
TPLP 23 (5): 1094–1127, 2023. c© The Author(s), 2022. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068422000357 First published online 19 September 2022

1094

On Establishing Robust Consistency in Answer
Set Programs

ANDRE THEVAPALAN and GABRIELE KERN-ISBERNER
Technische Universität Dortmund, Dortmund, Germany

(e-mails: andre.thevapalan@tu-dortmund.de, gabriele.kern-isberner@cs.uni-dortmund.de)

submitted 27 July 2021; revised 13 June 2022; accepted 20 August 2022

Abstract

Answer set programs used in real-world applications often require that the program is usable
with different input data. This, however, can often lead to contradictory statements and conse-
quently to an inconsistent program. Causes for potential contradictions in a program are con-
flicting rules. In this paper, we show how to ensure that a program P remains non-contradictory
given any allowed set of such input data. For that, we introduce the notion of conflict-resolving
λ-extensions. A conflict-resolving λ-extension for a conflicting rule r is a set λ of (default) lit-
erals such that extending the body of r by λ resolves all conflicts of r at once. We investigate
the properties that suitable λ-extensions should possess and building on that, we develop a
strategy to compute all such conflict-resolving λ-extensions for each conflicting rule in P. We
show that by implementing a conflict resolution process that successively resolves conflicts using
λ-extensions eventually yields a program that remains non-contradictory given any allowed set
of input data.

KEYWORDS: logic programming, answer set programming, consistency, contradictions, con-
flicts, interactions

1 Introduction

1.1 Motivation and context

Answer set programs can be used to implement real-world applications like decision sup-

port systems that aid knowledge experts whenever crucial decisions based on different

rules and conditions have to be made. However, the knowledge bases of such appli-

cations are not static but rather very dynamic in the sense that they are adapted to

each individual case and can also be prone to various updates. Especially in domains

like the medical sector, knowledge bases are expected to yield suitable decisions for

each patient where patients can show diverse symptoms (implemented by facts), and

the knowledge base is to be updated very often, for example, every month. In addition,

physicians are usually faced with some degree of uncertainty and for example have to rely

on own experience when they have to reach important decisions (e.g. regarding the treat-

ment of patients) (Ghosh 2004). Imagine a system that outputs the possible treatment

plans for a given patient based on a corresponding medical ruleset. For each patient,

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068422000357
https://orcid.org/0000-0001-5679-6931
mailto:andre.thevapalan@tu-dortmund.de
mailto:gabriele.kern-isberner@cs.uni-dortmund.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000357&domain=pdf
https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1095

the application has to combine the general knowledge about possible treatment plans

(problem encoding) with the data regarding the patient (problem instance) (Gebser et al .

2012). Furthermore, the knowledge base containing the encoding can grow over time, not

only adding new knowledge but also revising or removing deprecated knowledge. Ad-

ditionally, decision-making processes in this sector do not only consist of, for example,

finding the right therapy for each patient, it is also important to assure that unfitting

solutions are also reflected as such (e.g. what therapies must not be recommended to a

patient). This emphasizes how the usage of an answer set program with both default and

strong negation constitutes a highly valuable asset in assisting medical experts.

However, at any point where such an application is used, it has to be ensured that the

respective knowledge base remains consistent when merged with the patient data. For a

knowledge base that is frequently updated and that also has to be used with different

instance data, maintaining consistency can become a quite cumbersome task as it requires

not only a complete understanding of the whole problem encoding but also technical

knowledge regarding logic programming. In previous approaches regarding the update of

answer set programs (Eiter et al . 2002; Alferes et al . 1998), every update required an

automated adaptation of the updated program in order to prevent conflicts. Using these

methods for a medical support system would mean that the changes that are made in

the new program are not managed and approved by the knowledge expert. Naturally,

these inconveniences can deter knowledge experts from using answer set programs for

the implementation even though answer set programming itself is well suited for highly

complex decision-making problems.

It is for this reason that we propose a general framework that allows the mainte-

nance of a logic program by involving the expertise of knowledge experts more directly.

Such maintenance tasks would include the detection of possible conflicting statements

between the problem encoding and any possible instance data and the resolution of such

conflicts. Note that the consistency of an answer set program crucially depends on its

facts, in particular, its input data. Conflicts between rules may become apparent only

if specific input data is provided, resulting in an unexpected failure in a specific (rare)

case of an otherwise helpful and approved program. Our approach aims at anticipating

such conflicts, ensuring that a program yields professionally adequate solutions for any

(future) case. The resolution of such conflicts should be overseen by the knowledge ex-

pert and executed in an interactive fashion. To facilitate the conflict resolution, possible

solutions for each conflict should be generated and presented to the expert on demand.

They can then choose a most suitable solution. In this way it is guaranteed that ev-

ery modification that is applied to the knowledge base is valid in a professional sense.

Such an interactive exchange between the system and the expert during the resolution

process can therefore eliminate the need for a deeper technical understanding of logic

programming, giving the knowledge expert full control over the maintenance operations,

guaranteeing that no changes are done blindly. Especially in fields like the medical sec-

tor, full expert control over the knowledge base is crucial as small mistakes can have

serious consequences. The gap between a professional and a technical expert can be

significant and make the automatic resolution of conflicts by suitable modifications of

the program impossible. So, extensive communications between the two experts would

be needed. The proposed framework constitutes a first step towards closing this gap as

the conflict resolution process can be fully executed by the professional expert directly

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1096 A. Thevapalan and G. Kern-Isberner

because all proposed modifications will be technically viable solutions of the conflict, and

the expert can then choose from them according to professional standards. Being able to

establish the consistency of the problem encoding for every possible instance data with-

out actually requiring the explicit instance has the effect that, in practice, the program

does not have to be validated for each instance, which makes it much more robust and

reliable.

1.2 Main contributions

In order to facilitate the integration of answer set programming in real-world applications,

in this paper, we show how to ensure that the problem encoding in a logic program

remains consistent given any (allowed) set of consistent instance data. Inspired by Eiter

et al . (2002) and Alferes et al . (1998, 2000) and their work on logic program updates,

we develop a strategy to extend rules of a logic program such that the derivation of

contradictory statements is no longer possible in any admissible case. The presented

approach expands previous approaches in two major ways:

(1) Programs that are modified following our approach remain consistent for any given

input data that do not contain atoms that appear in head literals of the program. For

that, we extend the notion of literals and investigate the relationship between the different

negated versions of a literal. This enables us to define the characteristics of conflicting

and non-conficting rules, and in particular to determine how the body of a rule ri that is

in conflict with several rules rj can be extended such that the modified rule r′i is no longer

conflicting with any rule rj while the extension comprises only informative literals. By

informative, we mean that these extensions should only be composed of literals whose

atoms appear in the body of the rules involved in the conflict. For that reason, we also

adapt the notion of hitting sets for (default) literals in logic program rules. As a result,

the meaningfulness of the problem encoding is validated beforehand, eliminating the need

for testing the encoding against all possible instances or other precautionary measures

for each instance.

(2) Instead of using a technical device to prioritize one statement over another in case of

a conflict like causal rejection (Eiter et al. 2002), we show how all informative extensions

for a conflicting rule can be computed. As a consequence, a knowledge expert could then

be included into the resolution process and choose the suggested rule modification that is

most suitable such that the resulting modified program remains professionally adequate.

Using informative extensions also maintains the readability of the rules in a program

which in turn can simplify subsequent update operations.

(3) The final goal is the construction of a framework for the interactive maintenance

of large ASP knowledge bases which can be used by knowledge experts without the need

for technical knowledge and where each modification can be overseen by the expert. The

approach presented in this paper is a basic building block for such a framework as the

computation of all possible informative extensions can be used to resolve each conflict

in cooperation with the knowledge expert which in turn guarantees that the resulting

knowledge base still contains professionally adequate knowledge. We will also show that

the approach follows a pragmatic paradigm which allows various extensions in order to

facilitate the conflict resolution process for the expert.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1097

1.3 Structure of the paper

The paper is organized as follows: We begin by providing the necessary preliminar-

ies about extended logic programs in Section 2. In Section 3, we present our conflict

resolution approach. We start in Section 3.1 by introducing the notion of uniformly non-

contradictory program cores and examine the properties of conflicts and non-conflicting

rules in Section 3.2 before we connect these results in Section 3.3 by defining the proper-

ties of a conflict resolution step. After describing a näıve conflict resolution approach in

Section 3.4 by using semi-normal completions (Caminada 2006), we present in Section 3.5

our strategy to compute all appropriate rule modifications of conflicting rules in order to

obtain a uniformly non-contradictory program core. In Section 4, we present additional

ways to use and extend the conflict resolution approach for the usage in real-world ap-

plications. Sections 4.1 and 4.2 show how the presented method can be used to resolve

many-to-many conflicts and how inconsistency that can be caused by a specific type of

constraints can be prevented. Sections 4.3 and 4.4 outline ways to enhance the handling

of λ-extensions in order to facilitate their usage in applications. The paper concludes

with a summary and a discussion regarding future work.

2 Preliminaries

2.1 Extended Logic Programs

In this paper, we look at non-disjunctive extended logic programs (ELPs) (Gelfond and

Lifschitz 1991). An ELP is a finite set of rules over a set A of propositional atoms. First,

we discuss the different forms of negation in ELPs and introduce notations. A classical

literal L is either an atom A (positive literal) or a negated atom ¬A (negative literal).

For a literal L, the strongly complementary literal L is ¬A if L = A and A otherwise.

For a set S of classical literals, S = {L | L ∈ S} is the set of corresponding strongly

complementary literals. Then, LitA denotes the set A ∪ A of all classical literals over

A. A default-negated literal L, called default literal, is written as ∼L. In logic programs,

∼ will be used as a prefix solely for classical literals, symbolyzing the default negation

which is usually denoted by the prefix not (Gelfond and Lifschitz 1991). Outside of logic

programs, we will use ∼ as a unary junctor in order to describe the default complement

of a (default) literal (∼)L, that is, the default complement of L is ∼L and the default

complement of ∼L is ∼∼L = L. This reflects the binary characteristic of the default

negation which is illustrated in Figure 1. For a set S of classical literals, we define ∼

accordingly, that is, ∼S = {∼L | L ∈ S}. Given a set S of (classical) literals, we say

a (classical) literal L is true in S (symbolically S � L) iff L ∈ S and ∼L is true in S

(symbolically S � ∼L) iff L /∈ S. By an extended literal L∗, we either mean a (classical)

literal L or a default-negated literal ∼L. The set of all extended literals over a set of

atoms A will be denoted by Lit∗A, that is, Lit∗A = LitA ∪∼LitA. A set X of extended

literals is true in S (symbolically S � X) iff every extended literal L∗ ∈ X is true in S.

With atom(L∗), we will associate the atom on which the extended literal L∗ is based

on. The underlying atoms of a set X of extended literals is given by the set of atoms

Atom(X) = {atom(L∗) | L∗ ∈ X}. Two extended literals L∗,K∗ are atom-related if

atom(L∗) = atom(K∗).

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1098 A. Thevapalan and G. Kern-Isberner

true undec false

false true

true false

false undec true

A

∼A

∼A

A

Fig. 1. Visualization of truth values of an atom A w.r.t. a set of literals S.

atom-related
L∗ �= K∗

complementary

strongly
complementary

L, L

default-
complementary

L,∼L

compatible

reconcilable
∼L,∼L

dual
L,∼L

Fig. 2. Possible reationships between two atom-related literals.

The following definition introduces handy terms to describe the relationships between

literals.

Definition 1

Given a classical literal L, we say that

• L and ∼L are default complementary,

• L and ∼L are dual, and

• ∼L and ∼L are reconcilable.

Given two atom-related literals L∗,K∗ with L∗ �= K∗, we will say L∗ and K∗ are

• complementary if L∗, K∗ are strongly or default complementary, and

• compatible if L∗, K∗ are reconcilable or dual.

