cases.

Case 1. $c f(\mu)<\kappa$. Write $\bigcup \mathcal{A}=\bigcup\left\{X_{\sigma} ; \sigma<c f(\mu)\right\}$ where alway $\left|X_{\sigma}\right|<\mu$. For each A in A there must be $\sigma(A)<c f(\mu)$ such that $\left|A \cap X_{\sigma(A)}\right|=\kappa$, and there must be $\sigma<c f(\mu)$ and $B \subseteq \AA$ with $B \mid \geq \mu^{+}$such that $\sigma(A)=\sigma$ for all $A \in B$. Since A is almost disjoint, then $\left|\left\{A \cap X_{\sigma} ; A \in B\right\}\right|=|B| \geq \mu^{+}$which is impossible since $\left|\left[X_{\sigma}\right]^{\kappa}\right| \leq\left|X_{\sigma}\right|^{+} \leq \mu$.

Case 2. $\kappa \leq c f(\mu)$. For sequences $s, t \in{ }^{<\kappa} \mu$, write $t<\cdot s$ if t is an initial segment of s. For each sequence $s \in{ }^{<\kappa} \mu$ we define an ordinal $\alpha(s)<\mu^{+}$ and, provided the length of s is a successor ordinal, an element $x(s) \in \bigcup \mathcal{A}$, by recursion on the length of s as follows. Put $\cup \mathcal{A}-\bigcup\left\{A_{\alpha(t)} ; t<\cdot s\right\}=\left\{x\left(s^{\wedge} \gamma\right) ; \gamma<\right.$ $\mu\}$, (noting that this set has cardinality μ since \AA is almost disjoint), where by $\hat{\boldsymbol{s} \gamma}$ we mean that sequence extending s by one place and having value γ at its last place. If there is $\alpha \in \mu^{+}-\{\alpha(t) ; t<\cdot s\}$ such that $x(t) \in A_{\alpha}$ for all $t \leq \cdot s$ of successor length, then $\alpha(s)$ is to be the least such α, and otherwise $\alpha(s)=0$.

By $G C H,\left.\right|^{<\kappa} \mu \mid=\mu$ and we can choose $\beta \in \mu^{+}-\left\{\alpha(s) ; s \in{ }^{<\kappa} \mu\right\}$. For every $s \in{ }^{<\kappa} \mu$, since \AA is almost disjoint $\left|A_{\mathcal{B}} \cap \bigcup\left\{A_{\alpha(t)} ; t<\cdot s\right\}\right|<\kappa$ so $A_{\beta} \cap\left(\bigcup A-\bigcup\left\{A_{\alpha(t)} ; t<\cdot s\right\}\right)$ is non-empty. Hence there is $\gamma<\mu$ such that $x\left(s^{\wedge} \gamma\right) \in A_{\beta}$. This means we can define a sequence $r \in{ }^{\kappa} \mu$ by recursively defining $r(\delta)$ for each $\delta<\kappa$ to be the least γ such that $x\left((r \mid \delta)^{\wedge} \gamma\right) \in A_{\beta}$, where by $r \mid \delta$ we mean the sequence $(r(\varepsilon) ; \varepsilon<\delta)$. Put $x_{\delta}=x(r \mid(2 \delta+1))$ and $\alpha(\delta)=$ $\alpha(r \mid(2 \delta+1))$. The definition of $\alpha(\sigma)$ ensures that $x_{\delta} \in A_{\alpha(\sigma)}$ whenever $\delta \leq \sigma<\kappa$, whereas the definition of x_{δ} ensures that $x_{\delta} \notin A_{\alpha(\sigma)}$ whenever $\sigma<\delta<\kappa$. Hence $A_{\alpha(\sigma)} \cap\left\{x_{\delta} ; \delta<\kappa\right\}=\left\{x_{\delta} ; \delta \leq \sigma\right\}$. Thus if $D=\left\{x_{\delta} ; \delta<\kappa\right\}$, we have $D \cap A_{\alpha(\sigma)} \subset D \cap A_{\alpha(\tau)}$ whenever $\sigma<\tau<\kappa$, contradicting that A satisfies the κ-chain condition.

The proof of (a) proceeds as Case 2 above, defining $\alpha(s)$ and $x(s)$ for sequences $s \in{ }^{<\omega} \mu$.

Lemma 3.2. Let κ be regular and suppose A is an almost disjoint (λ, κ) family.
(a) If A satisfies the \aleph_{0}-chain condition, then for every $C \in[\mathcal{A}]^{\geq \kappa}$ there is $C^{*} \subseteq A$ with $C \subseteq C^{*}$ and $\left|C^{*}\right|=|C|$ such that

$$
\begin{equation*}
\forall A \in \AA\left(\left|A \cap \bigcup C^{*}\right|=\kappa \Rightarrow A \in C^{*}\right) \tag{11}
\end{equation*}
$$

(b) $(G C H)$ If A satisfies the κ-chain condition, then for every $\mathcal{C} \in[A] \geq \kappa$ with $c f(|C|) \geq \kappa$ there is $C^{*} \subseteq A$ with $C \subseteq C^{*}$ and $\left|C^{*}\right|=|C|$ such that (11) holds.

