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Abstract

Suppose we are given a regular symmetric bilinear form on a finite-dimensional vector space V over a
commutative field K of characteristic ^ 2. We want to write given elements of the commutator subgroup
Q(V) (of the orthogonal group O(V)) and also of the kernel of the spinorial norm ker(0) as (short)
products of involutions and as products of commutators.

1991 Mathematics subject classification (Amer. Math. Soc): primary 11E57 secondary 14L35.

1. Introduction

Let V be an n-dimensional vector space (n finite) over a commutative field K of
characteristic distinct from 2. Let / : V x V — • A T b e a regular symmetric bilinear
form.

Whenever G is a group and S a generating set for G with S~l = S we are challenged
to find for each g € G the length ls(g) := min{k € No | g is a product of k elements
of 5} and also the global length 1S(G) := max{l5(g) | g e G] € N U {oo}. If S is the
set of all involutions in G and \S(G) < m then G is called m-reflectional.

We study the length-problem within the following framework:

(1) G = £2 (V) is the commutator subgroup of the orthogonal group O( V) and
(la) 5 is the set of all involutions of G, or
(1 b) S is the set of all commutators in elements of O( V), or
(lc) S is the set of all commutators in elements of G = S2(V).
(2) G = ker(0) is the kernel of the spinorial norm on O( V), and
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2 Frieder Kniippel and Gerd Thomsen [2]

(2a) S is the set of all involutions in G, or
(2b) S is the set of all symmetries in G.

It is well known that O(V) is 2-reflectional. Our approach is based on a careful
analysis of the possible choices of involutions p, a € O( V) with the property it = pa
for a given n € O(V). The results in Section 5 are of interest in their own right and
yield facts on normal forms of orthogonal mappings.

As to (la), we can prove under appropriate assumptions on the underlying field K
that Q(V) is 3-reflectional. Our results cover in particular finite fields and euclidean
fields; if K is finite we find out precisely all cases when Q(V) is 2-reflectional. Ana-
logue theorems are obtained for G = ker(0), problem (2a). Results are Theorem 7.5,
Corollary 7.6, Lemma 8.3 and Theorems 8.5, 8.6, 8.8.

Problem (2b) is essentially covered by [9]; this article solves the following task:
write a given n e O( V) as a product of (as few as possible) symmetries out of given
conjugacy classes in O( V). We obtain Corollary 6.2.

Let G be a group. A commutator (in elements of G) is an element of the form
a/3a~'/J-' where a, fi e G. The subgroup generated by the set of all commutators
is the commutator subgroup G' of G. Each n € G' is a product of commutators;
let C1C(TT) denote the minimal number of factors in such a product, and cl(G) :=
max{clc(7r) I TT € G') € N U {oo). O. Ore conjectured that every element of a finite
simple non-abelian group is a commutator. This was proved for the alternating group
An (where n > 5) in [7] and also in [14]. In [17] Thompson proved that each element
ofPSL(V) is a commutator in elements of PSL(V), provided dim(V) > 3 or \K\ > 4.
Nielsen (cf. [13]) proved that in a symplectic group Sp(V) one can always find a
conjugacy class £ such that Sp(V) = Xr U {—1}. Hence, in a projective symplectic
group PSp( V) one can always find a conjugacy class E such that PSp(V) = E2. In
particular, every element of PSp(V) is a commutator. Now let G = Q(V) be the
commutator subgroup of O( V). If the field is algebraically closed it is known that
cl(Q(V)) = 1; cf. [15]. Our main results cover fields with the u-invariant (defined
in Section 2) u(K) < 2 (this is valid for each finite field) and R. Then we obtain
that each element of £2(V) is a product of two conjugate orthogonal involutions,
hence a commutator in elements of O(V). Furthermore, each element of Q(V) is a
product of 2 commutators in elements of Q (V). If AT = 1 and the Witt-index satisfies
ind(V) < 1 then each element of Q(V) is a commutator in elements of Q(V). Main
results are Corollary 9.5 and Theorems 9.6, 9.8,9.9.

A. J. Hahn studies a closely related problem in [2]. The set of commutators of
symmetries generates Q(V) and the associated length problem is solved under the
assumption that K is a non-dyadic field.

Most of the results of this paper are from Thomsen's dissertation [18].
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2. Basic definitions and facts

The definitions and facts compiled in the following two sections will be used
without a particular reference.

Let V be an n-dimensional vector space (n finite) over a commutative field K of
characteristic distinct from 2. Let f: VxV^-Kbea regular symmetric bilinear
form.