A set of classical literals is inconsistent if it contains strongly complementary literals.

A set of extended literals is inconsistent if it contains complementary literals.

Figure 2 visualizes the different relationships that two atom-related literals L∗,K∗ can

have. The different negation types and the particular significance of reconcilable literals

will be discussed in Section 3.3.

We are now ready to specify the form of ELPs.

A rule r is of the form

L0←L1, . . . , Lm,∼Lm+1, . . . ,∼Ln., (1)

with classical literals L0, . . . , Ln and 0 ≤ m ≤ n. The literal L0 is the head of r, denoted

by H(r), and {L1, . . . Lm,∼Lm+1, . . .∼Ln} is the body of r, denoted by B(r). Further-

more, {L1, . . . , Lm} is denoted by B+(r) and {Lm+1, . . . , Ln} by B−(r). Given a set of

rules R ⊆ P, we will denote the set of all extended literals occurring in the rule bodies of

R by B∗(R), that is, B∗(R) = ⋃
r∈R B(r). A rule r with B(r) = ∅ is called a fact, and r

is called a constraint if it has an empty head. For a fact L., we will call the corresponding

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1099

literal L a fact literal. A set F of facts is consistent if the set of fact literals in F is

consistent. A rule r will be called a complex rule if r is neither a fact nor a constraint.

An extended logic program (ELP) is a set of rules of the form (1).

The program P+ will denote the reduction of P to a normal program (a logic program

without classically negated literals) that is obtained by replacing every classically negated

literal A in P by a new corresponding atom A′ (Gelfond and Lifschitz 1991).

A rule r is applicable iff there is a consistent set S of classical literals such that S � B(r).

For the rest of this paper, we will assume that every rule in a given logic program is

applicable. Given a set S of classical literals, a (complex) rule r is true in S (symbolically

S � r) iff H(r) is true in S whenever B(r) is true in S. In case r is a constraint, r is true

in S iff S �� B(r). Whenever a rule r is true in S we also say that S satisfies r. A rule

body B(r) will be called satisfiable if there exists a consistent set S of classical literals

such that S � B(r). Correspondingly, given a set of rules R = {r1, . . . , rn}, the bodies of
all rules in R are simultaneously satisfiable whenever there is a set S of classical literals

such that S � B(r) for every rule r ∈ R. Given an ELP P without default negation, the

answer set of P is either (a) the smallest set S ⊆ LitA such that S is consistent and S � r

for every rule r ∈ P, or (b) the set LitA of classical literals. Note that similar to Horn

logic programs, each such ELP has exactly one minimal model which might, however, be

inconsistent.

In general, an answer set of an ELP P is determined by its reduct. The reduct PS of

a program P relative to a set S of classical literals is defined by

PS = {H(r)←B+(r). | r ∈ P, B−(r) ∩ S = ∅}. (2)

A set S of classical literals is an answer set of P if it is the answer set of PS (Gelfond and

Lifschitz 1991). The set of all answer sets of a program P will be denoted by AS(P). Note

that since every inconsistent set of literals that satisfies all rules in P will be replaced

by LitA, every reduct of P is formed relative to either a consistent set S or LitA. As a
consequence, AS(P) can either consist of only consistent sets of literals, only LitA, or
no sets at all. We say a classical literal L is derivable in P iff L ∈ ⋃

AS(P). For a set

T of classical literals, we say all literals in T are simultaneously derivable iff there exists

an answer set S ∈ AS(P) such that T ⊆ S. Atoms that occur in the rule bodies of P
but not in any rule head will be called external atoms and the set of external atoms will

be denoted by EP . Atoms that occur in P that are not external will be called internal

atoms. As stated in van Gelder et al . (1991), deductive databases are commonly viewed

as logic programs as they consist of an external database, which is a set of facts, and

the internal database, which is a set of rules. In software applications, often the same

program is used with different input data. This can also be applied to extended logic

programs. Similar to the division inside databases and the distinction between problem

instance and encoding as mentioned before, we partition an ELP P into a set PF of facts

which we will call input, and a set PC of rules which will be called program core. We

define that any valid input PF for PC is a consistent set of facts over LitEP and that PC
can only comprise complex rules. The set of all valid inputs PF for a program core PC
will be denoted by I(PC). By Π(PC) = {PC ∪PF | PF ∈ I(PC)}, we denote the set of all

programs PC extended by a valid input PF for PC .
In Section 3.1, we will explain why it is necessary to restrict PF to literals in LitEP .

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1100 A. Thevapalan and G. Kern-Isberner

As mentioned above, default negation puts a classical literal L into a binary state w.r.t.

a set S of classical literals. Either L is true in S while ∼L is false in S or vice versa. With

regard to strong negation however, this is not the case. In Figure 1, this distinction is

illustrated by the gap between true and false on the level of A and A. Under three-valued

semantics (Przymusinski 1991), this additional state is referred to as undefined. Atoms

A and A are undefined in S if neither A nor A are derivable in S. Under answer set

semantics, this undefinedness is covered by default literals, that is, both ∼A and ∼A are

simultaneously true whenever neither A nor A is derivable. It is for this reason that we

introduced the notion of reconcilable literals. Even though for two reconcilable literals

∼A,∼A, the atoms A,A “inside” the literals are strongly complementary, the default

negation allows that both literals are true simultaneously in S, that is, S � {∼A,∼A}
whenever A,A /∈ S.

2.2 Consistency

In Gelfond and Lifschitz (1991), an answer set program P over A is inconsistent if P has

no answer sets or its only answer set is LitA.
We will specify inconsistency in more detail by using the results in Schulz et al . (2015)

where the authors define four different cases how and why an ELP can be inconsistent.

There, in the first three cases 1, 2 and 3a, the inconsistency is essentially caused by

classically complementary literals in the program, that is, by their simultaneous deriva-

tion. In the fourth case 3b, a so called negative dependency path exists that leads to the

derivation of default-complementary literals. From a semantic viewpoint, in case 1 and 2,

P has no well-founded models. In case 3a, P has a well-founded model, and the normal

program P+ of P has one or more answer sets. In case 3b, P has a well-founded model

but P+ has no answer sets. We will say that an inconsistent ELP P is contradictory if the

inconsistency is caused by classically complementary literals (case 1, 2 or 3a). Otherwise,

P will be called incoherent (case 3b).1 In this work, we will only consider contradictory

programs. The handling of incoherent programs is examined in Thevapalan et al . (2021)

as well as in Costantini (2006).

The presented method will guarantee that a modified ELP P is not contradictory

with any valid input PF . For this reason, we introduce the notion of uniformly non-

contradictory program cores.

Definition 2 (Uniformly Non-Contradictory Program Core)

A program core PC of an ELP P over A is uniformly non-contradictory if for every valid

input PF for PC , PC ∪ PF is not contradictory.

Corollary 1

Given a uniformly non-contradictory program core PC over A, for every P ∈ Π(PC) the
following holds: either S �= LitA for every S ∈ AS(P), or P is incoherent.

Naturally, given a program core PC , every program P ∈ Π(PC) is uniformly non-

contradictory whenever PC is.

1 Note that the inconsistency type is not solely determined by the answer set semantics of P but also by
using well-founded semantics and the normal program of P. For more information on the inconsistency
types, we refer the reader to Schulz et al . (2015), Inoue (1993).

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1101

As stated in Gelfond and Lifschitz (1991) and implied by Corollary 1, non-contradictory

program cores do not guarantee consistent programs since an ELP that is free of con-

tradictions could potentially still be incoherent. Detecting incoherence and establishing

coherence in an ELP, though, is a separate task (see Schulz et al . 2015; Schulz 2017) and

outside of the scope of this paper. We, therefore, assume that in the following, any given

ELP is coherent if not stated otherwise.

3 Contradictions

The aim of this paper is to present a method that analyzes program cores and computes

possible modifications such that the modified program core becomes uniformly non-

contradictory. The presented method will, therefore, ensure that given a program core

PC , there is no contradictory ELP P ∈ Π(PC). To that end, we first identify what may

cause contradictions. We will then show how to find the causes (conflict detection) and

remove them (conflict resolution). In this section, we will assume that any given program

core PC does not contain constraints. The influence of constraints with respect to the

consistency of the program will be examined in Section 4.2.

3.1 Conflicts

To find rules that could potentially lead to contradictions, one has to look at rules with

strongly complementary head literals. We will call two rules with strongly complementary

head literals conflicting if both rule bodies are simultaneously satisfiable by a consistent

set of classical literals.

Definition 3 (Conflicting Rules, Conflict Thevapalan and Kern-Isberner 2020)

Suppose an ELP P. Two rules r, r′ ∈ PC , r �= r′, are conflicting (written as r �� r′) if

H(r) and H(r′) are strongly complementary and there exists a consistent set of classical

literals S ⊆ LitA such that B(r) and B(r′) are true in S. A conflict is a pair (r, r′) of

rules such that r, r′ are conflicting. We will denote the set of all conflicts (r, r′) in an

ELP P by Conflicts(P), and correspondingly the set of all conflicts (r, r′) involving a

rule r will be denoted by conflicts(r). Furthermore, we will refer to the set of rules r′ ∈ P
that are conflicting with r in P as adversarial rules of r, denoted by Adv(r), that is,

Adv(r) = {r′ | r �� r′, r′ ∈ P}. We will call two rules r, r′ non-conflicting (symbolically

r ��� r′) iff r �� r′ does not hold.

Remark 1: (a) If r, r′ ⊆ PC are conflicting rules, then there exists a consistent set S

of classical literals such that S � B(r), B(r′). Consequently, there is a set of facts F
(obtained from S in a straighforward way) such that PC ∪ F is contradictory. (b) The

identification of two rules as conflicting is done independently of the rest of the program

core and especially independently of any set F of currently given facts.

Proposition 1

Given an ELP P over A, its program core PC is uniformly non-contradictory if PC does

not contain any conflicts.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1102 A. Thevapalan and G. Kern-Isberner

Table 1. Relationship between two rules r, r′ with complementary head literals w.r.t. a

literal L = A

L ∈ B+(r) L ∈ B+(r) L ∈ B−(r) L ∈ B−(r)

L ∈ B+(r′) r �� r′ (possibly) r ��� r′ r ��� r′ r �� r′ (possibly)
L ∈ B+(r′) r ��� r′ r �� r′ (possibly) r �� r′ (possibly) r ��� r′
L ∈ B−(r′) r ��� r′ r �� r′ (possibly) r �� r′ (possibly) r �� r′ (possibly)
L ∈ B−(r′) r �� r′ (possibly) r ��� r′ r �� r′ (possibly) r �� r′ (possibly)

Proof

Assume an ELP P whose core PC is not uniformly non-contradictory. Then, by Defini-

tion 2, there exists a valid input PF such that P = PC∪PF is contradictory. This implies

that there exist two complementary literals L,L that are simultaneously derivable in P.
L,L are only simultaneously derivable if either (a) {L., L.} ⊆ PF , or (b) L. ∈ PF and

there exists a rule r ∈ PC with H(r) = L such that B(r) is satisfied in P, or (c) there

exist two rules r, r′ ∈ PC with H(r) = L,H(r′) = L such that B(r), B(r′) are satisfied

in P. Regarding (a): PF cannot contain fact literals L,L because PF has to be consistent

by definition. Regarding (b): PF does only contain facts over external atoms. Since, by

definition, external atoms do not occur in rule heads of PC , L. cannot be in PF whenever

there is a rule in PC with head literal L. Therefore, the only way how L,L could be

derived simultaneously is if (c) holds, that is, if there exist two rules r, r′ in PC with

complementary rule heads that are satisfiable in P. Consequently, if PC is not uniformly

non-contradictory, then PC contains at least one conflict.