Proof. Take $\mathcal{C} \in[A]^{\mu}$ where $\kappa \leq \mu<\lambda$, and $c f(\mu) \geq \kappa$ if (b) holds. (Obviously if $\mu=\lambda$, we can take $\mathcal{C}^{*}=A$.) To cover both (a) and (b) at once, put $\eta=\kappa_{0}$ if (a) holds, and $\eta=\kappa$ if (b) holds. Recursively define families $\mathcal{C}_{\alpha} \in[A]^{\mu}$ for $\alpha<\eta$ as follows. Put $Z_{\alpha}=\bigcup\left\{\bigcup \mathcal{C}_{\beta} ; \beta<\alpha\right\}$, so $\left|Z_{\alpha}\right|=\mu$. For each $S \in\left[Z_{\alpha}\right]^{<\eta}$, choose $A(\alpha, S) \in A-\bigcup\left\{\mathcal{C}_{\beta} ; \beta<\alpha\right\}$ with $S \subseteq A(\alpha, S)$ if such a set $A(\alpha, S)$ exists; otherwise let $A(\alpha, S)$ be empty. Put $X_{\alpha}=\bigcup \mathcal{C} \cup$ $Z_{\alpha} \cup \bigcup\left\{A(\alpha, S) ; S \in\left[Z_{\alpha}\right]^{<\eta}\right\}$. Our assumptions ensure that $\mu^{<\eta}=\mu$, so that $\left|X_{\alpha}\right|=\mu$. Now define $\mathcal{C}_{\alpha}=\left\{A \in \mathscr{A} ;\left|A \cap X_{\alpha}\right|=\kappa\right\}$. Since $\left\{A \cap X_{\alpha} ; A \in \mathcal{C}_{\alpha}\right\}$ is an an almost disjoint decomposition of X_{α} satisfying the η-chain condition, by Lemma 3.1 we have $\left|\left\{A \cap X_{\alpha} ; A \in \mathcal{C}_{\alpha}\right\}\right| \leq\left|X_{\alpha}\right|=\mu$, and hence since A is almost disjoint we have $\left|C_{\alpha}\right| \leq \mu$, so $\left|C_{\alpha}\right|=\mu$. Note that the definition of \mathcal{C}_{α} ensures that $C \subseteq \mathcal{C}_{\alpha}$ and $\bigcup\left\{\mathcal{C}_{\beta} ; \beta<\alpha\right\} \subseteq \mathcal{C}_{\alpha}$. Also $Z_{\alpha} \subseteq X_{\alpha} \subseteq Z_{\alpha+1}$. Define $\mathcal{C}^{*}=\left\{\mathcal{C}_{\alpha} ; \alpha<\eta\right\}$ so $C \subseteq C^{*} \subseteq A$ and $\left|C^{*}\right|=\mu$.

We show C^{*} has the required property. Take $A \in A$ such that $\left|A \cap \cup C^{*}\right|=$ κ. Now $\cup C^{*}=\bigcup\left\{Z_{\alpha} ; \alpha<\eta\right\}$, and we claim that there is $\delta<\eta$ such that $\left|A \cap Z_{\delta}\right|=\kappa$. If so, $\left|A \cap X_{\delta}\right|=\kappa$ so $A \in \mathcal{C}_{\delta} \subseteq \mathcal{C}^{*}$ and the proof would be complete. So for a contradiction, suppose $\left|A \cap Z_{\delta}\right|<\kappa$ for all $\delta<\eta$. There must then be an increasing sequence $(\alpha(\sigma) ; \sigma<\eta)$ such that $A \cap\left(Z_{\alpha(\sigma+1)}-Z_{\alpha(\sigma)}\right)$ is non-empty for each $\sigma<\eta$, and (by deleting every second term if necessary) we may in fact suppose $A \cap\left(Z_{\alpha(\sigma+1)}-Z_{\alpha(\sigma)+1}\right)$ is non-empty. Choose $x_{\sigma} \in$ $A \cap\left(Z_{\alpha(\sigma+1)}-Z_{\alpha(\sigma)+1}\right)$, and put $S_{\sigma}=\left\{x_{\tau} ; \tau \leq \sigma\right\}$. Then $S_{\sigma} \in\left[Z_{\alpha(\sigma+1)}\right]^{<\eta}$. Now $S_{\sigma} \subseteq A$ and $A \notin \bigcup\left\{\mathcal{C}_{\beta} ; \beta<\alpha(\sigma+1)\right\}$ so $S_{\sigma} \subseteq A\left(\alpha(\sigma+1), S_{\sigma}\right) \in A$. Put $A_{\sigma}=A\left(\alpha(\sigma+1), S_{\sigma}\right)$. Then $A_{\sigma} \subseteq X_{\alpha(\sigma+1)} \subseteq Z_{\alpha(\sigma+1)+1}$. If $\sigma<\tau<\kappa$ then $\alpha(\sigma+1) \leq \alpha(\tau)<\alpha(\tau)+1$ and $x_{\tau} \notin Z_{\alpha(\tau)+1}$ so $x_{\tau} \notin Z_{\alpha(\sigma+1)+1}$, and hence $x_{\tau} \notin A_{\sigma}$. Thus $A_{\sigma} \cap\left\{x_{\tau} ; \tau<\eta\right\}=\left\{x_{\tau} ; \tau \leq \sigma\right\}$. Put $D=\left\{x_{\tau} ; \tau<\eta\right\}$, so $D \cap A_{\sigma} \subset D \cap A_{\tau}$ whenever $\sigma<\tau<\eta$, contradicting that \mathcal{A} satisfies the η-chain condition.

THEOREM 3.3. Let κ be regular and suppose \mathcal{A} is an almost disjoint (λ, κ) family. Suppose either
(a) A satisfies the \aleph_{0}-chain condition, or
(b) A satisfies the κ-chain condition and $\lambda \leq \kappa^{\omega+}$.

Then A has a κ-ordering.

Proof. If $\lambda \leq \kappa$, then \AA has a κ-ordering since \AA is almost disjoint. For $\lambda>\kappa$ we proceed by induction on λ. Let $\left(\lambda_{\sigma} ; \sigma<c f(\lambda)\right)$ be a λ-sequence of cardinals with $\kappa \leq \lambda_{0} \leq \lambda_{1} \leq \cdots$ and $\sum\left(\lambda_{\sigma} ; \sigma<\tau\right) \leq \lambda_{\tau}$ for each $\tau<c f(\lambda)$, with always $c f\left(\lambda_{\sigma}\right) \geq \kappa$ if (b) holds. (Note such a sequence can be found except when $\lambda=\mu^{+}$where $c f(\mu)<\kappa$.) Put $\eta=\aleph_{0}$ if (a) holds, and $\eta=\kappa$ if (b) holds. Take an almost disjoint (λ, κ)-family $\&$ with the η-chain condition. Write $A=\bigcup\left\{\mathcal{A}_{\sigma} ; \sigma<c f(\lambda)\right\}$ where always $\left|\mathcal{A}_{\sigma}\right|=\lambda_{\sigma}$. Use Lemma 3.2 to define families $B_{\sigma} \subseteq A$ for $\sigma<c f(\lambda)$ by $B_{\sigma}=\left(A_{\sigma} \cup \bigcup\left\{B_{\tau} ; \tau<\sigma\right\}\right)^{*}$, and it follows from Lemma 3.2 that always $\left|B_{\sigma}\right|=\lambda_{\sigma}$. Thus $B_{\rho} \subseteq \beta_{\sigma}$ if $\rho<\sigma<c f(\lambda)$, and $A=\bigcup\left\{B_{\sigma}, \sigma<c f(\lambda)\right\}$.

