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A well-known theorem of Jacobson (1) asserts that if every element a of 
a ring A satisfies a relation an{a) = a where n(a) > 1 is an integer, then A is 
a commutative ring. Thus the condition used in Jacobson's theorem is a 
sufficient condition for commutativity. However the condition is by no means 
a necessary one, as it is satisfied by a very restricted class of commutative 
rings. 

In this paper we weaken Jacobson's condition by insisting that it applies 
only to commutators, and prove that the final result, namely that the ring 
is commutative, still remains true. In this way, we modify the assumptions 
used in Jacobson's theorem and produce a condition which is both necessary 
and sufficient. 

The result might be of interest from, possibly, another point of view. The 
restrictions heretofore used have applied to subrings of the ring whereas the 
set we consider here is not even an additive subgroup. This suggests a variety 
of related problems which might be considered. The result may also play a 
role in the theory of restricted Lie algebras. 

We follow the pattern which has become standard by now of ascending 
from the case of division rings to the general case of arbitrary rings via the 
Jacobson structure theory. 

We begin with 

THEOREM 1. Let D be a division ring in which (xy — yx)n{x'y) — (xy — yx) 
for all x,y Ç D where n(x,y) > 1 is an integer. Then D is a commutative field. 

Proof. If xy — yx = 0 for all x,y £ D there is, of course, nothing that needs 
proving. So we assume that for some a,b £ D, db — ba ^ 0. Let Z be the 
center of D. If X Ç Z, then \(ab — ba) = (Xa)b — b(\a), so is again a com
mutator. Thus by hypothesis 

(1) {db - ba)n = ab - ba, n > 1, 
(2) [\(ab - ba]m = X(ab - ba), m = m(\) > 1. 

If we put 5(A) = S = (n — l )(w — 1) + 1 then 5 > 1 and we have 

(1.1) (ab - ba)s = (ab - ba) 

(2.1) [\(ab - ba)]s = \(ab - ba). 
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Since ab — ba 7e 0 and since D is a division ring, we deduce from (1.1) and 
(2.1) that Xs w = X where S(X) > 1 for every X G Z. But then Z must be a 
field of characteristic p 9e 0; moreover, Z is algebraic over its prime field P, 
which has p elements. 

Let u = ab — ba ^ 0. Since un = u, u is algebraic over P, a fortiori it is 
algebraic over Z. Without loss of generality we may assume that u $ Z, for 
if u G Z then 

au = a(ab — ba) = a(ab) — (ab)a 

is not in Z (for otherwise a G Z and so aô — 6a = 0 would follow) and we 
could carry the argument on for the commutator au rather than for u. Conse
quently u satisfies a minimal polynomial over Z of degree 

/ > 1, xl + X1x
t~1 + . . . + xlf X, G Z. 

Let F = P(Xi, X2, . . . , Xt) be the field obtained by adjoining Xi, X2, . . . , X* 
to P. Because the X* are algebraic over P and commute with each other, F 
is a finite field and has, say, q elements. Clearly if w G F then wq = w. Con
sider the field F(u). The polynomial xQ — x already has q roots in F, and 
since it can have at most q roots in F(u), since u (£ F C Z, we can conclude 
that uQ ^ u. However, 

ul + X^1-1 + . . . + Xt = 0 
so 

o = (ul + Xxu1-1 + . . . + xty = u*1 + x^u^-v + . . . + \t« 
= (ẑ v + x1(^V-1 + . . . + x,. 

Thus u and w? are both roots of the same minimal polynomial over Z. This 
implies that there is an element r G D so that uq = rur~x\ that is, rw = wV. 
Consequently, ur ^ rw and (ru — ur)u = uq(ru — ur). Let y = ur — ru ^ 0. 
From the above, 3/w = uQy. Since ^ is a commutator, by hypothesis y1 — y 
for some / > 1. 