We write q(v) := f(v, v). Let O+(V) := {n e O(V) | det(^) = 1} denote the
special orthogonal group and O~(V) := {n e O(V) | det(7r) = -1} . For a subspace
U of V let dU := det(Gr)K*2 denote the discriminant of U where Gr is an arbitrary
Gram-matrix of the form f\uxU- The Witt-index ind( V) is the number of hyperbolic
planes in a Witt-decomposition of V.

For any field K define the u-invariant u(K) := max{& € N U {oo} | Kk admits a
symmetric anisotropic bilinear form}.

A vector space V with a symmetric bilinear form / is called universal if {f(v, v) \
veV} = K.

REMARK 2.1. lfu(K) < oo then u(AT) = min{k e N | each jt-dimensional regular
AT-vector space is universal}.

A field K is called (formally) real if — 1 is not a sum of squares. If K is not formally
real then call s(A") := min{A: e N | — 1 is a sum of k squares} the level of K.

A field K is called a euclidean field if K is formally real and K* consists of precisely
two classes of squares, that is, AT* = K*2 U -K*2. So A"*2 is the only positive-domain
making K an ordered field.

We compile some well-known facts.

LEMMA 2.2. (a) IfK is a non formally real field then s(K) < u(K) < \K*/K*2\.
(b) IfK is finite (with char(AT) # 2) then u(K) = \K*/K*2\ = 2. IfK is alge-

braically closed then u(K) = 1.

If AT is a euclidean field then there is a number r € No such that each orthogonal
basis for V contains r vectors v with f(v, v) > 0 and s = n — r vectors with
f(v, v) < 0. Call sgn(V) := (r, s) the signature of V.

LEMMA 2.3. Suppose that U and W are regular K-vector spaces.

(a) Ifu(K) < 2 then U is isometric to W if and only ifdim(U) = dim(W) and
dU = dW.
(b) IfK is a euclidean field then U is isometric to W if and only if sgn(U) = sgn(W).
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DEFINITION 2.4 (basic concepts and observations), (a) For a linear mapping n :
V -> V and j e N let BJ(TT) := V(n - l)j and F'{n) := ker((jr - \)>). We
call B(7r) := B1 (n) the path (some authors use the term residue-space) and F(n) :=
F'(7r) the^xerf space of 7r. Furthermore, let B°°(7r) := p|{B' '(7r) I j e N} and
F°°(7r) := LJ{Fy(^) I 7 e N}.

(b) Let 7r € GL(V). Then the negative-space satisfies N(7r) := F(—n) c B(;r).
Furthermore, 7r2 = 1 if and only if N(7r) = B(7r).
(c) If 7T € O(V) then B(^)-1 = F(TT); in particular, rad(B(7r)) = B(TT) n F(TT).

Furthermore, V = B0O(7r)@Fo0(^).
(d) Call 7r € O(V) regular (isotropic, anisotropic and so on) if B(7r) has this

property. If n is regular then V = B ( J T ) Q F ( 7 T ) .

(e) Let 7r e O(V). Then n e O+(V) if and only if dim(B(7r)) is even.
If a e O(V) is simple, that is, dim(B(a)) = 1, then a is a symmetry (that is,

CT2= 1 and dim(B(a)) = 1).

(f) Let W < V be a subspace of V. Then / induces a regular symmetric bilinear
form on W/r&d(W).
(g) The spinorial norm 6 : O(V) —• K*IK*1 is the homomorphism with the

property ®{aa) = d(a) where a is any anisotropic vector and aa denotes the symmetry
whose negative space is (a).

REMARK 2.5 (invariant subspaces). Let n € GL(V) and U < V such that B(n) <
(/. Then t/n- = U.

LEMMA 2.6 (path-lemma). Let it and a, be linear mappings of V such that n
ox • • • ak. Then B(7r) < B(CT,) H h B(ak).

LEMMA 2.7. Let n = pa where p,a G GL(V) are involutions. Then

I dim(B(p)) - dim(B(cr))| < dim(N(7r)) and

| dim(B(p)) - dim(F(a))| < dim(F(7r))

(a) Suppose additionally that F(7t) = 0 = N(7r). Then n is even and dim(B(p)) =
n/2 = dim(B(a)).
(b) Suppose additionally that F(7r) = 0 and dim(N(;r)) = 1. If n is even then

dim(B(p)) = n/2 = dim(B(a)). If n is odd then dim(B(p)) = (« + l)/2 and
dim(B(a)) = (n - l)/2, ordim(B(p) = (n - 1)/2 anddim(B(a)) = (n + l)/2.
(c) Suppose additionally that N(7r) = 0 and dim(F(jr)) = 1. If n is even then

dim(B(p)) = n/2 = dim(B(a)). If n is odd then dim(B(p)) = (n + l)/2 =
dim(B(a)), ordim(B(p)) = (n - l)/2 = dim(B(a)).
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PROOF. Clearly (B(cr) n F(p)) 0 (B(p) n F(CT)) < N(TT) and (B(CT) n B(p)) 0
(F(p) (1 F(cr)) < F(7r). The assertions are almost immediate conclusions.