We proceed as in the proof of Lemma 1.3. For each A let $\sigma(A)$ be the least σ such that $A \in B_{\sigma}$. By the inductive hypothesis, there is a κ-ordering \prec_{σ} of B_{σ}. Define \prec on \AA by

$$
A \prec B \Leftrightarrow \sigma(A)<\sigma(B) \text { or }\left[\sigma(A)=\sigma(B) \text { and } A \prec_{\sigma(A)} B\right]
$$

Just as in the proof of Lemma 1.3 , this will be a κ-ordering of \mathcal{A} provided that

$$
\begin{equation*}
\left|A \cap \bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}\right|<\kappa . \tag{12}
\end{equation*}
$$

If $\tau<\sigma(A)$ then $A \notin B_{\tau}=C^{*}$ where $\mathcal{C}=A_{\tau} \cup \bigcup\left\{B_{\rho} ; \rho<\tau\right\}$, so by (11) we have $\left|A \cap \bigcup B_{\tau}\right|<\kappa$. So if $c f(\lambda) \leq \kappa$, certainly (12) holds. And if $\sigma(A)$ is a successor ordinal, $\sigma(A)=\xi+1$, then $\bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}=\bigcup B_{\xi}$ so there is no difficulty. We are left with the case that $\sigma(A)$ is a limit ordinal (and $\kappa<c f(\lambda)$, though we won't make use of this condition). Suppose for a contradiction that (12) is false, so $\left|A \cap \bigcup\left\{\bigcup B_{\tau} ; \tau<\sigma(A)\right\}\right|=\kappa$. Since $\bigcup B_{\rho} \subseteq \bigcup B_{\tau}$ if $\rho<\tau<\sigma(A)$, there must be an increasing sequence $(\rho(\sigma) ; \sigma<\kappa)$ of ordinals below $\sigma(A)$ such that $A \cap\left(\bigcup B_{\rho(\sigma+1)}-\bigcup B_{\rho(\sigma)}\right)$ is non-empty for each $\sigma<\kappa$. Choose $x_{\sigma} \in$ $A \cap\left(\bigcup B_{\rho(\sigma+1)}-\bigcup B_{\rho(\sigma)}\right)$, and put $S_{\sigma}=\left\{x_{\tau} ; \tau \leq \sigma\right\}$, so $S_{\sigma} \subseteq \bigcup B_{\rho(\sigma+1)}$. Put $\mathcal{C}=A_{\rho(\sigma+1)} \cup \bigcup\left\{B_{\tau} ; \tau<\rho(\sigma+1)\right\}$, so $B_{\rho(\sigma+1)}=C^{*}$, and $S_{\sigma} \subseteq \bigcup C^{*}$. Consider the construction of \mathcal{C}^{*} in the proof of Lemma 3.2. We have $\mathcal{C}^{*}=\bigcup\left\{\mathcal{C}_{\alpha} ; \alpha<\eta\right\}$ so $\bigcup C^{*}=\bigcup\left\{\bigcup \mathcal{C}_{\alpha} ; \alpha<\eta\right\}$, and $\bigcup \mathcal{C}_{\beta} \subseteq \bigcup \mathcal{C}_{\alpha}$ whenever $\beta<\alpha<\eta$. When $\sigma<\eta$ we have $S_{\sigma} \in\left[\cup \mathcal{C}^{*}\right]^{<\eta}$ so there must be $\alpha<\eta$ such that $S_{\sigma} \subseteq \cup \mathcal{C}_{\alpha}$. Thus $S_{\sigma} \in\left[Z_{\alpha+1}\right]^{<\eta}$ and so $S_{\sigma} \subseteq A\left(\alpha+1, S_{\sigma}\right)$ and $A\left(\alpha+1, S_{\sigma}\right) \in \mathcal{C}^{*}$. (Note that $A\left(\alpha+1, S_{\sigma}\right)$ can't be empty since $S_{\sigma} \subseteq A$ and $A \notin \backslash\left\{\left\{C_{\beta} ; \beta<\alpha\right\}\right.$ because $A \notin B_{\rho(\sigma+1)}=C^{*}$.) Put $A_{\sigma}=A\left(\alpha+1, S_{\sigma}\right)$. Thus for $\sigma<\eta$, we have $A_{\sigma} \in$ $B_{\rho(\sigma+1)}$ with $S_{\sigma} \subseteq A_{\sigma}$. And if $\sigma<\tau<\eta$ then $x_{\tau} \notin \bigcup B_{\rho(\tau)}$ so $x_{\tau} \notin \bigcup B_{\rho(\sigma+1)}$
and hence $x_{\tau} \notin A_{\sigma}$. Thus $A_{\sigma} \cap\left\{x_{\tau} ; \tau<\eta\right\}=\left\{x_{\tau} ; \tau \leq \sigma\right\}$. Put $D=\left\{x_{\tau} ; \tau<\eta\right\}$, so $D \cap A_{\sigma} \subset D \cap A_{\tau}$ whenever $\sigma<\tau<\eta$, contradicting that A satisfies the η-chain condition. Hence (12) holds, and the proof is complete.

The transfinite induction in Theorem 3.3(b) breaks down first when $\lambda=$ $\kappa^{(\omega+1)+}$. As was the case with Theorem 2.4(b) we can continue the induction if \square_{μ} holds for appropriate μ.

THEOREM $3.4(V=L)$. Let κ be regular and suppose A is an almost disjoint (λ, κ)-family satisfying the κ-chain condition. Then \AA has a κ-ordering.

