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1. Introduction 

The evolution of ground-based infrared astronomy into a precise and accurate tool for 
astronomical studies continued during the past triennium. The limitation of photometric 
precision as practiced at the time were described and discussed in Milone (1989) and in 
Young, Milone, and Stagg (1994), partial solutions provided. The limitation in precision 
was shown to be due primarily to Atmospheric features within the passbands and the 
use of the edges of the atmospheric windows to define those passbands. The saturation of 
portions of the passbands high in the atmosphere means, especially for the longer wavelength 
passbands, a large difference between a linearly extrapolated zero-air mass magnitude and 
the actual value. The rapid curvature of the extinction curve between 1 and 0 air mass 
(more properly, a water-vapor mass, notwithstanding the contributions of carbon dioxide, 
ozone, etc.) is known as the Forbes effect. Since the widths of the atmospheric windows 
vary with altitude and the circumstances of each site, different observatories have responded 
to the problem in the past by redefining the Johnson system from J to Q to suit the needs 
of the site. The result was a proliferation of systems. As a rule, filters were selected for 
maximum throughput and so were not optimally placed, shaped, and narrowed to minimize 
the effects of the absorption bands of the terrestrial atmosphere. Given this situation and 
in light of the tremendous promise of high precision presented by infrared photometry (see 
Milone 1989), it was clear that something needed to be done to properly standardize the 
infrared system. 

The Infrared Astronomy Working Group of Commission 25 (hereafter IRWG) was 
created to do just that. A subgroup of the IRWG consisting of Andrew T. Young, Milone, 
and Christopher R. Stagg set about examining the properties of existing passbands and in 
optimizing the placement and width of potential passbands within the atmospheric windows. 
Updated versions of Modtran were used to simulate atmospheric models, and these were 
used to generate a variety of models for different terrestrial sites. Stellar spectral fluxes 
to test the transparency variation on specific energy distributions were provided by R. L. 
Kurucz, and a figure of merit was introduced in the form of the angle of rotation of one 
vector into another in Hilbert space. The one vector represents the intial spectral flux in 
the passband at the top of the terrestrial atmosphere and the second the spectral flux as 
passed through the atmosphere. Passband placements and bandwidths were determined in 
order to minimize this angle of rotation, 9. Shapes of passbands were also explored, and a 
series of triangular passbands settled on, although trapezoidal shapes, more in line with the 
kinds of interference filters which can be readily produced by filter manufacturers, did not 
degrade performance to any major degree; indeed in some cases, depending on the window, 
there was a slight improvement. From a large series of such models, the selection of final 
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parameters was made with a bandwidth made as large as possible to enhance throughput, 
but just short of a slope change (a kind of slippery slope criterion) in plots of 9 vs. A and 
AA, so that small shifts arising in the filter manufacturing process would not increase 9 
sufficiently to impair a passband's effectiveness. 

The discussion of why an improved system was needed was recently recapitulated to 
some extent by Simons and Tokunaga (2002), with some important omissions, which we 
discuss below. This work by two members of the IRWG was spurred by the need to adopt 
the best filters that could be used at the Gemini sites, and thus throughput had a higher 
priority than for the IRWG work. The added attention given to the need to improve the 
transformability and linearity of the extinction determinations is vital, even if the purposes 
differ. 

2. New Simulations 

During the end of the previous, and throughout the current, triennium, a number of ad
ditional trials were carried out. Sky emission models for a tropical, 4.2 km atmosphere, 
a 2 km, std. atmosphere and a mid-latitude, summer 1 km atmosphere were computed 
for 60 passbands, incorporating a large proportion of the infrared passbands in use in the 
community over the past decade, including those recommended in Young et al. (1994). 
The results show that in all model runs including the Mauna Kea atmosphere model, the 
SNR of the recommended passbands demonstrates that nearly all are indeed the 'improved' 
passbands claimed in Young et al. (1994). For the Mauna Kea model, for which not all 
passbands of the IRWG set are explicitly optimized, at least one of the passbands of the 
MKO-NIR set defined by Tokunaga and Simons (2002) provide lower SNR values, if not 
lower 9 values. However, we note that the advantage of a passband system that is unde
fined by the atmospheric windows at all sites where infrared photometry may be attempted 
is obvious. What is perhaps not sufficiently clear to all astronomers, and indeed even to 
some members of our own working group, is that impaired passbands are risky even for 
differential photometry because the water vapour content of the atmosphere may vary hour 
by hour, except maybe at the very best sites, during at least some times of the year, so 
that unless one is able to keep both target and comparison star in the same imaging frame 
or observe them with some rapid alternate detection process, one cannot be sure that the 
differential Forbes effect will be ignorable. This risk will be greatest for the lowest altitude 
sites where the variation of water vapour is most extreme, but since the bulk of the effect 
is produced high in the atmosphere, even good sites will not be immune. 

