
13
Coincidence experiments (e, e′ X)

With the advent of high-energy, high-intensity, high-resolution electron
accelerators with continuous beams (c.w.), a whole new class of coinci-
dence reactions becomes accessible. It is important to have a detailed
understanding of such processes. In this section, a covariant analysis of
the amplitude and cross section for the coincidence reaction (e, e′ X) will
be developed. The results will be exact with one photon exchange, that
is, to order α2 in the cross section. The particle X can be anything. The
kinematic situation is illustrated in Fig. 13.1. The four-momentum transfer
from the electron is now consistently denoted by

k ≡ k1 − k2

k2 = −2k1 · k2

= 4ε1ε2 sin2 θ

2
; lab frame (13.1)

The second relation holds for relativistic (massless) electrons, and the third
relation holds in the laboratory frame. The four-momentum of the emitted
particle X will be consistently denoted by q = (q, iωq), and conservation

Fig. 13.1. Kinematic situation for a (e, e′ X) coincidence experiment.
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13 Coincidence experiments (e, e′ X) 77

Fig. 13.2. Angles for particle X in the C-M system.

of four-momentum states that

k + p1 = q + p2 (13.2)

Here p1(p2) are the four-momenta of the initial (final) nucleus or nucleon.

Two distinct Lorentz frames are of primary interest. The center of
momentum (C-M) frame is defined by the relation

q + p2 = k + p1 = (0, iW ) ; C-M frame (13.3)

Note that W is the total energy in the C-M frame. The laboratory frame
is defined by

p1 = (0, iM1) ; lab frame (13.4)

The C-M frame is reached from the laboratory frame by making a
Lorentz transformation along the direction of the three-momentum
transfer k.

Introduce the orthonormal system of unit vectors in the laboratory
(lab), as defined in Fig. 13.1

ek3 ≡ k

|k| ; ek1 ≡ k2 × k1

|k2 × k1| ; ek2 = ek3 × ek1 (13.5)

It is important to note that since ek1 and ek2 are transverse to k, they
are unchanged under the Lorentz transformation along k from the lab to
the C-M system. ek3, defined as the third unit vector in this orthonormal
system, is thus also uniquely defined in the C-M system (it lies along the
direction of k).

In addition, we define the angles (θq, φq) that the particle X makes
with respect to this orthonormal basis as seen in the C-M frame; this is
indicated in Fig. 13.2.

From the general discussion of electron scattering in chapter 11,
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78 Part 2 General analysis

one has

dσ =
4α2

k4

d3k2

2ε2

1√
(k1 · p1)2

ημνWμν (13.6)

ημν = k1μk2ν + k1νk2μ − (k1 · k2) δμν

Wμν = (2π)3
∑
i

∑
f

δ(4)(p′ − p1 − k)〈i|Jν(0)|f〉〈f|Jμ(0)|i〉(ΩE1)

For definiteness and clarity, specify to a two-particle final state of
particle X plus a second nucleus or nucleon (denoted with subscript 2)1

〈f|Jμ(0)|i〉 = 〈p2q
(−)|Jμ(0)|p1〉 (13.7)

Here |p2q
(−)〉 is an exact eigenstate of the total hamiltonian; it is a two-

particle scattering state with incoming wave boundary conditions. To go
to states with Lorentz invariant norm, one defines (c.f. chapter 12)

Jμ ≡
(

2ωqE1E2Ω
3

M1M2

)1/2

〈p2q
(−)|Jμ(0)|p1〉 (13.8)

Here Jμ = (J, iJ0), and this quantity now properly transforms as a four-
vector under Lorentz transformations. The hadronic response tensor then
takes the form

Wμν = (2π)3
∑
i

∑
f

′ Ωd3q

(2π)3
Ωd3p2

(2π)3
δ(4)(p2 + q − p1 − k)

× M1M2

2ωqE1E2Ω3
(ΩE1)J

�
ν Jμ (13.9)

Here
∑′ indicates a sum over all the remaining variables. The complex

four-vector J�ν is defined by

J�ν ≡ (J�, iJ�0 ) (13.10)

Thus

Wμν =
2M1M2

(2π)3

∑
i

∑
f

′
δ(4)(p2 + q − p1 − k)

d3q

2ωq

d3p2

2E2
J�ν Jμ (13.11)

This expression is now manifestly Lorentz covariant.