Proof. We proceed by transfinite induction on λ, as in the proof of Theorem 3.3 (b). The previous argument works unless $\aleph_{0}<\kappa<\lambda=\mu^{+}$and $c f(\mu)<\kappa$, so suppose this to be the case. Let $\mathcal{A}=\left\{A_{\delta} ; \delta<\mu^{+}\right\}$, where we may suppose $\bigcup A=\mu^{+}$. We have the sets $D(\alpha)$ and $T(\alpha, \sigma)$ for $\alpha<\mu^{+}$and $\sigma<c f(\mu)$ as in Lemma 2.5. Define families $B_{\varepsilon} \in[\mathcal{A}]^{\leq \mu}$ and limit ordinals l_{ε} with $\mu \leq l_{\varepsilon}<\mu^{+}$ by transfinite recursion for $\varepsilon<\mu^{+}$as follows. Put $B_{0}=\left\{A_{0}\right\}$ and let l_{0} be the least limit ordinal $\gamma>\bigcup A_{0}$. Suppose B_{δ} defined for all $\delta<\varepsilon$ (for $\varepsilon>0$). If ε is a limit ordinal, define $l_{\varepsilon}=\bigcup\left\{l_{\delta} ; \delta<\varepsilon\right\}$. If ε is a successor, define l_{ε} to be the least ordinal $\gamma>l_{\varepsilon-1} \cup \bigcup\left\{B_{\delta} ; \delta<\varepsilon\right\}$. So $l_{\varepsilon}<\mu^{+}$. For each limit $\alpha<l_{\varepsilon}$ and for each $\sigma<c f(\mu)$, for each $S \in[T(\alpha, \sigma)]^{<\kappa}$ choose $A(\varepsilon, \alpha, \sigma, S) \in A-\bigcup\left\{B_{\delta} ; \delta<\varepsilon\right\}$ with $S \subseteq A(\varepsilon, \alpha, \sigma, S)$ if such a set $A(\varepsilon, \alpha, \sigma, S)$ exists; otherwise let $A(\varepsilon, \alpha, \sigma, S)$ be empty. Put

$$
X_{\varepsilon}=l_{\varepsilon} \cup A_{\varepsilon} \cup \bigcup\left\{A(\varepsilon, \alpha, \sigma, S) ; \exists \text { limit } \alpha<l_{\varepsilon} \exists \sigma<c f(\mu)\left(S \in[T(\alpha, \sigma)]^{<\kappa}\right)\right\}
$$

and finally put

$$
B_{\varepsilon}=\left\{A \in A ;\left|A \cap X_{\varepsilon}\right|=\kappa\right\}
$$

We have to check that $\left|B_{\varepsilon}\right| \leq \mu$. Note if $\delta<\varepsilon$ then $\bigcup B_{\delta} \subseteq l_{\varepsilon} \subseteq X_{\varepsilon}$, so $B_{\delta} \subseteq B_{\varepsilon}$. Always $|T(\alpha, \sigma)|<\mu$, so $\left|[T(\alpha, \sigma)]^{<\kappa}\right| \leq \mu$ and hence $\left|X_{\varepsilon}\right| \leq \mu$. Since $\left\{A \cap X_{\varepsilon} ; A \in B_{\varepsilon}\right\}$ is an almost disjoint decomposition of X_{ε} with the κ-chain condition, $\left|\left\{A \cap X_{\varepsilon} ; A \in B_{\varepsilon}\right\}\right| \leq \mu$ by Lemma 3.1. Hence, since \AA is almost disjoint, we have $\left|B_{\varepsilon}\right| \leq \mu$.

For $A \in A$, define $\varepsilon(A)$ to be the least ε such that $\left|A \cap l_{\varepsilon}\right|=\kappa$. (Such $\varepsilon(A)$ exists, for if $A=A_{\delta}$ we have $A \in B_{\delta}$ so $A \subseteq \bigcup B_{\delta} \subseteq l_{\delta+1}$.) We claim that $\varepsilon(A)$ is not a limit ordinal. For suppose on the contrary that $\varepsilon(A)$ is a limit. Write $\xi=l_{\varepsilon(A)}$, so $\xi=\bigcup\left\{l_{\delta} ; \delta<\varepsilon(A)\right\}$ and $c f(\xi)=c f(\varepsilon(A))$ since the l_{δ} increase with δ. There must be an increasing sequence ($\delta(\sigma) ; \sigma<c f(\xi)$) with $\delta(\sigma)<\varepsilon(A)$ such that $\left\{l_{\delta(\sigma)} ; \sigma<c f(\xi)\right\}$ is cofinal in ξ. Since $\left|A \cap l_{\delta}\right|<\kappa$ for $\delta<\varepsilon(A)$, yet $|A \cap \xi|=\kappa$, we must have $c f(\xi)=\kappa$ and we may suppose $A \cap\left(l_{\delta(\sigma+1)}-l_{\delta(\sigma)+1}\right)$ is non-empty for each $\sigma<\kappa$. Also since $c f(\xi)=\kappa>\omega$, we have $D(\xi)$ cofinal in ξ. Define recursively $\delta(\sigma) \in D(\xi)$ and $\rho(\sigma)<\varepsilon(A)$ for $\sigma<\kappa$ as follows. Let $\gamma(0)$ be the least element of $D(\xi)$, and if σ is a limit let $\gamma(\sigma)$
be the least γ in $D(\xi)$ with $\gamma \geq \bigcup\{\gamma(\tau) ; \tau<\sigma\}$. Suppose $\gamma(\sigma)$ is defined. Let $\rho(\sigma)$ be the least $\rho<\varepsilon(A)$ such that $\gamma(\sigma)<l_{\delta(\rho)}$, and then define $\gamma(\sigma+1)$ to be the least γ in $D(\xi)$ with $\gamma>l_{\delta(\rho(\sigma)+1)}$. Choose $x_{\sigma} \in A \cap\left(l_{\delta(\rho(\sigma)+1)}-l_{\delta(\rho(\sigma))+1}\right)$, so $x_{\sigma} \in A \cap(\gamma(\sigma+1)-\gamma(\sigma))$ since $\gamma(\sigma+1)>l_{\delta(\rho(\sigma)+1)}$ and $\gamma(\sigma)<l_{\delta(\rho(\sigma))}$. Now $\gamma(\sigma+1)=\bigcup\{T(\gamma(\sigma+1), \varsigma) ; \varsigma<c f(\mu)\}$ so there is $\varsigma(\sigma)<c f(\mu)$ such that $x_{\sigma} \in T(\gamma(\sigma+1), \varsigma(\sigma))$. Because $c f(\mu)<\kappa$, there are $H \in[\kappa]^{\kappa}$ and $\varsigma<c f(\mu)$ such tht $\varsigma(\sigma)=\varsigma$ for all $\sigma \in H$. By re-indexing, we may suppose $\varsigma(\sigma)=\varsigma$ for all $\sigma<\kappa$. For each $\sigma<\kappa$, put $S_{\sigma}=\left\{x_{\tau} ; \tau<\sigma\right\}$. Since all $\gamma(\sigma) \in D(\xi)$, from Lemma $2.5 T(\gamma(\tau+1), \varsigma) \subseteq T(\gamma(\sigma), \varsigma)$ whenever $\tau<\sigma<\kappa$, so $S_{\sigma} \subseteq T(\gamma(\sigma), \varsigma)$. Put $A_{\sigma}=A\left(\delta(\rho(\sigma)), \gamma(\sigma), \varsigma, S_{\sigma}\right)$. Note $S_{\sigma} \subseteq A_{\sigma} \in \mathbb{A}$, since $S_{\sigma} \subseteq A$ and $A \notin \bigcup\left\{B_{\delta} ; \delta<\delta(\rho(\sigma))\right\}$ (for if $A \in B_{\delta}$ then $A \subseteq l_{\delta+1}$ so $\left|A \cap l_{\delta+1}\right|=\kappa$, yet $\left.\delta(\rho(\sigma))<\varepsilon(A)\right)$. Thus $A_{\sigma} \subseteq X_{\delta(\rho(\sigma))}$, so $A_{\sigma} \in B_{\delta(\rho(\sigma))}$, and hence $A_{\sigma} \subseteq l_{\delta(\rho(\sigma))+1}$. And if $\tau \leq \sigma$ then $x_{\sigma} \notin l_{\delta(\rho(\tau))+1}$ so $x_{\sigma} \notin A_{\tau}$. Thus $A_{\sigma} \cap\left\{x_{\tau} ; \tau<\kappa\right\}=S_{\sigma}=\left\{x_{\tau} ; \tau<\sigma\right\}$. Put $D=\left\{x_{\tau} ; \tau<\kappa\right\}$, so $D \cap A_{\sigma} \subset D \cap A_{\tau}$ whenever $\sigma<\tau<\kappa$ contradicting that A satisfies the κ-chain condition. This establishes our claim that $\varepsilon(A)$ is not a limit ordinal.