In two recent papers (Simons and Tokunaga 2002; Tokunaga, Simons, and Vacca 2002), 
a 'rationalized' MKO-IR system is presented. Presumably this system was devised because 
those authors recognized the advantage that an optimized new infrared set offered over 
existing passbands, without, however, wanting to sacrifice any throughput at the Mauna 
Kea site. This is understandable since the pressure to detect the faintest possible sources 
is very great at such a premier site. 

Simons & Tokunaga and Tokunaga et al. state that the MKO-NIR passbands are useful 
at both mid- and high-latitude sites and that the IRWG effectively endorsed their system. 
However, these points need strong qualification. Considering the difference in magnitude 
between transmitted spectral irradiance and background emission as an effective indicator 
of Signal-to-Noise ratio, the IRWG passbands not only provide lower values than several 
of the MKO-NIR passbands in the Mauna Kea model, but nearly all seem to out-perform 
other filters in the other models. Indeed, at the Manchester Comm. 25 meetings, the IRWG 
did not endorse the MKO-NIR system but noted only that it was apparently the best of the 
existing systems. The IRWG, however, was not aware that there was (nor is), in fact, no list 
of standards values determined for these filters (Tokunaga 2002, private communication). 

Obviously, if our intention were to treat only the atmospheric model for Mauna Kea 
(4.2 km altitude, tropical), we could have produced broader filters and would not have 
made use of other atmospheric models for other sites. However, our mandate was to pro
vide transformable passbands for all sites, including those of existing observatories, where 
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infrared astronomy could be done. For this reason, we also used a 1976 standard U.S. 
atmosphere and 2 km altitude model, appropriate for most of the major international and 
national observatories, and a mid-latitude, summer, 1 km altitude model, appropriate for 
many university observatories. Indeed, we have explored the effects even at 0 km sites, 
although we did not optimize the passbands for those sites, and for certain windows (e.g., 
M and Q), we had no choice but to model these with the 4.2 km tropical model alone. 

Thus the recommended IRWG passbands enable an observer at nearly any site where 
good photometry is practiced to be able to determine and use Bouguer extinction coefficients 
to obtain extra-air magnitudes for at least the near infrared passbands, and perhaps also the 
yN and yn passbands. Our simulations tell us that such usage for the MKO-IR passbands is 
relatively safe to carry out only at the Mauna Kea Observatories. The good news, however, 
is that a convergence may indeed be achievable, with potential transformations between 
MKO-NIR observations at Mauna Kea sites and IRWG observations at all other sites, for 
the passbands with minimal Forbes effect. 

3. Standard Star Observations 

Thanks to the Custom Scientific Company of Tucson, Arizona, the near IR portion of the 
IRWG set: z, j , h, and k, has been manufactured and has been used in an IR dewar supplied 
by IRWG member T. A. Clark, and placed on the 1.8-m Alexander R. Cross Telescope of 
the University of Calgary's Rothney Astrophysical Observatory. Although the telescope has 
been available in its current configuration since 1997, continuing equipment problems and 
uncooperative skies prevented a large enough data set to be compiled until recently. Most of 
the observations are from 2001, although sufficient trials done much earlier suggested that 
the new passbands were indeed less sensitive to water vapour variation than older infrared 
filters. 

The nightly observing procedure was to use one or two stars as Bouguer stars and 
observe a number of others as they crossed the meridian. Thus, if the night's extinction 
proved insufficiently consistent to determine linear extinction coefficients, mean values might 
be used to nevertheless determine extra-atmosphere magnitudes. This has indeed proven 
possible in a number of cases. Due to the necessary brevity of this report, the table of 
standard star magnitudes in the IRWG system will be provided in the ensuing publication. 
A brief report of the extinction coefficients and other work is given in Milone & Young 
(2002). 

4. Future Work 

We intend to publish the preliminary list of standards obtained with the IRWG system 
shortly, and to offer detailed responses to some of the comments regarding the system 
made by Tokunaga et al. (2002). Further work will involve testing the effects of aerosols of 
various types. Finally, we continue to invite members of the community to join the IRWG. 

E. F. Milone 
Chairperson of the Working Group 
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