In nonmonotonic logics, the possible occurence of contradictions is often dealt with

by restricting the syntax of knowledge representation languages. As mentioned before,

restricting the set of possible facts in PF to facts over external atoms of the respective

program core limits the expressibility in programs. But this limitation assures that con-

tradictions via a rule in PC and a fact in PF cannot arise even if PC is conflict-free since

those kinds of contradictions are not caused by conflicts between complex rules in PC .
Therefore, in the following, PF will only consist of fact literals over EP .

3.2 Conflict detection

We will now analyze the properties of (non-)conflicting rules. For two rules with com-

plementary heads to be conflicting, both their bodies have to be satisfiable by at least

one consistent set of literals. Table 1 shows the different combinations in which an atom

A ∈ A can appear as a classical literal L in an ELP P over A in the bodies of two rules

r, r′ with complementary rule heads. For each case, the table states whether both rule

bodies can hold simultaneously and consequently, whether L makes the two rules explic-

itly non-conflicting, or a conflict might be possible. It is easy to see that r, r′ are non-

conflicting whenever the corresponding extended literals in B(r), B(r′) that are based

on A are strongly or default complementary. These observations lead to the following

conclusion:

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1103

Theorem 1

Let P be a program with rules r, r′ ∈ PC . Two rules r, r′ are conflicting if and only if

(CP1) H(r), H(r′) are strongly complementary, and

(CP2) B+(r1) ∩B−(r2) = ∅ such that r1, r2 ∈ {r, r′}, r1 �= r2, and

(CP3) B+(r) ∪B+(r′) is consistent.

Proof

Suppose an ELP P over A, and rules r, r′ in PC that satisfy (CP1), (CP2), and (CP3).

For rules r, r′ to be conflicting according to Definition 3, their head literals have to be

strongly complementary, that is, L = H(r) and L = H(r′). This is satisfied via (CP1).

Definition 3 also requires that for r, r′ to be conflicting, there has to exist a consistent

set S ⊆ LitA of classical literals for which the bodies B(r), B(r′) are true. We show that

S = B+(r) ∪B+(r′) is such a set. By (CP3), S is consistent. In order for S to satisfy

both rule bodies B(r), B(r′) simultaneously, S has to have the following properties by

definition: (a) S ∩ (B−(r) ∪ B−(r′)) = ∅ and (b) B+(r) ∪ B+(r′) ⊆ S. (b) is trivially

fulfilled. Regarding (a), we determine

S ∩ (B−(r) ∪B−(r′)) = (B+(r) ∪B+(r′)) ∩ (B−(r) ∪B−(r′))

= (B+(r) ∩B−(r)) ∪ (B+(r) ∩B−(r′))

∪ (B+(r′) ∩B−(r)) ∪ (B+(r′) ∩B−(r′)). (3)

Due to our assumption (see Remark 1), the first and the last intersection in (3) are

empty, and due to (CP2), also the middle ones in (3) are empty. Altogether, we have

S ∩ (B−(r) ∪B−(r′)) = ∅ which yields (a). So, (r, r′) is a conflict in P.
Conversely, let P be an ELP with conflicting rules r, r′ ∈ PC . (CP1) holds, since by

definition, the head literals of r and r′ are strongly complementary. Furthermore, there

exists a consistent set S of classical literals such that B(r) and B(r′) are true in S. Since

S cannot satisfy two classical literals L and ∼L simultaneously, (CP2) holds. As S is

consistent, its subset B+(r) ∪B+(r′) is also consistent. Therefore, (CP3) holds.

Given (CP2) and (CP3) in Theorem 1 and Table 1, we can see that r, r′ are not

conflicting whenever B(r) contains a literal L such that B(r′) contains a literal that is

either strongly or default-complementary to L.

Definition 4 (Conflict-Preventing Literals)

Given an ELP P and two rules r, r′ ∈ PC with complementary heads, two extended

literals L∗ ∈ B(r), K∗ ∈ B(r′) are conflict-preventing if L∗ and K∗ are atom-related and

complementary.

This leads us to the following observation:

Proposition 2

Let P be an ELP with two rules r, r′ ∈ P with complementary heads. The rules r, r′

are non-conflicting iff there exist two extended literals L∗ ∈ B(r),K∗ ∈ B(r) such that

L∗, K∗ are conflict-preventing.

Proof

Two conflict-preventing literals L∗ ∈ B(r), K∗ ∈ B(r′) are either (a) default-

complementary or (b) strongly complementary. In case of (a), the rules r, r′ will not satisfy

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1104 A. Thevapalan and G. Kern-Isberner

(CP2) in Definition 3, and in case of (b), (CP3) is not met. On the other hand, if two rules

r, r′ with complementary head literals are non-conflicting, then by Definition 3 either con-

dition (CP2) or (CP3) or both are not met. As shown before, (CP2) (resp. (CP3)) can

only be not satisfied by r, r′ if their bodies contain default-complementary (resp. strongly

complementary) literals L∗,K∗. In both cases, L∗,K∗ are conflict-preventing literals.

Example 1

Consider the ELP P1:

r1: x← a,∼b.

r2: x← b,∼c.

r3: x← a,∼b.

r4: x← a, b.

r5: x← c, d.

P1 has two conflicts: (r1, r4) and (r1, r5). The rules r1, r2 violate (CP2) and have the

conflict-preventing literals b,∼b. The rules r1, r3 violate (CP3) and have the conflict-

preventing literals a, a.

3.3 Conflict resolution

Next, we will show how to resolve conflicts in an ELP P. To resolve all conflicts in P, one
or both rules of each conflict in Conflicts(P) have to be modified such that PC becomes

uniformly non-contradictory. We will call the modification of P to P ′ a conflict resolution

step whenever at least one conflict is resolved and a sequence of conflict resolution steps

〈P(1),P(2), . . . ,P(n)〉 will be called conflict resolution process. We present an approach

to compute possible solutions to resolve a conflict in P such that the following properties

hold:

(P1) The conflict resolution process is successful. By that, we mean that a conflict res-

olution process where in each step a computed resolution option is applied will

eventually lead to a non-contradictory program core, that is, a finite sequence of

conflict resolution steps 〈P(1), . . . ,P(n)〉 such that Conflicts(P(n)) = ∅.
(P2) Each conflict resolution step is minimally invasive as it only consists of extend-

ing the body of a conflicting rule. This means, for every rule r ∈ PC with

conflicts(r) �= ∅, the corresponding modified rule r′ ∈ P ′
C satisfies that H(r′) =

H(r) and B(r′) ⊇ B(r), and for every other rule r, it holds that r′ = r.

(P3) Each rule that is modified during the resolution process remains applicable.

Given an ELP P over a set of atoms A and a rule ri ∈ PC with a non-empty set

conflicts(ri), we want to modify ri to a rule r′i such that every conflict in conflicts(ri)

is resolved, that is, conflicts(r′i) = ∅. For that, our approach analyzes how the extended

literals Lit∗A of P jointly appear in the rules of Adv(ri), and computes conflict-resolving

extensions for ri.

Definition 5

Given an ELP P over A and a rule ri ∈ P, a λ-extension λ(ri) for ri is a set of extended

literals L∗ ∈ LitEP such that Atom(λ(ri)) ∩ Atom(B(ri)) = ∅. A rule r′i of the form

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1105

r′i: H(ri)←B(ri), λ(ri). (4)

will be called a λ-extended rule w.r.t. λ(ri).

To resolve all conflicts (ri, rj) ∈ conflicts(ri) of a rule ri ∈ P, we want to gather those

λ-extensions λ(ri) for ri such that the λ-extended rule r′i w.r.t. λ(ri) and each rj are not

conflicting, that is, conflicts(r′i) = ∅.
Definition 6

Given an ELP P over A and a rule ri ∈ P with Adv(ri) �= ∅, a λ-extension λ(ri) for ri
is conflict-resolving iff Adv(r′i) = ∅ where r′i is the λ-extended rule w.r.t. λ(ri). We say a

conflict-resolving λ-extension for ri resolves all conflicts in conflicts(ri) simultaneously.

Hence, in order to obtain a uniformly non-contradictory program core PC , we resolve

all conflicts in PC by extending the bodies of particular conflicting rules by a respective

conflict-resolving λ-extension.

We can show that extending a rule in P by a λ-extension does not lead to additional

conflicts.

Proposition 3

Let Pτ = P\{ri} be the set of all rules in P other than ri. Let furthermore r′i be the

λ-extended rule w.r.t. a λ-extension λ(ri) and P ′ = Pτ ∪ {r′i} the program where ri is

replaced by r′i. Then, Conflicts(P ′) ⊆ Conflicts(P).

Proof

Suppose a rule rj ∈ P such that r′i �� rj holds. Then by Proposition 2, B(rj) and B(r′i)
do not contain conflict-preventing literals. Since B(ri) ⊆ B(r′i), this implies that B(rj)

and B(ri) do not contain conflict-preventing literals either and, therefore, rj �� ri holds.

Consequently, if a λ-extended rule r′i w.r.t. a λ-extension λ(ri) is in conflict with another

rule rj ∈ P, then ri and rj are already conflicting.

Note that Proposition 3 holds for general λ-extensions and not exclusively for conflict-

resolving ones.

Extending B(ri) with a subset-minimal λ-extension λ(ri), therefore, constitutes a cau-

tious change in P. As a consequence, a uniformly non-contradictory program core PC is

obtained by applying changes to PC that are justified in the technical and logical sense.

3.4 A Näıve approach: Semi-normal completion

Preventing the derivation of contradictions is a well-known problem. In default logic for

example, normal default theories in Reiter (1980) provide a solution to this problem by

restricting the form of defaults. In normal default theory, every default has to be of the

form α:β
β , meaning that β can only be concluded if α is explicitly true and β can be

assumed to be true. This guarantees that the default theory has at least one extension.

This idea was adapted for rules of logic programs by Caminada in Caminada (2006),

Caminada and Sakama (2006). In Caminada (2006), semi-normal defeasible rules are

introduced. These rules have the following form:

r: L0←L1, . . . , Lm,∼Lm+1, . . . ,∼Ln,∼L0. (5)

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1106 A. Thevapalan and G. Kern-Isberner

Obviously, if a program core PC only consists of semi-normal defeasible rules, PC is also

uniformly non-contradictory. The transformation of a program core PC to a uniformly

non-contradictory core SN(PC) using semi-normal defeasible rules can, therefore, be

defined in a straightforward way. The semi-normal completion SN(PC) of PC arises from

the extension of the body of each rule r ∈ PC by the literal that is dual to the head literal

of r.

Definition 7

Given a rule r: L←B(r)., the semi-normal completion sn(r) of r is a rule of the following

form:

sn(r): L←B(r),∼L.

Definition 8

Given a program core PC , the semi-normal completion SN(PC) of PC is the program

core SN(PC) = {sn(r) | r ∈ PC}.
In case there is a conflict in the initial program core PC , this conflict is prevented by

the additional literals in the rule bodies of the conflicting rules which are dual to the

respective head literal.

It is easy to see that when using a semi-normal completed program core PC over A,
the restriction that a valid input PF for PC can only consist of literals over EP becomes

void. Instead, it would allow the input PF for PC to be over A. However, this type of

automated conflict-prevention does not explicitly resolve the underlying problems, that

is, the actual contradictions that are modelled by the rules of the initial PC .

Example 2

Consider the following program core:

SN(PC,2): r1: allergicToPeanuts←∼allergicEvent .

r2: allergicToPeanuts← testedPositivePA.

r3: canEatPeanuts← allergicToPeanuts.

PC,2 states that if someone never had an allergic event, they are not allergic to peanuts.

If someone is tested positive for a peanut allergy, they are indeed allergic to it. If someone

is explicitly not allergic to peanuts, they are allowed to eat peanuts. The semi-normal

completion of P2,C yields:

SN(PC,2): sn(r1): allergicToPeanuts←∼allergicEvent ,∼allergicToPeanuts .

sn(r2): allergicToPeanuts← testedPositivePA,∼allergicToPeanuts .

sn(r3): canEatPeanuts← allergicToPeanuts,∼canEatPeanuts .