We complete the proof that A has a κ-ordering by appealing to Lemma 1.4. Every B in $[A]^{<\lambda}$ has a κ-ordering by the inductive hypothesis, so (i) of Lemma 1.4 holds. For (ii), define $U_{\rho}=l_{\rho}$, for $\rho<\mu^{+}=c f(\lambda)$. Certainly $\cup A=\mu^{+}=$ $\bigcup\left\{U_{\rho} ; \rho<\mu^{+}\right\}$and $U_{\rho} \subseteq U_{\tau}$ if $\rho<\tau<\mu^{+}$. Take any $A \in A$. Since $\varepsilon(A)$ is not a limit, we can put $\rho=\varepsilon(A)-1$. Now $\left|A \cap l_{\varepsilon(A)}\right|=\kappa$, so $A \in B_{\varepsilon(A)}$ and hence $A \subseteq l_{\varepsilon(A)+1}=U_{\rho+2}$. Since $\rho<\varepsilon(A)$ we have $\left|A \cap U_{\rho}\right|<\kappa$. Hence (iia) holds. To verify that (iib) holds, suppose $A \subseteq U_{\rho}=l_{\rho}$. Then $A \in B_{\rho}$. Since $\left|B_{\rho}\right| \leq \mu$, this means that (iib) holds. Hence by Lemma 1.4, A has a κ-ordering.

4. Applications

In this section we present several applications of the idea of a θ-ordering. The first is a trivial observation, but when combined with Theorems 2.4 and 2.6 , it gives a proof of Komjáth's theorem mentioned in the introduction ([5], Theorem 5).

THEOREM 4.1. If A is $a(\lambda, \kappa)$-family which possesses a κ-ordering, then A is sparse.

Proof. Let \prec be a κ-ordering of A. Define $f: A \rightarrow P \bigcup A$ by

$$
f(A)=A \cap \bigcup\{B \in \mathcal{A} ; B \prec A\}
$$

By (3), $f(A) \in[A]^{<\kappa}$ and clearly $\{A-f(A) ; A \in A\}$ is a pairwise disjoint family, so f shows A is sparse.

The next couple of results concern transversals of the family A. The case $\kappa=\aleph_{0}$ of Theorem 4.2 is essentially due to Davies and Erdös ([1], Proposition A), and their construction carries over to larger κ.

THEOREM 4.2. Every (λ, κ)-family \AA which possesses a κ-ordering can be split into κ subfamilies, $A=\bigcup\left\{\mathcal{A}_{\xi} ; \xi<\kappa\right\}$, where each subfamily A_{ξ} has a 2 -transversal T_{ξ}, and moreover $\bigcup \AA=\bigcup\left\{T_{\xi} ; \xi<\kappa\right\}$.

Proof. Let $<$ be a κ-ordering of A. For each $A \in A$, write $A-\bigcup\{B \in$ $A ; B \prec A\}=\{a(A, \alpha) ; \alpha<\kappa\}$, where $a(A, \alpha) \neq a(A, \beta)$ if $\alpha \neq \beta$. By transfinite recursion on \prec, for each $A \in A$ use induction to choose $\xi(A, \alpha)$ for $\alpha<\kappa$ so that $\xi(A, \alpha) \in \kappa-(\{\xi(B, \beta) ; B \prec A$ and $\beta<\kappa$ and $a(B, \beta) \in A\} \cup\{\xi(A, \gamma) ; \gamma<\alpha\})$. (Since $|A \cap \bigcup\{B ; B \prec A\}|<\kappa$ and $a(B, \beta) \neq a(C, \gamma)$ if $(B, \beta) \neq(C, \gamma)$, such a choice is possible.) For each $\xi<\kappa$, put

$$
\begin{gathered}
T_{\xi}=\{a(A, \alpha) ; \xi(A, \alpha)=\xi\}, \text { and } \\
\mathcal{A}_{\xi}=\{A \in \mathscr{A} ; \xi(A, \alpha)=\xi, \text { for some } \alpha<\kappa\}
\end{gathered}
$$