1 As long as one sums over everything else in
∑

f
the subsequent results for the general

form of the coincidence cross section hold for arbitrary nuclear final states.
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13 Coincidence experiments (e, e′ X) 79

Consider next the Lorentz invariant combination ημνJ
�
ν Jμ. It follows

from Eq. (13.6) that

ημνJ
�
ν Jμ = (k1 · J�)(k2 · J) + (k2 · J�)(k1 · J) − (k1 · k2)(J

� · J) (13.12)

Current conservation states that

k · J = 0

k1 · J = k2 · J (13.13)

Hence

ημνJ
�
ν Jμ = 2(k1 · J�)(k1 · J) +

k2

2
J� · J (13.14)

This expression is explicitly Lorentz invariant. Let us proceed to evaluate it
in the C-M frame. Since k1 has no projection on ek1, which is perpendicular
to the electron scattering plane, one can write in the C-M system (recall
k2
1 = 0)

k1μ = [(k1 · e2)e2 + (k1 · e3)e3, ik1] (13.15)

Now use current conservation

e3 · J =
k · J

|k| =
ωkJ0

|k| (13.16)

Thus

k1 · J = (k1 · e2)(e2 · J) +

[
ωk

k2
(k1 · k) − k1

]
J0 (13.17)

The Coulomb amplitude is defined by J0 ≡ JC , hence

Jμ = (J, iJC)

J� · J = |J⊥|2 + |J · e3|2 − |JC |2

|J⊥|2 ≡ |J · e1|2 + |J · e2|2 (13.18)

Use current conservation again

J� · J = |J⊥|2 +

(
ω2
k

k2
− 1

)
|JC |2

= |J⊥|2 − k2

k2
|JC |2 (13.19)
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80 Part 2 General analysis

A combination of these results yields the following expression in the C-M
system

ημνJ
�
ν Jμ = 2

{
1

4
k2|J⊥|2 + (k1 · e2)

2|e2 · J|2

+|JC |2
[(

ωk

k2
(k1 · k) − k1

)2

− k4

4k2

]

+(k1 · e2)

[
ωk

k2
(k1 · k) − k1

]
2Re [(e2 · J) J�C]

}
CM

(13.20)

The next step is to re-express the electron variables appearing in this ex-
pression in the laboratory frame. Start by observing that the combination
k1 · e2 is transverse and hence unaffected by the Lorentz transformation
from the lab to the C-M system

k1 · e2 = k1 · (e3 × e1) = k1 ·
[

k

|k| × (k2 × k1)

|k2 × k1|

]

=
1

|k|k1k2 sin θ
[(k1 · k2)(k1 · k) − k2

1(k2 · k)]

=
1

|k|k1k2 sin θ
[(k1 · k2)(k

2
1 − k1 · k2) − k2

1(k1 · k2 − k2
2)]

=
1

|k|k1k2 sin θ
ε21ε

2
2 sin2 θ

{k1 · e2}CM =
ε1ε2 sin θ

κ
; lab variables (13.21)

Here κ is now the three-momentum transfer in the lab frame

κ ≡ |k|lab

=
√
ε21 + ε22 − 2ε1ε2 cos θ (13.22)

To distinguish C-M variables, the four-momentum transfer as seen in
the C-M system will be written in the final expressions as

kμ ≡ (k�, iω�
k ) ; C-M frame (13.23)

Then with the aid of Eq. (13.3), which defines the C-M frame, one can
write

k�2 = k2 + ω�2
k = k2 − [k · (p1 + k)]2

(p1 + k)2

=
1

(p1 + k)2
[k2p2

1 + 2k2(p1 · k) + k4 − (k · p1)
2 − 2k2(p1 · k) − k4]

=
1

(p1 + k)2
[k2p2

1 − (k · p1)
2] (13.24)
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13 Coincidence experiments (e, e′ X) 81

This expression is now in invariant form and can be evaluated in the lab
frame defined by Eq. (13.4) to give

k� =
M1

W
κ ; lab variables (13.25)

Note that W is expressed in terms of lab variables by

W 2 = −(p1 + k)2

= M2
1 − 2p1 · k − k2

= M2
1 + 2M1(ε1 − ε2) − 4ε1ε2 sin2 θ

2
; lab variables (13.26)

Next use (for massless electrons)

k1 · k = −k1 · k2 =
1

2
k2 (13.27)

to work out in the C-M system[
ωk

k2
(k1 · k) − k1

]2

CM
=

1

k4
[ωk(k1 · k + k1ωk) − k1(k

2 + ω2
k )]