Assume the input PF = {testedPositivePA.} for SN(PC,2). For PF ∪ SN(PC,2), we get

the answer sets

S1 = {testedPositivePA, allergicToPeanuts}, and
S2 = {testedPositivePA, allergicToPeanuts , canEatPeanuts}.

Clearly, S2 shows that PC,2 contains wrong information or lacks crucial information. For

example, in this case, r1 only looks at allergic events without considering the possibility

that one never consumed a peanut and therefore never had a reaction to begin with.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1107

Semi-normal completions of conflicting rules rather “bypass” potential contradictions

as the complementary statements are just considered separately instead of at the same

time, which, of course, leads to contradictions. This, in turn, means that given a program

core PC with conflicting rules, solving programs P ∈ Π(SN(PC)) with the semi-normal

completed program core will in fact yield answer sets that are not adequate in the pro-

fessional sense as at least one of the answer sets will represent unintended conclusions as

we have seen in Example 2. From a functional perspective, such an effect is not desirable

whatsoever. Semi-normal completions can, therefore, be in fact regarded as quickfixes in

order to assure consistent answer sets regardless of what the resulting answer sets ac-

tually represent. Example 2 illustrates that semi-normal program cores do not suffice if

one wants to establish a knowledge base that represents adequate information and their

relations in the professional sense. To incrementally repair the knowledge base, one has

to analyze conflicting rules and explicitly add, remove, or modify rules in order to get

rid of all conflicts.

3.5 Conflict resolution with informative extensions

In the following, we present an approach to obtain uniformly non-contradictory program

cores by computing conflict-resolving λ-extensions for rules ri. Since λ-extensions only

comprise literals whose atoms occur in the bodies of the adversaries rj ∈ Adv(ri) and that

do not contain literals that are atom-related to H(ri), the extensions are informative in

the sense that they utilize the body literals of the rules that are involved in the conflicts

of ri without introducing new atoms or using the head literal. Semi-normal completions

are, in comparison, a purely technical device to prevent contradictions and thus not

informative.

According to Theorem 1, for every rule rj ∈ Adv(ri), λ(ri) has to contain at least

one conflict-preventing literal, that is, an extended literal L∗ such that there exists an

extended literal K∗ ∈ B(rj) and L∗,K∗ are complementary. This means that a conflict-

resolving λ-extension for ri can be obtained by finding a set β of literals that contains

at least one body literal of each rule rj ∈ Adv(ri) and that does not contain any literals

that occur in the body of ri. This set β can then be transformed into a conflict-resolving

λ-extension λ(ri) by negating each literal in this set. It is easy to see that in order for the

λ-extended rule r′i to remain applicable, each computed conflict-resolving λ-extension

and therefore each such β has to meet additional constraints which we will explore

next.

In order to compute these sets β, we will first adapt the notion of hitting sets (Berge

1989) as follows: Let AB(ri) = {B(rj) | rj ∈ Adv(ri)} be the collection of all rule bodies

in PC whose rules are in conflict with ri. A hitting set of AB(ri) is a subset h ⊆ Lit∗A
that meets every set in AB(ri), that is, B(rj) ∩ h �= ∅ for every B(rj) ∈ AB(ri). A hitting

set h is minimal if there does not exist a proper subset of h that is also a hitting set.

It is easy to see that minimal hitting sets of AB(ri) provide a good starting point to

attain suitable conflict-resolving extensions λ(ri) since every hitting set shares at least

one extended literal with the body of every rule rj ∈ Adv(ri). One could assume that to

compute a set of conflict-preventing literals, it suffices to just take any minimal hitting set

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1108 A. Thevapalan and G. Kern-Isberner

of AB(ri) and simply default- or strongly negate each extended literal of that hitting set.

But as mentioned before, not every hitting set can be used to compute conflict-resolving

extensions as there are some more conditions that have to be met. We have to ensure

that a λ-extended rule r′i of ri is still applicable. The applicability is not given if (a) the

conflict-resolving extension itself is already inconsistent or (b) the extended rule body

B(r′i) becomes inconsistent. Case (a) applies if a hitting set h contains complementary

or reconcilable literals L∗,K∗ as every combination of their strongly and default negated

complement is also complementary.2 To ensure that (b) does not apply, we only consider

those hitting sets that do not comprise literals that are atom-related to literals in B(ri).

Hence, hitting sets that contain complementary or reconcilable literals and hitting sets

that share common underlying atoms with B(ri) will not be used to compute conflict-

resolving λ-extensions.

Remark 2: The restriction emerging from (b) is a bit stricter than necessary as rules

with atom-related literals in their bodies are still satisfiable if these atom-related literals

are compatible. But in order to avoid unnecessary technicalities, we will omit this special

case here.

All these restrictions lead us to the following extension of hitting sets called blankets

which we will use to compute proper conflict-resolving λ-extensions:

Definition 9 (Blanket)

A blanket β for Adv(ri) is a non-empty, ⊆-minimal, consistent set of extended literals

L∗ ∈ Lit∗A without reconcilable literals such that Atom(β) ∩Atom(B(ri)) = ∅ and for

each rj ∈ Adv(ri), there exists an extended literal L∗ ∈ β with L∗ ∈ B(rj). We denote

the set of all blankets for Adv(ri) by blankets(Adv(ri)).

Example 3

Suppose the following rules:

r1: a← b, c, d.

r2: a← b, c.

r3: a← b,∼e.

r4: a← b,∼e.

r5: a← b, e.

Consider the following ELP: P3 = {r1, r2}. For Adv(r1) in P3, there does not exist a

blanket since every body literal of r2 also occurs in the body of r1.

Now, consider the ELP P ′
3 = {r1, r3, r4}. The only body literals of r3, r4 that do not

occur in r1 are ∼e,∼e. Since a blanket for Adv(r1) in P ′
3 must not contain reconcilable

literals, there does not exist a blanket for Adv(r1).

Likewise, for the ELP P ′′
3 = {r1, r3, r5}, we observe the following: The only body

literals of r3, r5 that do not occur in r1 are ∼e, e. Since a blanket for Adv(r1) in P ′′
3 must

not contain complementary literals, there does not exist a blanket for Adv(r1).

2 Keep in mind that default literals cannot be strongly negated, for example, ∼L,∼K are not negated
counterparts for two atom-related literals ∼L,∼K.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1109

Example 4

Suppose an ELP P4 with the following rules:

r1: eligX ← condAAdv.

r2: eligX ←∼highLCount ,∼preTreatedN .

r3: eligX ← highLCount ,∼ctrIndR.

r4: eligX ← highLCount ,∼preTreatedM .

Program P4 describes the following scenario: Suppose a therapy X that was developed

for patients with condition A. Currently only patients with an advanced form of condition

A are eligible (r1). Furthermore, imagine a specific laboratory value L in a patient’s body

that can only be determined via an invasive test which is why such a test can only be

done once every 6 months at most. Recently completed long-term studies now indicate

that there are some exceptions where X must not be recommended to a patient with

advanced A. The therapy should not be used on a patient if it is unknown whether they

currently have a high or low L-count and if it is also unknown if they were treated with

drug N sometime in the past (r2). If the usage of a substance R is not contraindicated

andthe patient has a low L-count, treatment X must also not be recommended (r3).

Finally, if patient has a high L-count, they should not receive treatment X if it cannot

be concluded that the patient was treated with drug M in the past (r4).

Rule r1 is in conflict with every other rule:

conflicts(r1) = {(r1, r2), (r1, r3), (r1, r4)}
Adv(r1) = {r2, r3, r4}

The literals of the rule bodies in Adv(r1) do not share any common underlying atoms

with the literals in the body of r1. The set blankets(Adv(r1)) of all blankets for Adv(r1)

consists of the sets β1, β2, β3, β4, β5 where

β1 = {∼highLCount , highLCount ,∼preTreatedM },
β2 = {∼highLCount ,∼ctrIndR,∼preTreatedM },
β3 = {highLCount ,∼preTreatedN ,∼preTreatedM },
β4 = {∼preTreatedN ,∼ctrIndR,∼preTreatedM }, and

β5 = {highLCount ,∼preTreatedN ,∼ctrIndR}.
For the remainder of this paper, we will assume that for any rule ri with Adv(ri) �= ∅,

there exists at least one blanket for Adv(ri). This particularly implies that for any given

conflict pair (ri, rj), Atom(B(rj)) − Atom(B(ri)) �= ∅ has to hold. We will assume that

ri will be chosen such that this condition is satisfied. If this is not possible in practice,

one or both rules have to be modified more individually, for example, by introducing

new atoms to P. Other solutions will be discussed in Section 3.6. Now, we will describe

how to compute all possible conflict-resolving λ-extensions λ(ri) given a blanket β for

Adv(ri).

In order to use a blanket β ∈ blankets(Adv(ri)) to resolve all conflicts (ri, rj) in

conflicts(ri), the literals in β have to be negated such that for each conflict pair, the

addition of the negated literals to the body of ri leads to the violation of either property

(CP2) or (CP3) in Theorem 1. Due to the fact that default and strong negation cannot

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1110 A. Thevapalan and G. Kern-Isberner

be used interchangeably as default literals cannot be strongly negated, we propose the

following neg-operator, which for an extended literal L∗ with atom(L∗) = A, outputs the

set of literals that are complementary to L∗:

neg(L∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{∼A,A} if L∗ = A

{∼A,A} if L∗ = A

{A} if L∗ = ∼A

{A} if L∗ = ∼A.

(6)

Therefore, the neg-operator can be used to compute the proper conflict-preventing

literals. In fact, we want to extend the neg-operator such that the application of the re-

sulting operator on a blanket for ri will yield the set of all corresponding conflict-resolving

λ-extensions λ(ri). For this purpose, we have to ensure that the negations of all literals

in a blanket yield extended rules of the form (4) that are still applicable. Consequently

a blanket must not contain complementary literals. Dual literals however are allowed in

a blanket since their negation via the neg-operator leads to non-complementary literals.

Additionally, since we want minimal sets of conflict-resolving literals, given a blan-

ket with dual literals L∗,K∗, we only want to consider those negated forms that both

L∗,K∗ have in common. Therefore, we extend our neg-operator such that the negation

of atom-related literals only yields the negated form that both literals have in common,

that is,

negX(L∗) = ∩{neg(K∗) | atom(K∗) = atom(L∗),K∗ ∈ X}, (7)

where X is a set of extended literals. Applied on a blanket and their literals, the resulting

literals uphold a crucial property:

Corollary 2

Given a blanket β, (a) for all atom-related literals L∗,K∗ ∈ β, negβ(L
∗) = negβ(K

∗),
and (b) for all other literals L∗,K∗, negβ(L∗) ∩ negβ(K

∗) = ∅.

Example 5

Suppose the following sets X1 = {a, b,∼b}, X2 = {a, b, b}, and X3 = {a, b,∼b}. The
negation of these sets via the neg-operator yields

negX1
(a) = negX2

(a) = negX3
(a) = {a,∼a},

negX1
(b) = negX1

(∼b) = {b,∼b} ∩ {b} = {b},
negX2

(b) = negX2
(b) = {∼b, b} ∩ {∼b, b} = ∅, and

negX3
(b) = negX3

(∼b) = {b,∼b} ∩ {b} = ∅.
The negation of dual literals in X1 leads to the output of the common literal b whereas

complementary literals like in X2 and X3 do not share common negated forms.