Clearly $A=\bigcup\left\{A_{\xi} ; \xi<\kappa\right\}$ and $\bigcup \mathcal{A}=\bigcup\left\{T_{\xi} ; \xi<\kappa\right\}$. We show that $\left|T_{\xi} \cap A\right|=1$ for each A in A_{ξ}, so T_{ξ} is a 2-transversal of A_{ξ}. If $A \in A_{\xi}$, then $a(A, \alpha) \in A \cap T_{\xi}$ for that α with $\xi(A, \alpha)=\xi$. Take any $x \in A \cap T_{\xi}$ with $x \neq a(A, \alpha)$ for this α. Then either (i) $x=a(B, \beta)$ and $\xi(B, \beta)=\xi$ for some B with $B \prec A$, which is contrary to the choice of $\xi(A, \alpha)$, or (ii) $x=a(B, \beta)$ and $\xi(B, \beta)=\xi$ for some B with $A \prec B$, which is contrary to the choice of $\xi(B, \alpha)$, or (iii) $x=a(A, \beta)$ and $\xi(A, \beta)=\xi$ for some $\beta \neq \alpha$, contrary to $\xi(A, \alpha)=\xi$. Hence there is no such x, and thus $\left|A \cap T_{\xi}\right|=1$ as required.

THEOREM 4.3. Let A be a (λ, κ)-family with a θ-ordering, and suppose for every subfamily $B \in[A]^{\kappa}$ the family $\{B-R(B) ; B \in B\}$ has a θ-transversal, for every choice of $R(B) \in[B]^{<\theta}$. Then A has θ-transversal.

Proof. Let \prec be a θ-ordering of A, with family of intervals I. For each $I \in I$, put $I^{*}=\bigcup I-\bigcup\{\bigcup J ; J \in I$ and $J \prec I\}$. Take $A \in A$, and suppose $A \in I$. Put $R(A)=A \cap \bigcup\{\bigcup J ; J \in I$ and $J \prec I\}$ so $R(A) \in[A]^{<\theta}$ by (1), and $A \cap I^{*}=A-R(A)$. Since $|I| \leq \kappa$, by assumption there is a θ-transversal, say $T(I)$, for $\left\{A \cap I^{*} ; A \in I\right\}$, and we may assume $T(I) \subseteq I^{*}$. But then $T=\bigcup\{T(I) ; I \in I\}$ is a θ-transversal for A, since for each A in \mathcal{A}, if $A \in I$ then $A=\left(A \cap I^{*}\right) \cup R(A)$ so $A \cap T \subseteq\left(A \cap I^{*} \cap T(I)\right) \cup R(A)$, and consequently $1 \leq|A \cap T|<\theta$ as required.

Combining Theorems 3.3 and 4.3, together with the observation that for regular κ, every almost disjoint (κ, κ)-family has a κ-transversal provides a proof of ([8], Theorem 3.2) (which can be extended by using Theorem 3.4 as well).

Results on the existence of θ-transversals for families A when A satisfies intersection conditions were first studied extensively by Erdös and Hajnal [2]. (Having a θ-transversal was there referred to as possessing property $B(\theta)$.) We can deduce their results from Theorem 4.3, as follows.

COROLLARY 4.4. Let A be an almost disjoint (λ, κ)-family. Take $\theta<\kappa$ and suppose either \AA satisfies $C(2, \theta)$, or else κ is regular and \AA satisfies $C(\kappa, \theta)$. Then
(a) (GCH) A has a θ^{++}-transversal.
(b) (GCH) Suppose either $\theta^{+}=\kappa$ or else $\theta^{+}<\kappa$ but $\kappa \neq \mu^{+}$where $c f(\theta)=$ $c f(\mu)$, and suppose $c f(\eta) \neq c f(\theta)$ whenever $\kappa \leq \eta<\lambda$. Then \AA has a θ^{+}. transversal.
(c) $(V=L)$ A has a θ^{+}-transversal.

Proof. The result will follow from Theorems 4.3, 2.4 and 2.6 once we show that every (κ, κ) -family B satisfying these conditions has a θ^{++}-transversal or a θ^{+}-transversal, respectively. For (b), take the appropriate (κ, κ)-family $B=$ $\left\{B_{\alpha} ; \alpha<\kappa\right\}$ and we show that B has a θ^{+}-transversal. (This is essentially ([2], Result 4.9).) If $\theta^{+}=\kappa$, the result is immediate since κ is regular and A is almost disjoint. So suppose $\theta^{+}<\kappa$. Recursively define elements $x_{\beta} \in \cup B$ for $\beta<\kappa$, as follows. Choose $x_{0} \in B_{0}$. For $\beta>0$, put $X_{\beta}=\left\{x_{\gamma} ; \gamma<\beta\right\}$ and let $\mathcal{C}_{\beta}=\left\{B \in B ;\left|B \cap X_{\beta}\right| \geq \theta\right\}$. Choose $x_{\beta} \in B_{\beta}-\bigcup \mathcal{C}_{\beta}$ if $B_{\beta}-\bigcup \mathcal{C}_{\beta}$ is non-empty, and otherwise put $x_{\beta}=x_{0}$.

We claim that $\left|C_{\beta}\right|<\kappa$ for all $\beta<\kappa$. Certainly $\left|\left\{B \cap X_{\beta} ; B \in \mathcal{C}_{\beta}\right\}\right|<\kappa$, for this is immediate if $\left|X_{\beta}\right|^{+}<\kappa$, and if $\left|X_{\beta}\right|^{+}=\kappa$ it follows from Lemma 2.1 since in this case $\left\{B \cap X_{\beta} ; B \in \mathcal{C}_{\beta}\right\}$ satisfies $C\left(\left|X_{\beta}\right|^{+}, \theta\right)$ and $c f\left(\left|X_{\beta}\right|\right) \neq c f(\theta)$ by hypothesis. Also, for any $Z \in\left[X_{\beta}\right]^{\theta}$, we have $\left|\left\{B \in B ; Z \subseteq B \cap X_{\beta}\right\}\right|<\kappa$ since B satisfies $C(\kappa, \theta)$, and in fact $\left|\left\{B \in B ; Z \subseteq B \cap X_{\beta}\right\}\right|<2$ if κ is singular since then B satisfies $C(2, \theta)$. Hence $\left|C_{\beta}\right|<\kappa$. Thus, if $B_{\beta} \notin \mathcal{C}_{\beta}$ then $\left|B_{\beta}-\bigcup C_{\beta}\right|=\kappa$, and so then $x_{\beta} \in B_{\beta}$.