2

=
k4

k4

[
1

2
ωk − k1

]2

=
k4

k4

[ −1

(p1 + k)2

]{
−1

2
k · (p1 + k) + k1 · (p1 + k)

}2

= − k4

4k�4
1

(p1 + k)2
[p1 · (k1 + k2)]

2 (13.28)

This is also now in invariant form [note Eq. (13.24)] and can be evaluated
in the lab frame to yield{[

ωk

k2
(k1 · k) − k1

]2
}

CM

=
k4

k�4
M2

1

4W 2
(ε1 + ε2)

2 ; lab variables (13.29)

Now in the lab

k2 = κ2 − (ε1 − ε2)
2 (13.30)

Thus

(ε1 + ε2)
2 = κ2 − k2 + 4ε1ε2

= κ2 − 4ε1ε2 sin2 θ

2
+ 4ε1ε2

= κ2 + 4ε1ε2 cos2
θ

2
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82 Part 2 General analysis

= 4ε1ε2 cos2
θ

2

(
1 +

κ2

k2
tan2 θ

2

)

= 4ε1ε2 cos2
θ

2

(
k�2

k2

)(
k2

k�2
+

W 2

M2
1

tan2 θ

2

)
(13.31)

Also, since κ2 = ε21 + ε22 − 2ε1ε2 cos θ,{[
ωk

k2
(k1 · k) − k1

]2

− k4

4k2

}
CM

=
k4

k�4

[
M2

1

4W 2
(ε1 + ε2)

2

−1

4

M2
1

W 2
(ε21 + ε22 − 2ε1ε2 cos θ)

]

=
k4

k�4
M2

1

W 2
ε1ε2 cos2

θ

2
; lab variables

(13.32)

Note that since k2 = k2 −ω2
k ≥ 0 in electron scattering, one can determine

the sign of the quantity in square brackets in Eq. (13.29) as

k1 − ωk(k · k1)

k2
≥ 0 (13.33)

In summary the expressions involving the electron variables in the cross
section are Lorentz transformed from the C-M to the laboratory frame
according to

{(k1 · e2)
2}CM = ε1ε2 cos2

θ

2

(
M2

1

W 2

k2

k�2

)
(13.34)

{[
ωk

k2
(k1 · k) − k1

]2
}

CM

= ε1ε2 cos2
θ

2

(
M2

1

W 2

k2

k�2

)

×
(

k2

k�2
+

W 2

M2
1

tan2 θ

2

)
{[

ωk

k2
(k1 · k) − k1

]2

− k4

4k2

}
CM

= ε1ε2 cos2
θ

2

(
M2

1

W 2

k2

k�2

)
k2

k�2

Here

W 2 = −(p1 + k)2

= M2
1 + 2M1(ε1 − ε2) − 4ε1ε2 sin2 θ

2

k�2 = k2 − [k · (p1 + k)]2

(p1 + k)2
=

M2
1

W 2
|klab|2 (13.35)
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13 Coincidence experiments (e, e′ X) 83

are respectively the squares of the total energy and three-momentum
transfer in the C-M system. The quantities (ε1, ε2, θ) with k2

lab = ε21 + ε22 −
2ε1ε2 cos θ are the electron scattering variables in the lab.

The remaining task is to work out the phase space integral. The Lorentz
invariant expression is

Φ ≡
∫

d3q

2ωq

∫
d3p2

2E2
δ(4)(k1 + p1 − k2 − p2 − q) (13.36)

We choose to evaluate this in the C-M frame. The
∫
d3p2 can be immedi-

ately evaluated with the aid of the δ(3) to give

Φ =

∫
q2dΩq

4ωqE2

(
∂q

∂Wf

)
δ(Wf − Wi)dWf

=
q2

4ωqE2

(
∂q

∂Wf

)
dΩq (13.37)

Next use

Wf =
√

q2 + m2
X +

√
q2 + M2

2 ; Wi ≡ W

∂Wf

∂q
=

q

ωq
+

q

E2
=

qW

ωqE2
(13.38)

One has finally

∫
d3q

2ωq

∫
d3p2

2E2
δ(4)(k1 + p1 − k2 − p2 − q) =

q

4W
dΩq ; C-M frame (13.39)

Note that the first of Eqs. (13.38) allows a determination of q(W ).