Example 5 illustrates why blankets are allowed to contain dual literals since they share

a common negated form, but must not have complementary literals. When looking at the

negation of X2 in Example 5, one can see that strongly negated literals still have negated

forms that are not complementary, viz., the reconcilable literals ∼b,∼b. In contrast to

complementary literals, reconcilable literals in a rule body will not inhibit the satisfiability

of the rule. The examples, therefore, demonstrate that by requesting common negated

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1111

forms, our approach is prima facie stricter than necessary. But in order to keep this

approach simple while guaranteeing that conflict-resolving λ-extensions maintain the

satisfiability of the extended rule, we will only allow combinations of atom-related literals

whose negations are guaranteed to be non-complementary.

Lemma 1

Let an ELP P and a rule r ∈ P be given. For each extended literal L∗ in a blanket β

for Adv(r), negβ(L
∗) is a non-empty set of extended literals which are complementary

to L∗.

Proof

Since the neg-operator as defined in (6) returns a non-empty set for any extended literal

L∗, negβ(L∗) can only be an empty set if β contains some distinct atom-related liter-

als K∗
1 , . . . ,K

∗
m such that neg(K∗

1) ∩ · · · ∩ neg(K∗
m) = ∅. Suppose atom-related literals

K∗
1 ,K

∗
2 ,K

∗
3 . By (6), neg(K∗

1) ∩ neg(K∗
2) �= ∅ iff K∗

1 ,K
∗
2 are dual. In all other cases,

neg(K∗
1) ∩ neg(K∗

2) = ∅. Let therefore K∗
1 ,K

∗
2 be dual literals. For any K∗

3 , it is easy to

see that by (6) either neg(K∗
1) ∩ neg(K∗

3) = ∅ or neg(K∗
2) ∩ neg(K∗

3) = ∅ holds. This is
due to the fact that in every set of at least three different atom-related literals, there are

at least two literals that are not dual. Consequently, negβ(L
∗) = ∅ if β contains more

than two atom-related literals or if there exist two atom-related literals K∗
1 ,K

∗
2 ∈ β such

that K∗
1 ,K

∗
2 are not dual. A blanket does not contain complementary or reconcilable lit-

erals by definition and only allows atom-related literals that are dual. This implies that

for each extended literal K∗
1 in β, there exists at most one other extended literal K∗

2 in

β such that K∗
1 ,K

∗
2 are atom-related, and all atom-related literals in β are dual. Thus,

for each extended literal L∗ ∈ β, negβ(L
∗) is not empty. More precisely, negβ(L

∗) always
contains either L or ∼L or both. If β does not contain literals that are atom-related to

L∗, then negβ(L
∗) = neg(L∗) holds.

For a set X of extended literals L∗, we define Neg(X) as the set of all possible sets T

where T contains every literal of X in a negated form, that is,

Neg(X) = {T | T ⊆ L∗(X), T contains exactly one element of

each non-empty set negX(L∗), L∗ ∈ X}, (8)

where L∗(X) =
⋃

L∗∈X

negX(L∗). Due to Lemma 1, there always exists at least one such

set T .

Example 6 (Example 5 continued)

Continuing Example 5, we get Neg(X2) = Neg(X3) =
{{a}, {∼a}} since negX2

(a) =

negX3
(a) = {a,∼a}, and the negation of all other literals yields an empty set. For X1,

however, we get Neg(X1) =
{{a, b}, {∼a, b}} because as for X2, X3, the negation of a

produces two different possible negations and additionally b and ∼b have the common

negated form b.

Example 7 (Example 4 continued)

Continuing Example 4, the negation of each blanket in blankets(Adv(r1)) for rule r1 in

P4 yields sets β1, . . . , β5 as shown in Table 2. Blankets β2 and β4 only contain default

literals and therefore, each of them has only one possible negation form. For β3 and

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1112 A. Thevapalan and G. Kern-Isberner

Table 2. Results from Example 7

βi negβi(L
∗) Neg(βi)

β1 {highLCount}, {preTreatedM } {{highLCount , preTreatedM }}
β2 {highLCount}, {ctrIndR},

{preTreatedM }
{{highLCount , ctrIndR, preTreatedM }}

β3 {highLCount ,∼highLCount},
{preTreatedN }, {preTreatedM }

{{highLCount , preTreatedN , preTreatedM },
{∼highLCount , preTreatedN , preTreatedM }}

β4 {preTreatedN }, {ctrIndR},
{preTreatedM }

{{preTreatedN , ctrIndR, preTreatedM }}

β5 {highLCount ,∼highLCount},
{preTreatedN }, {ctrIndR}

{{highLCount , preTreatedN , ctrIndR},
{∼highLCount , preTreatedN , ctrIndR}}

β5, the literals highLCount , and highLCount , each have two possible negations which is

why Neg(β3) and Neg(β5) contain two sets respectively. Regarding β1, we observe that

the dual literals highLCount ,∼highLCount , have the common negated form highLCount ,

and the default literal ∼preTreatedM has only one negation form. Together, that results

in the fact that Neg(β1) contains only the one set {highLCount , preTreatedM }.

Lemma 2

Let an ELP P, a rule r ∈ P and a blanket β for Adv(r) be given. Furthermore, let

λ ∈ Neg(β). For each extended literal L∗ ∈ β, λ contains exactly one extended literal

K∗ such that L∗,K∗ are complementary.

Proof

Lemma 1 states that for each L∗ ∈ β, negβ(L
∗) consists of either one or two extended

literals and each of them is complementary to L∗. Consequently, it follows by (8) that

each λ contains a literal K∗ for each L∗ in β such that L∗,K∗ are complementary. With

Corollary 2, there exists exactly one such extended literal K∗ ∈ λ for each L∗ ∈ β.

Due to the fact that blankets(Adv(ri)) is a set of sets, we will extend the Neg-operator

to also consider sets X = {X1, . . . , Xn} of sets X1, . . . , Xn of extended literals. For such

a set X , N(X) shall therefore output the set of all negated form variations in all sets

X1, . . . , Xn ∈ X , that is,
N(X) = {X− | X− ∈ Neg(X), X ∈ X}. (9)

Lemma 3

Let an ELP P and a rule r ∈ P be given. Each λ ∈ N(blankets(Adv(r))) does not contain

any complementary literals.

Proof

Since every λ consists of a literal L∗ ∈ negβ(L
∗) for every literal L∗ ∈ β, λ can only

contain complementary literals if there are complementary literals between sets negβ(L
∗).

By Corollary 2, this is not possible since β itself does not contain complementary or

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1113

reconcilable literals. Consequently, for each λ ∈ N(blankets(Adv(r))), it holds that λ

does not contain complementary literals.

Example 8 (Example 7 continued)

For blankets(Adv(r1)) in Example 4, we get

N(blankets(Adv(r1))) = {Neg(β1), Neg(β2), Neg(β3), Neg(β4), Neg(β5)}
=

{{highLCount , preTreatedM },
{highLCount , ctrIndR, preTreatedM },
{highLCount , preTreatedN , preTreatedM },
{∼highLCount , preTreatedN , preTreatedM },
{preTreatedN , ctrIndR, preTreatedM },
{highLCount , preTreatedN , ctrIndR},
{∼highLCount , preTreatedN , ctrIndR}}.

Due to the properties of a blanket and their possible negations, it is also guaranteed

that any rule extended by such a λ remains applicable.

Proposition 4

Every λ-extended rule r′i of the form

r′i ∈ {H(ri)←B(ri), λ(ri). | λ(ri) ∈ N(blankets(Adv(ri)))} (10)

of a rule ri ∈ P is applicable.

Proof

Suppose a λ-extended rule r′i w.r.t. a λ-extension λ(ri). Rule r
′
i is not applicable if (a) ri

is not applicable, (b) λ(ri) is not satisfiable, or (c) B(ri) ∪ λ(ri) is not satisfiable. Case

(a) is not possible due to our initial assumption that all rules in a given logic program are

applicable. Case (b) can only hold if λ(ri) contains complementary literals. By Lemma 3,

this is not possible for any conflict-resolving extension λ(ri). Then, case (c) can only hold

if there exist complementary literals between B(ri) and λ(ri). By Definition 9, a blanket

for ri cannot contain literals that are atom-related to any literals in B(ri). Consequently,

any conflict-resolving extension λ(ri) for ri does also not contain any literals that are

atom-related to a literal in B(ri). Therefore, any λ-extended rule of the form (10) is

applicable.

We are now ready to relate conflict-resolving λ-extensions to blankets.

Proposition 5

Every λ(ri) ∈ N(blankets(Adv(ri))) is a conflict-resolving λ-extension for ri, that is,

for every rule λ-extended rule r′i w.r.t. λ(ri), it holds that conflicts(r′i) = ∅ in P ′ =

P\{ri} ∪ {r′i}.

Proof

Assume, by way of contradiction, that there exists a rule rj ∈ Adv(ri) such that the λ-

extended rule r′i w.r.t. λ(ri) and rj are conflicting, that is, r′i �� rj . Then by Theorem 1,

(CP2) and (CP3) hold, that is, B+(r′i) ∩ B−(rj) = B+(rj) ∩ B−(r′i) = ∅, and B+(r′i) ∪

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1114 A. Thevapalan and G. Kern-Isberner

B−(rj) and B−(r′i) ∪ B+(rj) are consistent. Let β be a blanket on which λ(ri) is based

on, that is, β ∈ blankets(Adv(ri)) and λ(ri) ∈ Neg(blankets(Adv(ri))). According to

(9), this also means that λ(ri) ∈ Neg(β) holds. By Definition 9, there exists an extended

literal L∗ ∈ β such that L∗ ∈ B(rj). If L ∈ B+(rj), then by Lemma 2 either L ∈ λ(ri) or

∼L ∈ λ(ri). This consequently means that if L ∈ B+(rj), then either L ∈ B+(r′i), which
means condition (CP3) cannot hold or L ∈ B−(r′i), which in turn means that (CP2)

cannot hold. On the other hand, if L ∈ B−(rj), then by Lemma 2 and (4) L ∈ B+(r′i),
and thus (CP2) cannot hold. In any case, λ(ri) adds an extended literal to the body of

ri such that (CP2) or (CP3) cannot hold for rules r′i, rj . Therefore, r
′
i and rj cannot be

conflicting.

Example 9 (Example 8 continued)

All conflicts in Conflicts(P4) of Example 4 can be resolved by replacing r1 with a λ-

extended rule

r′1: eligX ← condAAdv, λ(r1).

w.r.t. λ(r1), where

λ(r1) ∈ N(blankets(Adv(r1))) =
{{highLCount , preTreatedM },
{highLCount , ctrIndR, preTreatedM },
{highLCount , preTreatedN , preTreatedM },
{∼highLCount , preTreatedN , preTreatedM },
{preTreatedN , ctrIndR, preTreatedM },
{highLCount , preTreatedN , ctrIndR},
{∼highLCount , preTreatedN , ctrIndR}}.

Every set in N(blankets(Adv(r1))) contains at least one body literal of every rule rj ∈
Adv(r1) in a negated form and therefore corresponds to a conflict-resolving λ-extension

for r1 in the sense of (4).

Looking at the result in Example 8, it becomes apparent that the N -operator for sets of

sets does not necessarily output ⊆-minimal sets, that is, N(blankets(Adv(r1))) contains

{highLCount , preTreatedM } and two of its supersets {highLCount ctrIndR, preTreatedM }
and {highLCount , preTreatedN , preTreatedM }. Since {highLCount , preTreatedM } al-

ready contains literals of every adversarial rule of r1 in a negated form, additional liter-

als become obsolete. Consequently, any superset of a set in N(blankets(Adv(r1))) can be

safely omitted. Therefore, for an ELP P with a rule ri, we denote the set of all ⊆-minimal

sets in N(blankets(Adv(ri))) by Nmin(blankets(Adv(ri))).