Put $T=\left\{x_{\beta} ; \beta<\kappa\right\}$, so always $\left|T \cap B_{\beta}\right| \geq 1$. And if for any $B \in B$ we have $\left|B \cap X_{\beta}\right|=\theta$ then for all $\gamma \geq \beta$ it follows that $B \in \mathcal{C}_{\gamma}$ so either $x_{\gamma}=x_{0}$ or $x_{\gamma} \notin B$, and hence $|T \cap B|=\theta$. Thus for all $B \in B$ we have $1 \leq|T \cap B| \leq \theta$, so T is a θ^{+}-transversal of B.

The argument for (a) is similar, putting $\mathcal{C}_{\beta}=\left\{B \in B ;\left|B \cap X_{\beta}\right|>\theta\right\}$.
Case (b) also covers case (c), except when $\kappa=\mu^{+}>\theta^{+}$where $c f(\mu)=c f(\theta)$. For this situation we use \square_{μ}. As in case (b), write $B=\left\{B_{\alpha} ; \alpha<\kappa\right\}$, and we may suppose $\bigcup B=\mu^{+}$. We have the sets $D(\alpha)$ and $T(\alpha, \sigma)$ for $\alpha<\mu^{+}$and $\sigma<c f(\mu)$, as in Lemma 2.5. Recursively define elements $x_{\beta} \in \bigcup B$ for $\beta<\kappa$, ensuring that $x_{\gamma}<x_{\beta}$ whenever $\gamma<\beta$ (unless $x_{\beta}=x_{0}$). Choose $x_{0} \in B_{0}$. For $\beta>0$, put $X_{\beta}=\left\{x_{\gamma} ; \gamma<\beta\right\}$ and let l_{β} be the least ordinal ξ with $c f(\xi)>\omega$
and $\xi>\bigcup X_{\beta}$. Define

$$
C_{\beta}=\left\{B \in B ; \exists \text { limit } \alpha<l_{\beta} \exists \sigma<c f(\mu)\left(\left|B \cap X_{\beta} \cap T(\alpha, \sigma)\right| \geq \theta\right)\right\}
$$

Since $\left|[T(\alpha, \sigma)]^{\theta}\right| \leq \mu$ and $|\{B \in B ; B \cap T(\alpha, \sigma)=X\}|<\kappa$ for each $X \in$ $[T(\alpha, \sigma)]^{\theta}$, we have $\left|\mathcal{C}_{\beta}\right| \leq \mu$. Hence if $B_{\beta} \notin \mathcal{C}_{\beta}$ then $\left|B_{\beta}-\bigcup \mathcal{C}_{\beta}\right|=\kappa$ since B is almost disjoint, and we can choose $x_{\beta} \in B_{\beta}-\bigcup C_{\beta}$ with $x_{\beta}>x_{\gamma}$ for all $\gamma<\beta$. If $B_{\beta} \in \mathcal{C}_{\beta}$, put $x_{\beta}=x_{0}$.

Put $T=\left\{x_{\beta} ; \beta<\kappa\right\}$, so always $\left|B_{\beta} \cap T\right| \geq 1$. We claim that $|B \cap T| \leq \theta$ for each $B \in B$, so T is a θ^{+}-transversal of B. Suppose for a contradiction that there is $B \in B$ with $|B \cap T| \geq \theta^{+}$. There must be $\delta<\kappa$ such that $\left|B \cap X_{\delta}\right| \geq \theta^{+}$, for otherwise we could choose $\beta(\xi)$ for $\xi<\theta^{+}$such that $\left\{x_{\beta(\xi)} ; \xi<\theta^{+}\right\}$was cofinal in B, and hence in κ (since $B \in[\kappa]^{\kappa}$), which is impossible with $c f(\kappa)=\mu^{+}>\theta^{+}$. Hence $\left|B \cap X_{\delta} \cap l_{\delta}\right| \geq \theta^{+}$. Since $l_{\delta}=\bigcup\left\{T\left(l_{\delta} ; \sigma\right) ; \sigma<c f(\mu)\right\}$ and $c f(\mu)=$ $c f(\theta)<\theta^{+}$there must be $\sigma<c f(\mu)$ such that $\left|B \cap X_{\delta} \cap T\left(l_{\delta}, \sigma\right)\right| \geq \theta^{+}$. And $T\left(l_{\delta}, \sigma\right)=\bigcup\left\{T(\beta, \sigma) ; \beta \in D\left(l_{\delta}\right)\right\}$ with $T(\gamma, \sigma) \subseteq T(\beta, \sigma)$ whenever $\beta, \gamma \in D\left(l_{\delta}\right)$ with $\gamma<\beta$, so there must be $\beta \in D\left(l_{\delta}\right)$ such that $\left|B \cap X_{\delta} \cap T(\beta, \sigma)\right| \geq \theta$. Let β^{*} be the least limit ordinal such that $\exists \sigma<c f(\mu)\left(\left|B \cap X_{\delta} \cap T\left(\beta^{*}, \sigma\right)\right|=\theta\right)$. Let γ be least such that $x_{\gamma} \geq \beta^{*}$, so $\left|B \cap X_{\gamma} \cap T\left(\beta^{*}, \sigma\right)\right|=\theta$. Also $B \in \mathcal{C}_{\beta}$ whenever $\beta>\gamma$, since then $X_{\gamma} \subseteq X_{\beta}$ and $\beta^{*} \leq x_{\gamma} \leq l_{\gamma+1} \leq l_{\beta}$, so that $x_{\beta} \notin B$ unless $x_{\beta}=x_{0}$. Hence $B \cap T \subseteq X_{\gamma}$. By the choice of β^{*}, we have $\left|B \cap X_{\gamma} \cap T\left(\beta^{*}, \tau\right)\right| \leq \theta$ for all $\tau<c f(\mu)$ and hence $\left|B \cap X_{\gamma}\right| \leq \theta$ since $B \cap X_{\gamma} \subseteq \beta^{*}=\bigcup\left\{T\left(\beta^{*}, \tau\right) ; \tau<c f(\mu)\right\}$. Hence $|B \cap T| \leq \theta$, contradicting that $|B \cap T| \geq \theta^{+}$. Thus T is a θ^{+}-transversal of B, and the proof is complete.