The above results are now combined to yield the laboratory cross section

dσ =
4α2

k4

d3k2

2ε2

1√
(k1 · p1)2

ημνWμν

=
4α2

k4

ε22dε2dΩ2

2ε2

1

M1ε1

2M1M2

(2π)3

(
q

4W
dΩq

)
2

⎧⎨
⎩
(
M2

1

W 2

)
ε1ε2 cos2

θ

2

×
[
W 2

M2
1

tan2 θ

2
|J⊥|2 +

k2

k�2
|J · e2|2 +

k4

k�4
|JC |2

− k2

k�2

(
k2

k�2
+

W 2

M2
1

tan2 θ

2

)1/2

2 Re J�C(J · e2)

⎤
⎦
⎫⎬
⎭ (13.40)
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84 Part 2 General analysis

Define2

Jμ =

√
M1M2

4πW
Jμ =

√
M1M2

4πW

(
2ωqE1E2Ω

3

M1M2

)1/2

〈qp(−)
2 |Jμ(0)|p1〉 (13.41)

The differential cross section in the lab is then given by

d5σ

dε2dΩ2dΩq
= σM

(
qM1

πW

)⎧⎨
⎩ k4

k�4
|JC |2 +

k2

k�2
|J · e2|2 +

W 2

M2
1

tan2 θ

2
|J⊥|2

− k2

k�2

(
k2

k�2
+

W 2

M2
1

tan2 θ

2

)1/2

2Re [J�
C(J · e2)]

⎫⎬
⎭ (13.42)

Here (ε1, ε2, θ) are electron scattering variables in the lab, and [W, q(W ),
k�, θq, φq] are C-M variables, the first three of which can be calculated in
terms of electron lab variables by utilizing the Lorentz invariant expres-
sions in Eqs. (13.35). The current is evaluated in the C-M system.

It is useful to rewrite this cross section in terms of helicity polarization
vectors for the virtual photon.3 Define helicity unit vectors (see Fig. 13.1)
according to

ek±1 = ∓ 1√
2
(ek1 ± iek2) (13.43)

Since these are still transverse, they are also unchanged under the Lorentz
transformation from the lab to the C-M system. Inversion of the definition
gives (we again suppress the k subscript)

e2 =
i√
2
(e+1 + e−1)

e1 =
1√
2
(e−1 − e+1) (13.44)

Define

Jλ ≡ eλ · J (13.45)

It follows that

|J⊥|2 = |J · e1|2 + |J · e2|2 = |J+1|2 + |J−1|2

|J · e2|2 =
1

2
|J⊥|2 + Re (J+1)�(J−1)

2 Re J�
C(J · e2) = −

√
2 Im J�

C(J+1 + J−1) (13.46)

2 By looking at a simple example for the matrix element, the reader can establish that this

expression still has dimensions [M]−1.
3 Think of this as the annihilation of a photon.
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Thus one arrives at the basic result for the (e, e′ X) coincidence cross
section in the laboratory frame

d5σ

dε2dΩ2dΩq
= σM

(
qM1

πW

)⎡⎣ k4

k�4
|JC |2 +

(
k2

2k�2
+

W 2

M2
1

tan2 θ

2

)
|J⊥|2

+
k2

2k�2
2Re (J+1)�(J−1)

+
k2

k�2

(
k2

k�2
+

W 2

M2
1

tan2 θ

2

)1/2 √
2 Im J�

C(J+1 + J−1)

⎤
⎦ (13.47)

In this expression k� is the three-momentum transfer, W is the total energy,
and q = |q| and dΩq refer to the momentum of particle X, all in the C-M
system. The electron variables (k2, k�,W , θ) appearing in the cross section
are functions of (k2, k ·p1, θ) where θ is the electron scattering angle in the
laboratory frame. The appropriate relations for (k�,W ) as functions of
(k2, k · p1) are given in Eqs. (13.35). There are three independent electron
scattering variables in the lab, (ε1, ε2, θ); hence it is possible to fix (k2, k ·p1)
and vary θ. The current is evaluated in the C-M system.