Corollary 3

All conflicts in conflicts(ri) are resolved simultaneously if ri is replaced by

r′i ∈ {H(ri)←B(ri), λ(ri). | λ(ri) ∈ Nmin(blankets(Adv(ri)))}. (11)

Every λ(ri) ∈ Nmin(blankets(Adv(ri))) is, therefore, a minimal conflict-resolving

λ-extension for ri.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1115

Example 10 (Example 9 continued)

For r1 in P4 of Example 4, we get

Nmin(blankets(Adv(r1))) =
{{highLCount , preTreatedM },
{∼highLCount , preTreatedN , preTreatedM },
{preTreatedN , ctrIndR, preTreatedM },
{highLCount , preTreatedN , ctrIndR},
{∼highLCount , preTreatedN , ctrIndR}}.

Consequently, λ1 = {highLCount , preTreatedM } is a possible λ-extension for r1.

Note that if multiple conflicts are resolved simultaneously where the adversarial rules

contain more than one literal, the inclusion of a knowledge expert can be crucial. In

Example 10, any possible λ-extension for r1 proposes a restriction on the eligibility for

therapy X that is slightly stricter than the requirements that are implictly imposed by

the adversarial rules. That is, the extension by λ1 leads indeed to the resolution of the

conflict. Now however, for instance patients that have a low L-count while being allergic

to substance R cannot receive the treatment which is not explicitly specified in the

original program. One reason for these stricter suggestions is that λ-extension are built

to minimally cover the adversarial body literals in order to keep the approach simple

and pragmatic. It is up to the knowledge expert to decide if the new knowledge that is

represented in a λ-extension is justifiable w.r.t. to its professional adequacy. If the knowl-

edge expert wants to adapt r1 according to all adversarial rules such that r1 “mirrors”

them, they can consider accepting more than one suggestion which in this case would

result in replacing r1 by multiple λ-extended rules r′1 that guarantee that specific literal

combinations are not overlooked, viz., an additional λ-extended rule of r1 would have to

be added where λ = {highLCount , preTreatedN , ctrIndR} if the knowledge expert wants

patients with a low L-count to receive treatment X where substance R is contraindicated.

Once all λ-extensions for a conflict are computed, the corresponding λ-extended rules

are presented to the expert. They can analyze the suggestions and apply the most suitable

solution. Due to their expertise, the presented suggestions can hint to the underlying

cause which can make the decision on the solution straightforward.

Moreover, though it demands for some technical knowledge, the framework could also

allow the expert to refine a suggestion and then apply it. Even though, as shown above,

all computed solutions are minimal and guarantee the resolution of the considered con-

flict, refining a solution based on the expert’s knowledge can reinforce the robustness of

the solution, that is, possible future conflicts after consecutive updates can be prevented.

Example 11 (Example 10 continued)

Suppose the knowledge expert has to decide on the solution for the conflict of rule r1.

They are presented with the following suggestions:

r
(1)
1 : eligX ← highLCount , preTreatedM .

r
(2)
1 : eligX ←∼highLCount , preTreatedN , preTreatedM .

r
(3)
1 : eligX ← preTreatedN , ctrIndR, preTreatedM .

r
(4)
1 : eligX ← highLCount , preTreatedN , ctrIndR.

r
(5)
1 : eligX ←∼highLCount , preTreatedN , ctrIndR.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1116 A. Thevapalan and G. Kern-Isberner

Presume the following scenario: Treatment X is applied when the therapy options for

advanced condition A that were administered up to now has been exhausted. Contrary

to treatment M , which is a more common therapy in this scenario, treatment N is a

therapy that is recommended when the standard therapy options have not been effective

since N is known to be more complicated and not without risks. Therefore, the knowledge

expert decides that the solution for this conflict should include preTreatedN rather than

preTreatedM to reflect that therapy X is only to be recommended if nothing else worked

out. This leaves the expert with rules r
(4)
1 and r

(5)
1 as potential candidates. As therapy X

itself is also not without risks, the expert wants to emphasize that any other requirements

for this therapy should be defined as strictly as possible, for example, the physicians have

to explicitly confirm that specific drugs are not contraindicated. Accordingly, before

suggesting therapy X, it should be explicitly known whether the patient has indeed a

low L-count. Therefore, rule r
(4)
1 as a solution is the most fitting candidate.

Example 11 highlights the fact that generally the suitability of a solution relies on

knowledge that is not necessarily reflected in the program.

The following example illustrates that even in cases where a custom solution is required,

the computed solutions can used as a basis for fitting solutions.

Example 12 (Example 11 continued)

Now suppose that at the time of the conflict resolution, studies revealed that in order

to prescribe treatment X, the patient must not have an allergy towards a substance S.

As r
(4)
1 was found to be the most suitable suggestion, it suffices to add literal ctrIndS

to B(r
(4)
1) in order to require that substance S is not contraindicated. Thus, the expert

yields

eligX ← highLCount , preTreatedN , ctrIndR, ctrIndS .

as the final solution to solve all conflicts of r1 in P4. This modification constitutes a

refinement of a suggested λ-extension.

In Sections 4.3 and 4.4, we will show that the problem of knowledge gaps will also

pertain to other aspects of conflict resolution. We propose to alleviate these shortcomings

by implementing suitable interaction mechanisms between the system and the expert.

In the following, we will illustrate a complete conflict resolution step with two more

examples. Example 13 comprises both short and long conflict-resolving extensions.

Example 14 shows how redundant extensions are removed via Nmin.

Example 13

Suppose the following ELP P13:
r1: a←x, y.

r2: a← b, d,∼e.

r3: a← d,∼c,∼e.

r4: a← b, d,∼c.

In P13, rule r1 is in conflict with every other rule:

Conflicts(P13) = conflicts(r1) = {(r1, r2), (r1, r3), (r1, r4)}
Adv(r1) = {r2, r3, r4}.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1117

The set blankets(Adv(r1)) of blankets for Adv(r1) consists of the sets β1, β2, β3, β4, with

β1 = {d},
β2 = {b,∼c},
β3 = {b,∼e},
β4 = {∼c,∼e}.

The negation of each blanket in blankets(Adv(r1)) results in the following sets:

Neg(β1) =
{{d}, {∼d}}

Neg(β2) =
{{b, c}, {∼b, c}}

Neg(β3) =
{{b, e}, {∼b, e}}

Neg(β4) =
{{c, e}}.

Therefore, all conflicts in conflicts(r1) can be resolved by replacing r1 with a rule

r′1: a←x, y, λ(r1),

where

λ(r1) ∈ N(blankets(Adv(r1))) = Nmin(blankets(Adv(r1)))

=
{{d}, {∼d}, {b, c}, {∼b, c}, {b, e}, {∼b, e}, {c, e}}.

From a technical point of view, choosing λ(r1) ∈ {d,∼d} as a conflict-resolving extension

for r1 may seem as the most suitable choice prima facie, seeing that the addition of a

single literal resolves all three conflicts of r1 simultaneously. However, depending on what

the rules actually represent, it is possible that a corresponding knowledge expert does

not regard d and ∼d as viable options for resolving the conflicts of r1, and, instead, picks

an extension that contains more than one literal.

Example 14

Suppose the following ELP P14:
r1: x← a.

r2: x← c, d,∼a,∼e.

r3: x← a, b, c.

r4: x← d,∼b,∼f.

In P14, rule r1 is in conflict with every other rule:

Conflicts(P14) = conflicts(r1) = {(r1, r2), (r1, r3), (r1, r4)}
Adv(r1) = {r2, r3, r4}.

The set blankets(Adv(r1)) of blankets for Adv(r1) consists of the sets

β1 = {c, d},
β2 = {c,∼b},
β3 = {c,∼f},
β4 = {b, d},

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1118 A. Thevapalan and G. Kern-Isberner

β5 = {b,∼b,∼e}, and

β6 = {b,∼e,∼f}.
Note that literal ∼a does not appear in any blankets of r1 by reason of atom(∼a) ∈
Atom(B(r1)).

The negation of each blanket in blankets(Adv(r1)) yields the following sets:

Neg(β1) =
{{c, d}, {∼c, d}, {c,∼d}, {∼c,∼d}}

Neg(β2) =
{{c, b}, {∼c, b}}

Neg(β3) =
{{c, f}, {∼c, f}}

Neg(β4) =
{{b, d}, {∼b, d}, {b,∼d}, {∼b,∼d}}

Neg(β5) =
{{b, e}}

Neg(β6) =
{{b, e, f}, {∼b, e, f}}.

This results in

N(blankets(Adv(r1))) =
⋃

β∈blankets(Adv(r1))

Neg(β),

and on the grounds that {b, e, f} ⊃ {b, e}, we get

Nmin(blankets(Adv(r1))) = N(blankets(Adv(r1)))\{b, e, f}.
Therefore, all conflicts in conflicts(r1) can be resolved by replacing r1 with a rule

r′1: x← a, λ(r1),

where

λ(r1) ∈ Nmin(blankets(Adv(r1))) =
{{c, d}, {∼c, d}, {c,∼d}, {∼c,∼d}{c, b}, {∼c, b},
{c, f}, {∼c, f}, {b, d}, {∼b, d}, {b,∼d}, {∼b,∼d},
{b, e}, {∼b, e, f}}.

In summary, the results show that implementing a conflict resolution step via conflict-

resolving λ-extensions and blankets yields a conflict resolution process that possesses the

properties (P1)-(P3) that were postulated earlier. By Proposition 5, given a rule ri ∈ P,
every λ(ri) ∈ N(blankets(Adv(ri))) is a conflict-resolving λ-extension for ri. Since by ev-

ery such conflict resolution step, the number of conflicts is reduced, for the final program

P(n) of the conflict resolution process, it holds that Conflicts(P(n)) = ∅. Moreover, we

have shown that for the proposed conflict resolution process 〈P(1),P(2), . . . ,P(n)〉 it even
holds that Conflicts(P(i+1)) � Conflicts(P(i)) for 1 ≤ i < n. Thus, (P1) holds. As every

conflict resolution step consists of solely replacing a conflicting rule with its λ-extension

of the form (10), (P2) holds. By Proposition 4, property (P3) holds also. Therefore,

a conflict resolution process using conflict-resolving λ-extensions leads to a uniformly

non-contradictory program core in a minimally invasive manner. Including a domain-

specific expert into the selection of the most suitable λ-extensions can furthermore ensure

that the resulting non-contradictory program core maintains its professionally adequate

knowledge base.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1119

3.6 Missing λ-extension

Under some circumstances, no λ-extensions can be generated for a rule r ∈ P. In these

cases a blanket for Adv(r) cannot be found. Determining whether a blanket for Adv(r)

exists can become quite cumbersome and complex since the relationships of atom-related

literals between all adversarial rules have to be examined. A small fraction of such possible

literal interactions that can make the finding of a blanket impossible will be illustrated

in the following example.

Example 15

Suppose the following program P15:
r1: x← a, d. r2: x← a, b. r3: x← c. r4: x← c,∼b.

Program P15 has conflicts (r1, r2), (r1, r3), (r1, r4) and there does not exist a blanket for

r1. This can be easily shown by looking at each potential candidate literal: Literal a is

already in B(r1) and can therefore not be in a blanket. Since atom b (resp. c) appears

in B(Conflicts(r1)) as default (resp. classically) complementary literals, viz. r2, r4 (resp.

r3, r4), b (resp. c) cannot be part of a blanket either.

There are several workarounds that allow the resolution of such conflicts nevertheless. One

possible way to resolve such conflicts can be the partitioning of conflicts, that is, given a

rule r with several adversaries Adv(r), one could first determine a subset Adv′ ⊂ Adv(r)

for which a blanket can be computed. This procedure can be repeated until all conflicts

of r′ are resolved. The following example illustrates how partitioning can be used to

obtain a solution if a specific rule of the program (in this case r1) should primarily be

modified.

Example 16 (Example 15 contd.)