The final result concerns the existence of Δ-families. The family B is said to be a Δ-family if there is a fixed set Z such that $B \cap C=Z$ for all distinct $B, C \in B$.

THEOREM 4.5. Suppose $\kappa^{<\kappa}=\kappa$, and let \AA be a $\left(\kappa^{+}, \kappa\right)$-family which possesses a κ-ordering. Then there is a Δ-family $B \subseteq A$ with $|B|=\kappa^{+}$.

Proof. Let \prec be a κ-ordering of A, and we may suppose $\mathscr{A}=\left\{A_{\alpha} ; \alpha<\kappa^{+}\right\}$ is the enumeration of A in increasing \prec-order, so always

$$
\begin{equation*}
\left|A_{\alpha} \cap \bigcup\left\{A_{\beta} ; \beta<\alpha\right\}\right|<\kappa \tag{13}
\end{equation*}
$$

Recursively choose subsets $X_{\gamma} \subseteq \kappa^{+}$(possibly empty) for $\gamma \leq \kappa$ as follows: put $X(\gamma)=\bigcup\left\{X_{\beta} ; \beta<\gamma\right\}$ and $A(\gamma)=\bigcup\left\{A_{\alpha} ; \alpha \in X(\gamma)\right\}$, and choose $X_{\gamma} \subseteq$ $\kappa^{+}-X(\gamma)$ maximal such that the family $\left\{A_{\alpha}-A(\gamma) ; \alpha \in X_{\gamma}\right\}$ is pairwise disjoint. We claim there is $\gamma<\kappa$ with $\left|X_{\gamma}\right|=\kappa^{+}$. For if not, $\left|X_{\beta}\right| \leq \kappa$ for all $\beta<\kappa$, and so $|X(\kappa)| \leq \kappa$. Take $\delta \in \kappa^{+}$with $\delta>\alpha$ for all $\alpha \in X(\kappa)$, then by the maximality
of X_{β}, for each $\beta<\kappa$ there must be $\alpha(\beta) \in X_{\beta}$ such that $\left(A_{\delta}-A(\beta)\right) \cap\left(A_{\alpha(\beta)}-\right.$ $A(\beta))$ is non-empty, so we can choose $x_{\beta} \in\left(A_{\delta} \cap A_{\alpha(\beta)}\right)-A(\beta)$. Now $x_{\beta} \neq x_{\gamma}$ if $\gamma<\beta<\kappa$, since $x_{\gamma} \in A_{\alpha(\gamma)} \subseteq A(\beta)$. Since

$$
\left\{x_{\beta} ; \beta<\kappa\right\} \subseteq A_{\delta} \cap \bigcup\left\{A_{\alpha(\beta)} ; \beta<\kappa\right\} \subseteq A_{\delta} \cap \bigcup\left\{A_{\alpha} ; \alpha<\delta\right\},
$$

this contradicts (13), and proves the claim.
Let γ be least such that $\left|X_{\gamma}\right|=\kappa^{+}$. Then $|X(\gamma)| \leq \kappa$ and $|A(\gamma)|=\kappa$, and if $X=\left\{\beta \in X_{\gamma} ; \forall \alpha \in X(\gamma)(\alpha<\beta)\right\}$ then $|X|=\kappa^{+}$. For $\beta \in X$, since $A_{\beta} \cap A(\gamma) \subseteq A_{\beta} \cap \bigcup\left\{A_{\alpha} ; \alpha<\beta\right\}$, by (13) $A_{\beta} \cap A(\gamma) \in[A(\gamma)]^{<\kappa}$. Since $\kappa^{<\kappa}=\kappa$, there must be Z in $[A(\gamma)]^{<\kappa}$ and $Y \in[X]^{\kappa^{+}}$such that $A_{\beta} \cap A(\gamma)=Z$ for all $\beta \in Y$. However, $\left\{A_{\beta}-A(\gamma) ; \beta \in Y\right\}$ is pairwise disjoint, so $\left\{A_{\beta} ; \beta \in Y\right\}$ is a Δ-family of size κ^{+}.

Combining Theorems 4.5 and 2.4 proves a result of Erdös, Milner and Rado ([4], Theorem 1), that for κ regular, every almost disjoint (κ^{+}, κ)-family satisfying $C\left(\kappa^{+}, \theta\right)$ where $\theta<\kappa$ contains a Δ-family of size κ^{+}. Combining Theorems 4.5 and 3.3 gives a result of Williams ([7], Corollary 2.9), that for κ regular, every almost disjoint $\left(\kappa^{+}, \kappa\right)$-family with the κ-chain condition contains a Δ-family of size κ^{+}.

References

[1] R. O. Davies and P. Erdös, 'Splitting almost-disjoint collections of sets into subcollections admitting almost-transversals,' Infinite and finite sets, Vol. I, edited by A. Hajnal, R. Rado and V. T. S6s, pp. 307-322 (North-Holland, 1975).
[2] P. Erdös and A. Hajnal, 'On a property of families of sets,' Acta Math. Acad. Sci. Hungar. 12 (1961), 87-123.
[3] P. Erdös and S. H. Hechler, 'On maximal almost-disjoint families over singular cardinals', Infinite and finite sets, Vol. I, edited by A. Hajnal, R. Rado and V. T. Sos, pp. 597-604 (North-Holland, 1975).
[4] P. Erdös, E. C. Milner and R. Rado, 'Intersection theorems for systems of sets (III)', J. Austral. Math. Soc. 18 (1974), 22-40.
[5] P. Komjáth, 'Families close to disjoint ones', Acta Math. Acad. Sci. Hungar. 43 (1984), 199-207.
[6] N. H. Williams, Combinatorial set theory (Studies in Logic and the Foundations of Mathematics, 91, North-Holland, 1977).
[7] N. H. Williams, 'Chain conditions and the existence of delta-families', Math. Proc. Cambridge Philos. Soc. 83 (1978), 167-179.
[8] N. H. Williams, 'Families of sets having property B', Period. Math. Hungar. 12 (1981), 181-190.

Department of Mathematics
University of Queensland
St. Lucia, Queensland 4067
Australia