There are four target responses appearing in the cross section expressed
as bilinear combinations of current matrix elements where the current
is defined by Eq. (13.41) with Jμ ≡ (J, iJC) and Jλ ≡ eλ · J. These
four responses are functions of the variables (k2,W , θq, φq) or (k2, k ·
p1, θq, φq). The dependence on the angle variables will be made explicit in
the subsequent analysis. The dependence on the “out-of-plane” angle φq ,
whose content must be transmitted through the virtual photon, turns out
to be particularly simple. It is explicitly exhibited as

|JC |2

|J+1|2 + |J−1|2

2Re (J+1)�(J−1) ∝ cos 2φq√
2 Im J�

C(J+1 + J−1) ∝ sinφq (13.48)

The dependence on (θ, φq) in Eqs. (13.47, 13.48) now allows a complete
kinematic separation of the four target response functions at fixed (k2, k ·
p1, θq), or equivalently fixed (k2,W , θq). Since the term in cos 2φq takes
the same value at φq = π/2 and φq = 3π/2, for which the reaction
plane and electron scattering plane in Fig. 13.1 coincide, an out-of-plane
measurement is needed to separate its contribution. Conversely, the term
in sinφq can be isolated with two in-plane measurements at these two
values.

This derivation is from appendix C of [Pr69]. Other work on coinci-
dence experiments is contained in [de67, Wa79, Kl83]. Work on coinci-
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86 Part 2 General analysis

Fig. 13.3. Configuration for helicity analysis of current matrix elements in the
C-M system. Here everything is referred to the incoming and outgoing target
states with momenta and helicities (p1λ1) and (p2λ2) respectively. Note how the
(x, y, z) coordinate system is related to the original system defined by ei with
i = 1, 2, 3. Note in particular the relations θq = θp and φq + φp = 2π.

dence experiments in pion electroproduction is contained in [Be66, Pr70].
Coincidence experiments with a polarized electron beam are discussed in
[Ad68, Ra89] 4 and with both a polarized electron beam and polarized
target in [Ra89].

The next step is to demonstrate the angular dependence in the nuclear
matrix elements. This will be done through the use of a helicity analysis
of the current matrix elements in the C-M system. Let us go back to the
form of the cross section before the

∑
i

∑
f has been carried out. The cross

section is then being calculated for given initial and final helicities of all
the particles in the C-M system, and of the virtual photon. The situation
is illustrated in Fig. 13.3. The analysis parallels that of Jacob and Wick
[Ja59]. First, recall some of the basic results from that work

For two-particles in the C-M system, the transformation from a state
where the relative momentum is directed at an angle (θ, φ), to a state of
definite angular momentum (J,M) is given by

〈JMλ′
1λ

′
2|θφλ1λ2〉 = δλ1λ

′
1
δλ2λ

′
2

(
2J + 1

4π

)1/2

DJ
M,λ(−φ,−θ, φ) (13.49)

Here λ ≡ λ1−λ2 is the net helicity of the state. We have seen this expression
before as the “photon wave function” in Eq. (9.35). The transformation
in Eq. (13.49) is unitary.

4 In a coincidence reaction with a polarized electron beam (e, e′ X) there is an additional,

fifth response function, sensitive to final-state interactions, which can only be accessed

with out-of-plane measurements [Ra89].
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13 Coincidence experiments (e, e′ X) 87

The S-matrix for an arbitrary two-particle process in the C-M system
can be written as

〈pcpdλcλd|S |papbλaλb〉 =
(2π)4

Ω2
δ(4)(Pμ − P ′

μ)

[
(2π)2

√
v′v

p′p

]

×〈θ′φ′λcλd|S(Pμ)|θφλaλb〉 (13.50)

Here (p, v) are relative momenta and velocity in the C-M system and P

is the total four-momentum in that frame. For transitions, the S-matrix is
related to the T-matrix by S = 1 + iT .

With the aid of completeness, one then establishes the following relation
for the required S-matrix in the C-M system

〈θφλcλd|S(W )|0 0λaλb〉 =
∑
JM

∑
J ′M′

〈θφλcλd|JMλcλd〉

×〈JMλcλd|S(W )|J ′M ′λaλb〉〈J ′M ′λaλb|00λaλb〉 (13.51)

The scattering operator S is a scalar under rotations; it commutes with the
angular momentum operator J. The Wigner–Eckart theorem then implies
that the matrix element of S must be diagonal in J and independent of
M. Use (

2J + 1

4π

)1/2

DJ
M,λ(0, 0, 0) =

(
2J + 1

4π

)1/2

δMλ (13.52)

Here the initial angular momentum along the z-axis is M = λ = λa − λb.
A combination of the above results then yields the expression

〈θφλcλd|S(W )|0 0λaλb〉 =∑
J

(
2J + 1

4π

)
DJ

λi,λf
(−φ,−θ, φ)�〈λcλd|SJ(W )|λaλb〉

; λi = λa − λb ; λf = λc − λd (13.53)