Suppose program P15 from Example 15. First, conflicts (r1, r2) and (r1, r3) can be re-

solved simultaneously by generating λ-extensions from the blankets for Adv′ = {r2, r3}.
Two of the resulting extensions are λ1 = {∼b,∼c} and λ2 = {∼b, c}. Applying λ1 to P15
results in program P ′

15:

r′1: x← a, d,∼b,∼c. r2: x← a, b. r3: x← c. r4: x← c,∼b.

Then, the remaining conflict (r′1, r4) can be resolved by applying the unique solution

λ3 = {∼c} which in turn results in program P ′′
15:

r′′1 : x← a, d,∼b,∼c,∼c. r2: x← a, b. r3: x← c. r4: x← c,∼b.

Note that the reason that a solution like λ = {∼b,∼c,∼c} cannot be obtained with

the general conflict resolution approach is because of the restriction that blankets cannot

contain multiple literals of the same atom even though reconcilable literals do not interfer

with the applicability of a rule (as can be seen in Example 15). But in order to keep the

resolution approach simple and pragmatic, such a restriction on blankets was deemed

necessary.

However, whenever conflicts are separately resolved, the final outcome can very much

depend on the actual partitions, the order in which the different conflicts are resolved,

and the choice of the respective λ-extensions along the way.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1120 A. Thevapalan and G. Kern-Isberner

Example 17 (Example 16 contd.)

Reconsider the results in Example 16. Note that (r′1, r4) in P ′
15 only has the unique

solution λ3 = {∼c} because for the resolution of the previous conflicts λ1 was chosen.

Applying λ2 to P15 of Example 15 instead of λ1 would result in program P ′′′
15:

r′1: x← a, d, c,∼b. r2: x← a, b. r3: x← c. r4: x← c,∼b.

It is easy to see that now for conflict (r1, r4), there exist no possible λ-extensions anymore

as B(r4) ⊂ B(r1).

Another possible workaround could be a preceding resolution of conflicts of some ad-

versarial rules r′ ∈ Adv(r), that is, if a blanket for Adv(r) cannot be found, one could

resolve the conflicts of some r′ ∈ Adv(r) first and then resolve the remaining conflicts

of r. This workaround is illustrated in the following example:

Example 18 (Example 15 contd.)

Again, suppose program P15 from Example 15. Since r1 contains literal d that does

not appear in B(Conflicts(r1)), instead of resolving the conflicts of r1, the conflicts of

the adversarial rules could be resolved consecutively, in this case even with the same

λ-extension, namely conflicts (r2, r1), (r3, r1), (r4, r1) with either λ-extension λ3 = {∼d}
or λ4 = {d}. Therefore, one possible resolved program P ′′′′

15 would consist of the following

rules:

r1: x← a, d. r′2: x← a, b,∼d r′3: x← c,∼d. r′4: x← c,∼b,∼d.

Examples 16 and 18 show that if the resolution of conflicts of a rule cannot be carried

out in one go, there are possible workarounds. But, as shown with Example 17, even if the

conflict resolution is partitioned into multiple ones, the choice of a solution can influence

the success of remaining conflict resolution attempts. Thus, in such individual cases,

both, the order in which the conflicts are solved and the choice of the solutions have

to be executed with care. Apart from partitioning conflicts and modifying adversarial

rules, there is always the possibility to introduce new atoms to the bodies of a conflict,

for example, adding a new atom A to B(r) and A to the bodies B(r′) of all adversaries.
This, however, would violate our requirement of extensions being informative.

Improving our strategies with respect to such deficiencies right from the beginning,

for example, finding a most suitable order in which conflicts are resolved, is part of our

ongoing work. Some enhancements of our approach are considered in the next section.

4 Enhancements

In the following, we will outline possible enhancements to the presented resolution ap-

proach. Section 4.1 outlines how the multiple resolution processes can be used to resolve

many-to-many conflicts and in Section 4.2, we show how the current resolution approach

can also be used to deal with inconsistency-causing constraints. In the last two subsec-

tions, we will show methods to compute additional information for the knowledge expert

to find the most suitable solutions efficiently. In Section 4.3, we will present a method

to sort the detected conflicts in a program by the impact the conflicting rules have on

other rules. We extend this method in Section 4.4 to introduce the concept of λ-scores

that enable the ordering of λ-extensions.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1121

4.1 Many-to-many conflicts

So far, the presented approach handles 1-to-many conflicts, that is, the presented ap-

proach modifies a single rule r such that the conflicts with n different rules r′ ∈ Adv(r)

are resolved simultaneously. It is conceivable that instead of a single rule r, a program P
can contain a set R of m different rules r with H(r) = L(m > 1) which results in consid-

ering what we will call many-to-many conflicts. Currently, in those cases the resolution

process have to be applied on each such r ∈ R separately and consecutively. Depending

on the individual case, it can also be reasonable to modify a rule r′ ∈ Adv(r).

Example 19

Consider the following ELP:

P19: r1: x← a, e. r2: x← b, e. r3: x← f. r4: x← g.

In P19, there are conflicts between {r1, r2} and {r3, r4}. One way to resolve all conflicts

is to extend r1 and r2 by a λ-extension, respectively. Since the bodies of r3 and r4 do not

contain atom-related literals, each λ-extension will contain two literals. If, on the other

hand, the knowledge expert decides to modify r3 and r4 instead, a possible λ-extension

for both rules can consist of a single literal, viz. either ∼e or e.

Example 19 shows that the order in a conflict pair (r, r′) can decide over the “com-

plexity” of its resolution.

4.2 Conflict resolution with constraints

In general, (integrity) constraints in answer set programs serve to weed out unwanted

answer sets. One way to implement such a functionality is to map a constraint like← a, b.

to a rule z← a, b,∼z. where z is a newly introduced atom (Gebser et al . 2012). Even

though the derivation of z due to such constraints technically causes incoherence and not

contradiction, we will cover the handling of a specific type of constraints rc as we can

show that the presented conflict resolution approach can be used to prevent the advent

of incoherence due to such rules rc. In the following, we will examine constraints of the

form

rc: ←K,L, (12)

where K,L are internal atoms.

Recall that in logic programs, classical negation is actually syntactic sugar: Given

the normal logic program P+ of P, classical negation can be incorporated by adding a

constraint ←A,A′. for every atom A ∈ A (Gelfond and Lifschitz 1991).

Example 20

Suppose the following program P20:
r1: x← a. r2: x← b.

This program is actually interpreted as a positive program P+
20:

r1: x← a. r′2: x
′← b. rx: ←x, x′.

Example 20 shows that resolving the conflict between (r1, r
′
2) also ensures that rx is

satisfied. As a generalization of this idea, we can therefore consider constraints as implicit

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1122 A. Thevapalan and G. Kern-Isberner

pointers to potential conflicts. Consequently, the satisfaction of a constraint of form (12)

can be ensured by treating every pair of rules r, r′ in P with H(r) = L,H(r′) = K

as implicit conflicts (r, r′) and resolving them using the method for the resolution of

conflicts via λ-extensions.

Example 21

Suppose the following program P21 with internal atoms a, d and external atoms b, c, e, f :

r1: a← b,∼c. r2: a← b,∼f. r3: d← e. r4: ← a, d.

Then, (r3, r1) and (r3, r2) can be interpreted as conflicts. To resolve these two conflicts

simultaneously, {∼b} can be added as a λ-extension to r3. The modified program P ′
21

then has the following rules:

r1: a← b,∼c. r2: a← b,∼f. r′3: d← e,∼b. r4: ← a, d.

It is easy to see that a constraint of form (12) can be omitted once the implicit conflicts

of the constraint are resolved with fitting λ-extensions. Thus, rule r4 is redundant in

program P ′
21, but one has to keep in mind that future, more comprehensive updates can

lead to answer sets that contain literals a and d.

4.3 Conflict order

As stated at the beginning, the presented approach is a basic method that can be ex-

tended in many respects depending on the requirements of the user. A useful functionality

regarding the workflow of conflict resolution is the order in which the conflicts are pre-

sented to the expert. It is important that the knowledge expert understands how the

order of the conflicts is generated as any enhancement in the proposed framework must

not negatively influence the actual decision regarding a resolution but rather aid the

expert in finding the most suitable solution efficiently. One easily comprehensible im-

plementation utilizes the affected rule count (inspired by Abdelhalim et al . 2009) of the

conflicting literals that reflects how many rules are potentially affected by a specific rule.

For that, we first define the set R of all rules that are affected by a rule r1 and compute

the rule impact of r1 by counting its affected rules.

Definition 10 (Affected Rules and Affected Rule Count)

The set Rr1 of rules affected by a rule r1 ∈ P is defined as

Rr1 = {r ∈ P | atom(H(r1)) ∈ Atom(B(r)), (B(r1) ∪B(r)) is consistent}.
The affected rule count AR(r1) of r1 is then defined by the number of affected rules, viz.

AR(r1) = |Rr1 |.

Example 22 (Example 4 continued)

Let P22 be program P4 extended by the following rules:

r5: drugB← eligX , condAAdv, drugE .

r6: drugC ← eligX ,∼condAAdv, highLCount .

r7: drugD← eligX , condAAdv, preTreatedN .

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1123

In P22, rules r5 and r7 are affected by r1. Rule r6 is not affected as B(r1) and B(r6) are

not consistent due to atom condAAdv, that is, literal condAAdv occurs in B+(r1) and

in B−(r6). Ergo for r1, we yield the affected rule count AR(r1) = 2.

The affected rule count can provide the expert with a first impression (or possibly

confirm own conjectures) of the possible impact that the given conflict and consequently

the changes made to one of the conflicting rules have within the program. It can contribute

additional information to the expert to anticipate the effect of a possible solution. Hence

when using this order-criterion, it is on the expert to decide which conflict they want to

solve first, for example, they can handle those conflicts with the least impact on other

rules first. Additionally, such computed values can also help to decide which rules of a

conflict to modify, for example, given a rule r ∈ P, it can be beneficial to modify one

rule in conflicts(r) first and then modify r in order to resolve all remaining conflicts of r

(see Section 4.1).

4.4 λ-scores

In the previous section, we presented a method that aims to improve the user’s first

major task during the resolution process which is choosing a conflict out of all detected

conflicts. In the next step, the user has to decide on a solution for a picked conflict. To

facilitate the finding of a most suitable solution for a chosen conflict (r, r′), an ordering

of the computed suggestions can be established. For that one can assign a score to each

λ-extension that is calculated using different criteria. In this section, we will outline one

prototypical enhancement that adds a numerical value to each generated λ-extension

named λ-score. We will present a basic approach to compute λ-scores by utilizing the

previously introduced affected rule count to quantify the effect a rule modification can

have. Suppose a conflict (r1, r2) and a solution r′1 which can either be a computed solution

(λ-extended rule) or a modified custom solution, respectively, for this conflict. In order

to reflect the effect this solution can have on the overall program, one can look at the

size of the difference between the affected rules of r1 and the λ-extended rule r′1 which

we will call the effect of the modification of r1 to r′1.

Definition 11 (Effect)

Let (r1, r2) be a conflict in P and r′1 a generated, λ-extended rule of r1. Let furthermore

Rr1 and Rr′1 be the respective sets of affected rules. Then, the effect Eff (r1, r
′
1) of this

modification is defined by

Eff (r1, r
′
1) = Rr1 −Rr′1 .

Note that as λ-extended rules always expand the body of the original rule and therefore

are more specific, any generated solution will affect the same rules or a subset of the rules

that are affected by the original rule, that is, Rr′1 ⊆ Rr1 holds. The higher the effect

of a solution, the more rules are not affected anymore after the modification w.r.t. the

rules affected by the original rule. The effect of a suggested modification can therefore

be used as the λ-score of the suggestion. If for example an expert wants to examine the

most cautious solutions, the solutions with the least effect can be presented first.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1124 A. Thevapalan and G. Kern-Isberner

Example 23 (Example 10 continued)

Suppose, the expert wants to resolve the conflict in P22 by changing r1 to r′1 with

r′1: eligX ← highLCount , preTreatedN , ctrIndR.