Let 
{ l-l n-l ^ 

7" is clearly finite and is an additive subgroup of D; by virtue of yu = uQy, 
T is also closed under multiplication. Hence T is a finite division ring. By 
Wedderburn's theorem it follows that T is a commutative field. But both 
u and y are in T, so uy = yu. Since yu = uQy, uy = yu we obtain uQ = u, 
which contradicts uq ^ u. In this way the proof of Theorem 1 is complete. 

We recall that a ring A is a prime ring if aAb = (0) implies that either 
a = 0 or 6 = 0. We now proceed to 

LEMMA 2. Ze/ A be a prime ring in which {xy — yx)n(x'y) = (xy — yx), 
n(x,y) > 1. Then A has no non-zero nilpotent elements. 
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Proof. If A has nilpotent elements then it has an element x 9e 0 such that 
x2 = 0. If r ^ A then xrx = (xr)x— x(xr), so, being a commutator, 
(xrx)n = xrx for some n > 1. However, (xrx)2 ^ xrx2rx = 0; whence 
0 = (xrx)w = xrx. That is, x^4x = (0). The primeness of A then forces x = 0. 

If e2 = e, e G A, it is readily verified that for any x G i4, (xe — exe)2 = 0 
and (ex — exe)2 = 0. So by Lemma 2 we obtain 

LEMMA 3. If A is as in Lemma 2 then any idempotent in A is in the center 
of A. 

We now go to the next step in the Jacobson structure theory approach and 
prove 

THEOREM 4. If A is a primitive ring in which (xy — yx)n(x'v) = (xy — yx) 
for all x,y G A where n(x,y) > 1 is an integer, then A is a commutative field. 

Proof. Since A is a primitive ring it possesses a maximal right ideal p which 
contains no non-zero two-sided ideal of A. Thus p P\ Z = (0) (where Z is 
the center of A) for if x G p Pi Z then x̂ 4 = 4 x C P is a two-sided ideal of 
A which is located in p, so must be (0); by the primitivity of A we must 
conclude that x = 0. 

Let x,y £ p. By the hypothesis, for some n > 1, (xy — yx)w = (xy — yx). 
But then e = (xy — yx)n~l Ç p is an idempotent, so it must be in Z by 
Lemma 3. That is e G p C\Z. By the above remarks this implies that e = 0; 
thus 

0 = e(xy — yx) = (xy — yx)n = xy — yx. 

That is, any two elements of p commute with each other. Suppose a, b G p 
and r G 4 . Since ar G p, (ar)& = b(ar). However, ab = ôa, so we deduce 
that a(br — rb) = 0 for all a,b £ p, r £ A. Thus p(br — rb) = (0), which, in 
a primitive ring, means that either p = 0 or br — rb = (0). Thus b £ Z, 
whence b £ p C\ Z from which, as before, b = 0. But then p = (0) is a maximal 
right ideal in the primitive ring A ; in consequence A must be a division ring, 
which, by Theorem 1, must in turn be a commutative field. 

If A is a ring semi-simple in the sense of Jacobson then A is isomorphic 
to a subdirect sum of primitive rings. Each of these primitive rings is a homo-
morphic image of A, and so inherits the property that 

(xy — yx)n(XtV) = (xy — yx). 

By Theorem 4 these primitive rings must all be commutative fields, and so 
we have 

THEOREM 5. If A is a semi-simple ring in which (xy — yx)n{z'v) = (xy — yx) 
for all x,y G A then A is commutative. 

We now have all the preliminaries needed to prove the main theorem of 
this paper, namely 
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THEOREM 6. Let A be a ring in which (xy — yx)n(x'v) = (xy — yx) for all 
x,y G A where n(x,y) > 1 is an integer. Then A is a commutative ring. 

Proof. Let N be the radical of A. Hence A/N is semi-simple, and so, by 
Theorem 5, it is commutative. Thus xy — yx Ç N for all x,y Ç A. However, 
(xy — yx)n = (xy — yx), so e = (xy — yx)n~l is an idempotent; moreover 
e Ç N. But the only idempotent in the radical is 0. So (xy — yx)n~l = 0 
from which 0 = (xy — yx)n = (xy — yx). Thus A is commutative. 
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