There are various conditions on the helicity matrix elements of the
scattering operator that follow from unitarity and symmetry properties of
the strong interactions. Parity invariance essentially cuts the number of
independent matrix elements in half. The parity operator reflects momen-
tum and leaves particle spins unchanged; hence it reflects the helicity. It
leaves the angular momentum and z-component of the angular momen-
tum unchanged. The parity operator thus has the following effect on a
two-particle state [Ja59]

P |JMλ1λ2〉 = (−1)J−S1−S2η1η2|JM − λ1 − λ2〉 (13.54)
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88 Part 2 General analysis

Here the ηi are intrinsic parities and the overall phase is conventional.5 If
the scattering operator is invariant under the parity transformation, i.e. if
it commutes with P , then [Ja59]

〈−λc − λd|SJ(W )| − λa − λb〉 = ηaηbη
�
c η

�
d〈λcλd|SJ(W )|λaλb〉 (13.55)

Now the electroproduction process (e, e′ X) in the C-M system presents
exactly the same problem as discussed above.6 The behavior under rotation
of all quantities is exactly the same. The only new feature is that k2, the
mass of the virtual photon, provides an additional kinematic variable
in the C-M system. To make the analogy more explicit, recall Low’s
first reduction of the S-matrix [Lo55]. For non-forward pion–nucleon
scattering it takes the form

〈p′q′|S |pq〉
〈0|S |0〉 = −(2π)4iδ(4)(p′ + q′ − p − q)

1√
2ωqΩ

〈p′q′(−)|J(0)|p〉 (13.56)

Here J(0) is the pion current (the isospin label is suppressed). This expres-
sion now has exactly the same form in terms of target matrix elements
of the current as that we have been studying. The only difference is that
in our case it is the matrix element of the electromagnetic current that is
required. With the Low reduction, one shifts the transformation properties
from the state vector (which we do not have for a virtual photon) to those
of the current (which we do have).

With the electromagnetic current, one can use current conservation to
relate the Coulomb and longitudinal matrix elements

ek3 · J ≡ J(0) =
ω�
k

k�
JC (13.57)

This reduces the problem to the study of one or the other of these.
As a result of the above discussion, the helicity matrix elements of

the electromagnetic current for the hadronic target in the C-M system,
required for the cross section in Eq. (13.47), must have the following
angular dependence

(JC)λf ,λi =
k�

ω�
k

1√
4k�q

∑
J

(2J + 1) DJ
λi,λf

(−φp,−θp, φp)
�

×〈λ2λX|TJ(W, k2)|λ1λk〉 ; λk = 0(
Jλk

)
λf ,λi

=
1√
4k�q

∑
J

(2J + 1) DJ
λi,λf

(−φp,−θp, φp)
�

×〈λ2λX|TJ(W, k2)|λ1λk〉 ; λk = ±1 (13.58)

5 For the photon (−1)Sγ ηγ = 1.
6 The particular coordinate system chosen in Fig. 13.3, which might appear somewhat

perverse to the reader, was chosen to make this analogy explicit.
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13 Coincidence experiments (e, e′ X) 89

The normalization is conventional. Here

λi = λ1 − λk ; λf = λ2 − λX (13.59)

All the angular dependence is now explicit. From Fig. 13.3

θp = θq

φp = 2π − φq (13.60)

The angular dependence with respect to the angles of Fig. 13.2 is then
given by the relation

DJ
λi,λf

(−φp,−θp, φp)
� = DJ

λf ,λi
(φq, θq,−φq) (13.61)

The proof follows from [Ed74] and the fact that λf − λi is an integer

DJ
λi,λf

(−φp,−θp, φp)
� = eiλiφpdJλi,λf (−θp)e

−iλfφp

= e−iλiφqdJλf ,λi(θq)e
iλfφq

= DJ
λf ,λi

(φq, θq,−φq) (13.62)

In the expression for the (e, e′ X) cross section, for a given set of particle
helicities, one needs the bilinear expression(

Jλk
)�
λf ,λi

(
Jλ′

k

)
λf ,λ

′
i

=
1

4k�q

∑
J

∑
J ′

(2J + 1)(2J ′ + 1)〈λ2λX|TJ |λ1λk〉�

×〈λ2λX|TJ ′ |λ1λ
′
k〉DJ

λi,λf
(−φp,−θp, φp)DJ ′

λ′
i
,λf

(−φp,−θp, φp)
� (13.63)