As rule r5 is the only rule affected by r′1, we get the effect

Eff (r1, r
′
1) = {r5, r7} − {r5} = 1.

The effect of a modification tells the expert how impactful a change is regarding the

affected rules, that is, how many additional and less rules are affected after the changes.

The interpretation of the effect of modifications that is offered at this point can be seen

as a first proposal to produce the λ-scores. The corresponding method for their compu-

tation can thus serve as groundwork where individual enhancements and modifications

are possible. The presented definition of modification effects is an illustrative example

to show how λ-extensions can hypothetically be ordered. For a given conflict, the user

can inspect the suggestions sorted by their effect, starting with those that have the least

effect. This way, they can look for and prioritize solutions that have the least impact on

the program.

In analogue to the previously described method for ordering conflicts, any implemen-

tation for the computation of λ-scores must not negatively influence the expert regarding

their decisions, that is, enhancements like ordering conflicts and suggestions should not

incentivize the expert to choose solutions with the sole intention to resolve all conflicts

in the technically easiest and quickest way possible without considering the underlying

errors and problems that led to the conflict, nor should it bias the expert’s thought

process in any other negative way. In other words, the goal of such enhancements is to

improve the finding of solutions that reflect the actual professional expertise best and si-

multaneously provide robustness for future updates (i.e. mitigate the potential for future

conflicts), while not compromising any decision on a solution during the process.

Establishing a score for each suggestion allows to generate an order over all suggestions

which in turn can be used to show the knowledge expert those suggestions first that are

more relevant according to their criteria. If a semi-automated approach is wanted, the

knowledge expert could also define a specific score threshold so that suggestions can

be applied without the expert’s involvement. Then, if there exist suggestions λ with a

score below such a threshold, the conflict can be resolved directly by using every λ with

the lowest score as a solution. Enhancements like these that gather and use additional

metadata can help to add a highly customizable abstraction layer between the knowledge

expert and the actual knowledge base where the expert can input information about

the program elements in order to resolve a conflict without the need for any technical

knowledge about answer set programming while ensuring that the resulting rules are still

representing correct knowledge in the professional sense.

5 Conclusion and future work

In this paper, we proposed a method to modify answer set programs such that they remain

consistent given any (allowed) instance data. We provided an analysis how contradictions

in a program can arise and discussed the necessary requirements rules have to satisfy in

order to prevent contradictions while keeping the degree of change to a minimum. Based

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1125

on that, we arrived at the notion of λ-extensions and we presented a strategy that gathers

all conflict-resolving λ-extensions for a conflicting rule that comprise the atoms occurring

in the conflicting rules. Extending a rule by a corresponding conflict-resolving λ-extension

resolves all conflicts of this rule simultaneously. As a consequence, a conflict resolution

process that uses the proposed strategy for computing conflict-resolving λ-extensions

eventually yields a uniformly non-contradictory program core.

The presented approach constitutes crucial groundwork for the implementation of a

larger (application) framework for updating and maintaining answer set programs. It

enables the knowledge expert to inspect contradictory statements in a program and up-

date rules interactively in view of new information given by an update. The suggestions

that are generated by this algorithm can be viewed as a baseline for modifications. As

mentioned in Example 10, applying a suggested λ-extension to a rule r can lead to a

“stricter” λ-extended rule r′. Whether this makes sense or not, is highly dependent on

the professional meaning of these rules. Our approach allows the knowledge expert to

decide whether a suggested enhancement should be applied as is or additional (manual)

modifications should follow the applied suggestion. But as shown with Proposition 5, ev-

ery λ-extension satisfies the minimal requirement of resolving the corresponding conflicts

simultaneously and can therefore used as a reliable starting point.

This paper adresses one part of an interactive solution for conflict resolution in logic

programs as proposed in Thevapalan and Kern-Isberner (2020). The running example

illustrates that the proposed framework can pose a highly beneficial tool in the medical

sector and other domains. We argue that any area where experts face complex decisions

based on knowledge that is not solely comprised of facts but also on practical knowledge

(experience) and continually growing and changing (adapted) expertise can highly profit

from such a framework to efficiently build up and maintain an adequate knowledge base.

The ideas and results discussed in this paper can be adapted and extended in various

ways. In Thevapalan et al . (2022), the authors show how conflicts can be resolved in

cases where the actual conflicting rules shall remain unchanged. For that, the concept

of λ-extensions is picked up to generate solutions that restore consistency. Aside from

contradictions, extended logic program can also become inconsistent due to incoherence.

A method to pinpoint the causes of incoherence in logic programs and strategies to

reestablish coherence in a program are developed in Thevapalan et al . (2021).

Since in the presented conflict resolution strategy, the body of one of the conflicting

rules is extended, one possible extension of the approach is the compilation of strate-

gies for the remaining types of program modifications, namely reduction of rule bodies,

replacing body literals, removing rules as a whole and adding new rules.

As outlined Section 4, we see numerous ways to extend the presented approach. In

the future, we want to adapt the method of conflict resolution to resolve many-to-many

conflicts in a more convenient way that generates λ-extensions based on all involved rules

that at best does not require the repeated use of a resolution.

Additionally, we want to work out methods to interactively compute λ-scores (Sec-

tion 4.4) in order to find suitable solutions more efficiently.

In each conflict resolution step during a conflict resolution process, solutions for a con-

flict are computed independently of other conflicts. In order to contemplate dependencies

between conflicts, future work will also include the development of suitable heuristics to

determine which rules of a conflict to modify (since a conflict-relation is symmetrical) and

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

1126 A. Thevapalan and G. Kern-Isberner

refine the order in which the different conflicts should be resolved. Besides taking into

account the connections between conflicts, such heuristics could also consider individual

preferences and conditions given by the expert, for example, a set of rules that shall not

be modified, rule weights etc.

The other major functionality that is part of our ongoing work is the actual interac-

tion process between the expert and the framework. These interactions must tackle two

problems: explaining the cause of the respective conflict to the user and choosing the

most suitable solution for it. Instead of burden the user with all available information,

we suggest a dialogical approach where the user can reach an informed decision after

a back-and-forth dialogue with the framework. Using argumentative dialogue theories

(Caminada 2017; Modgil and Caminada 2009; Walton and Krabbe 1995) could enable

the framework to “communicate” with the user where they can ascertain the underlying

causes of the conflict and successively attain the most suitable suggestion.

References

Abdelhalim, A., Traoré, I. and Sayed, B. 2009. RBDT-1: A new rule-based decision
tree generation technique. In Rule Interchange and Applications, International Symposium,
RuleML 2009, Las Vegas, Nevada, USA, 5–7 November 2009. Proceedings, G. Governatori,
J. Hall and A. Paschke, Eds. Lecture Notes in Computer Science, vol. 5858. Springer, 108–121.

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H. and Przymusinski, T. C.

1998. Dynamic logic programming. In 1998 Joint Conference on Declarative Programming,
APPIA-GULP-PRODE’98, A Coruña, Spain, 20–23 July 1998, J. L. Freire-Nistal, M. Falaschi
and M. V. Ferro, Eds., 393–408.

Alferes, J. J., Leite, J. A., Pereira, L. M., Przymusinska, H. and Przymusinski,

T. C. 2000. Dynamic updates of non-monotonic knowledge bases. Journal of Logic Program-
ming 45, 1-3, 43–70.

Berge, C. 1989. Hypergraphs - Combinatorics of Finite Sets. North-Holland Mathematical
Library, vol. 45. North-Holland.

Caminada, M. 2006. Well-founded semantics for semi-normal extended logic programs. In Proc.
11th Int’l Workshop on Nonmonotonic Reasoning, 103–108.

Caminada, M. 2017. Argumentation semantics as formal discussion. Journal of Applied Log-
ics 4, 8, 2457–2492.

Caminada, M. and Sakama, C. 2006. On the existence of answer sets in normal extended logic
programs. In ECAI 2006, 17th European Conference on Artificial Intelligence, 29 August–
1 September 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent
Systems (PAIS 2006), Proceedings, G. Brewka, S. Coradeschi, A. Perini and P. Traverso, Eds.
Frontiers in Artificial Intelligence and Applications, vol. 141. IOS Press, 743–744.

Costantini, S. 2006. On the existence of stable models of non-stratified logic programs. Theory
and Practice of Logic Programming 6, 1-2, 169–212.

Eiter, T., Fink, M., Sabbatini, G. and Tompits, H. 2002. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming 2, 6, 711–767.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Ghosh, A. 2004. Understanding medical uncertainty: A primer for physicians. Journal of As-
sociation of Physicians of India 52, 739–742.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

On establishing robust consistency in answer set programs 1127

Inoue, K. 1993. Studies on Abductive and Nonmonotonic Reasoning. Ph.D. thesis, Kyoto Uni-
versity.

Modgil, S. and Caminada, M. 2009. Proof theories and algorithms for abstract argumentation
frameworks. In Argumentation in Artificial Intelligence. Springer, 105–129.

Przymusinski, T. C. 1991. Three-valued nonmonotonic formalisms and semantics of logic pro-
grams. Artificial Intelligence 49, 1-3, 309–343.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13, 1-2, 81–132.

Schulz, C. 2017. Developments in Abstract and Assumption-based Argumentation and their
Application in Logic Programming. Ph.D. thesis, Imperial College London, UK.

Schulz, C., Satoh, K. and Toni, F. 2015. Characterising and explaining inconsistency in logic
programs. In Logic Programming and Nonmonotonic Reasoning - 13th International Confer-
ence, LPNMR 2015, Lexington, KY, USA, 27–30 September 2015. Proceedings, F. Calimeri,
G. Ianni and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer,
467–479.

Thevapalan, A., Haupt, K. and Kern-Isberner, G. 2022. Towards causality-based conflict
resolution in answer set programs. In 16th International Conference on Logic Programming
and Non-monotonic Reasoning, LPNMR 2022, Genova Nervi, Italy, 5–9 September 2022.
Proceedings. Lecture Notes in Computer Science, vol. 13416. Springer. to be published.

Thevapalan, A., Heyninck, J. and Kern-Isberner, G. 2021. Establish coherence in logic
programs modelling expert knowledge via argumentation. In Proceedings of the International
Conference on Logic Programming 2021 Workshops co-located with the 37th International
Conference on Logic Programming (ICLP 2021), Porto, Portugal (virtual), 20–21 September
2021, J. Arias, F. A. D’Asaro, A. Dyoub, G. Gupta, M. Hecher, E. LeBlanc, R. Peñaloza,
E. Salazar, A. Saptawijaya, F. Weitkämper and J. Zangari, Eds. CEUR Workshop Proceed-
ings, vol. 2970. CEUR-WS.org.

Thevapalan, A. and Kern-Isberner, G. 2020. Towards interactive conflict resolution in asp
programs. In 18th International Workshop on Non-Monotonic Reasoning, Workshop Notes,
M. V. Mart́ınez and I. Varzinczak, Eds., 29–36.

van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. Journal of the ACM 38, 3, 620–650.

Walton, D. and Krabbe, E. C. W. 1995. Commitment in Dialogue: Basic Concepts of Inter-
personal Reasoning. State University of New York Press, Albany, NY, USA.

https://doi.org/10.1017/S1471068422000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000357

	Introduction
	Motivation and context
	Main contributions
	Structure of the paper

	Preliminaries
	Extended Logic Programs
	Consistency

	Contradictions
	Conflicts
	Conflict detection
	Conflict resolution
	A Naïve approach: Semi-normal completion
	Conflict resolution with informative extensions
	Missing -extension

	Enhancements
	Many-to-many conflicts
	Conflict resolution with constraints
	Conflict order
	-scores

	Conclusion and future work
	References