Here

λf = λ2 − λX ; λi = λ1 − λk ; λ′
i = λ1 − λ′

k (13.64)

This expression is required for values of λk and λ′
k of 0 and ±1. With the

aid of Eq. (13.62) and formulas in [Ed74], the angular functions appearing
in these bilinear combinations can be written as

DJ
λf ,λi

(φq, θq,−φq)
� DJ ′

λf ,λ
′
i
(φq, θq,−φq) = (13.65)

(−1)λf−λiDJ
−λf ,−λi

(φq, θq,−φq) DJ ′
λf ,λ

′
i
(φq, θq,−φq)

Now use the composition law for rotation matrices [Ed74] to rewrite the
r.h.s. of this expression as

r.h.s. = (−1)λf−λi
∑
lmm′

(2l + 1)

(
J J ′ l

−λf λf m

)
Dl

m,m′(φq, θq,−φq)
�

×
(

J J ′ l

−λi λ′
i m′

)
(13.66)
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Since m must vanish by the properties of the 3-j symbols, use

Dl
0,m′(φq, θq,−φq)

� =

(
4π

2l + 1

)1/2

Yl,m′(θq, φq) (13.67)

Since λi − λ′
i = λ′

k − λk , one finally has(
Jλk

)�
λf ,λi

(
Jλ′

k

)
λf ,λ

′
i

=
1

4k�q
(−1)λi−λf

∑
J

∑
J ′

(2J + 1)(2J ′ + 1)

×〈λ2λX|TJ |λ1λk〉�〈λ2λX|TJ ′ |λ1λ
′
k〉
∑
l

√
4π(2l + 1)

×
(

J J ′ l

λf −λf 0

)
Yl, λ′

k
−λk (θq, φq)

(
J J ′ l

λi −λ′
i λk − λ′

k

)
(13.68)

This formula gives the general angular dependence of the bilinear forms of
the current appearing in the cross section for an arbitrary set of helicities
of the reaction participants.7 As such, it can be used to calculate the
angular distributions in the C-M system for any polarization of the initial
and final systems. It is a central result.

If the target is unpolarized, and the final particles are unobserved, one
must average over initial helicities and sum over final helicities. We denote
these sums with a bar over the bilinear combinations of currents

J�J ≡
∑
λ1

∑
λ2

∑
λX

J�J (13.69)

The transition matrix elements are functions of (W, k2). Parity invariance
of the strong and electromagnetic interactions implies

〈−λ2 − λX|TJ(W, k2)| − λ1 − λk〉 =

η�2η
�
Xη1(−1)S2+SX−S1〈λ2λX|TJ(W, k2)|λ1λk〉 (13.70)

A change of dummy helicity sum values to their negatives, use of the
parity relation, and use of the symmetry properties of the 3-j symbols
allow us to write the bilinear products of current matrix elements required
in the electron scattering cross section in Eq. (13.47) in the following form8

|JC|2 =
1

4k�q

∑
l

AlPl(cos θq) (13.71)

7 This includes, for example, the process of “virtual Compton scattering,” now studied

extensively through the coincidence reaction p(e, e′p)γ.
8 The spherical harmonics are defined by Yl,m = (−1)m

[
(2l+1)(l−m)!

4π(l+m)!

]1/2
Pm
l (cos θ)eimφ for m ≥

0 while for m < 0 one has Y �
l,m = (−1)mYl,−m . Here Pm

l (cos θ) are the associated Legendre

polynomials [Ed74], which for positive m are given by Pm
l (x) = (1 − x2)m/2dmPl(x)/dxm.
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Fig. 13.4. In-plane angular distribution of protons in 12
6C(e, e′ p0)

11
5B through

the giant dipole resonance measured with the SCA at HEPL [Kl83]. Data from
[Ca80].

|J+1|2 + |J−1|2 =
1

4k�q

∑
l

BlPl(cos θq)

Im JC
�
(
J+1 + J−1

)
=

1

4k�q

∑
l

ClP
(1)
l (cos θq) sinφq

Re
(
J+1

)� (J−1
)

=
1

4k�q

∑
l

η DlP
(2)
l (cos θq) cos 2φq

These expressions provide the general angular distributions in the C-M
system for (e, e′ X) for any target particles and any X. The coefficients
(Al, Bl, Cl, Dl) are bilinear combinations of helicity amplitudes; they are
functions of (W, k2). They are developed in detail in appendix F. The
quantity η = η1η

�
2η

�
X is the real combination of intrinsic parities. These

expressions are further analyzed and tabulated in [Kl83].
The claim made in exhibiting the dependence on the out-of-plane angle

φq in Eqs. (13.48) has now been established.
To give the reader some feel for coincident electron scattering, we

present three brief examples. First, consider Fig. 13.4 which shows the
coincidence cross section for 12

6C(e, e′ p0)
11
5B [Ca80]. This is the first coin-

cidence experiment done with the superconducting accelerator (SCA) at
the Stanford High Energy Physics Laboratory (HEPL), a machine that
proved to be the prototype for CEBAF . The energy transfer is controlled
so that 12C is excited to the giant dipole resonance. The in-plane angular
distribution of the emitted proton leading to the ground state of 11B
is then measured with respect to the momentum transfer κ. This is an
example of the angular correlation measurement discussed above, where
the inelastic scattering of the electron first aligns the target along the
direction of the momentum transfer. Notice the very nice dipole pattern
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Fig. 13.5. Same reaction as in Fig. 13.4 with subsequent data from Mainz
[De86, Ca94]. Here κ = 0.25, 0.34, 0.41, 0.59 fm−1.
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Fig. 13.6. Nuclear response for the reaction 208
82Pb(e, e′ p)207

81Tl measured at
NIKHEF [de86].

of the subsequently emitted proton.9 The two theoretical curves in Fig.
13.4 are calculations carried out within the particle–hole model of the
giant dipole resonance in 12C [Kl83]. Now one may well say that the
four points do not determine an angular distribution, and it is hard to
disagree; however, Fig.13.5 shows the quality of the data one can now

9 The initial aligned 12C nucleus has Jπ = 1− (hence the phrase “dipole pattern”). The

final ground state of 11B is (3/2)− and the emitted proton conserves angular momentum.
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13 Coincidence experiments (e, e′ X) 93

Fig. 13.7. Triple coincidence signal from 2
1H(e, e′n) experiment done at Bates

[Ma92, Wa93].

obtain using the new generation of c.w. electron accelerators on the same
reaction — this data is from Mainz [De86, Ca94]. The dipole pattern is
now beautifully displayed.

As a second example, Fig.13.6 shows the nuclear response function for
the reaction 208

82Pb(e, e′ p)207
81Tl measured at NIKHEF [de86]. This example

illustrates the discussion of (e, e′ p) in chapter 6.10 One sees the ground
state (Ex = 0), and then several excited hole states of 207

81Tl. Consider first
the ground state. As κ − q is increased, the data exhibit the fall-off of the
Fourier transform of the (3s1/2)

−1
π wave function. The growth and fall-off

of the Fourier transform of the (2d3/2)
−1
π first excited state is then seen.

At somewhat larger Ex, the high-multipolarity transition to the (1h11/2)
−1
π

appears from nowhere until it dominates the spectrum at the highest κ −q.
Note that one requires good resolution at high momenta to resolve the
states.

This class of experiments represents one of the most important results
coming from NIKHEF. These data are even more impressive when one
realizes that they were obtained with only a few percent duty factor (d.f.)
— the new generation of c.w. accelerators provides a significant advance.
With this reaction, one can take the nucleus apart layer by layer and
probe the limits of the single-nucleon description of nuclei.

As a third example, Fig. 13.7 shows the timing signal from the polar-
ization transfer experiment 2

1H(e, e′n) carried out at Bates [Ma92]. This
experiment provides an excellent example of how one can use interference
in coincidence experiments to measure small quantities, in this case the
electric form factor of the neutron which interferes with the well-known

10 Here (εb,κ −q) ≡ (Em, Pm).
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magnetic form factor [Ar81]. This is really a triple coincidence experiment.
The electron is detected, then the produced neutron, then the up or down
scattering of the neutron to measure its polarization. The final signal is
the small peak in the middle of the figure; the background consists of ac-
cidentals. The experiment was performed with an accelerator with ∼ 1%
d.f.. Now imagine that the signal forms a sea mount and the background
an ocean. With a c.w. (100% d.f.) accelerator, one can lower the ocean
level by over two orders of magnitude, and the small peak sticking up
becomes a mountain. This is the most dramatic example, of which the
author is aware, of what one gains with a c.w. machine.
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