LEMMA 2.8. Leta, /? e O(V, / ) . //B(a)nB(/S) = {0}thenB(ap) = B(a)©BG6).

PROOF. Any two linear mappings a, /J : V -*• V satisfy dim(F(ot)3)) < dim(F(a)D
F(fi))+ dim(B(a) n B(yS)). Hence our assumptions yield dim(F(a/?)) < dim(F(a) n
F(yS)). Taking orthogonal spaces finishes the proof.

DEFINITION 2.9. For a polynomial q = £ aix' w ' t r i ao / 0 and degree »i let
^* :— OQ1 ^am-jXJ denote the reciprocal polynomial.

Ifq is the minimum (characteristic) polynomial of n e GL(V) (denotion: mip(7r)
respectively char(7r)) then q* is the minimum (characteristic) polynomial of 7r~'. In
particular, as n € O(V) is conjugate to its inverse (in GL(V)), the minimum and also
the characteristic polynomial of n € O(V) is symmetric (that is, q = q*).

LEMMA 2.10. Let it € O(V) and mip(7r) = pk where p € K[x]. Let j e N,
j < k. Then V&r{p{(ji))LV pj (n). In particular, if j < k/2 and V is n-cyclic then
ker(/?-'(n')) is totally isotropic.

PROOF. Let v e Y&r{p'{n)) and y e Vpj(n). Then y = zpj(x) for some z e V.
As p is symmetric (as we observed in the above) we obtain f(y, v) = f(zpj in), v) =
/(z, pJ(0) • vpJ(n) • n-J-teB*«p)) = f(z,0) = 0 . If V is ;r-cyclic then VpJ(n) =
ker(p*";(7r)) and the last assertion follows.

3. Orthogonal decompositions

LEMMA 3.1. Let n e O(V), g,h e K[x] and g* prime to h. Then ker(g(x))±
ker(/i(7r). Special case: If g is prime to g* then kcr(g(n)) is totally isotropic.

We recall the following facts on orthogonal normal-forms which can be found
in [6].

DEFINITION 3.2. Let n e O(V, / ) . Call V an orthogonally indecomposable n-
module if V = U®W for n -modules U and W implies that U = {0} or W = {0}.

REMARK 3.3. Let n G GL(V). Then V is called an indecomposable n-module if a
proper decomposition V = U © W into n -modules U and W does not exist. Recall
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that V is an indecomposable n -module if and only if V is a n -cyclic module whose
minimum polynomial (characteristic polynomial as V is n-cyclic) is the power of
an irreducible polynomial. Distinguish carefully the concepts 'indecomposable' and
'orthogonally indecomposable'.

LEMMA 3.4 (orthogonal decomposition into 7r-modules). Let it € O(V, / ) . Then
V admits a decomposition V = Vt Q • • • Q V* into orthogonally indecomposable
n-modules Vh In any two such decompositions the numbers of orthogonally inde-
composable n -modules with the same given minimum polynomial are equal.

The structure of orthogonally indecomposable jr-modules is well-known and has
been described by various authors, for example, [6].

DEFINITION 3.5 (types). Let n <= O(V). We say jT-type(V) = A if V is an
orthogonally indecomposable it -module and A is explained as follows.

n- type( V) = 1 (more precisely: 1+, 1"): This means that V = U®W where U, W
are totally isotropic indecomposable n-modules such that mip(7Tt/) = (x — I)21 =
mip(7rw) respectively mipiny) = (JC + I)2' = mip(7zv) (hence n = At).
7r-type(V) = 2 (more precisely: 2*, 2~, 2+): This means that V is an indecompos-
able 7r-module, say mip(7r) = p' where p is an irreducible polynomial. In particular,
V is a n -cyclic module. If p ^ x — 1, JC + 1 then p is symmetric and has even degree
and we write jT-type(V) = 2*. If p = x — 1, respectively p = x + 1, then t is odd
and we use the notation ;r-type(V) = 2~, respectively 7r-type(V) = 2+.
;T-type(V) = 3 : This means that V = U ® W where U and W are indecompos-
able n -modules whose minimum polynomials are p', respectively p*', and p is an
irreducible polynomial where p is prime to p*. This implies that U and W are totally
isotropic and that V is a 7r-cyclic module.

THEOREM 3.6 (type-classification). Each orthogonally indecomposable it-module
^ 0^/5 into precisely one of the three types given above.

4. Some basic tools

We collect some well-known facts. Proofs can be found, for example, in [3].

LEMMA 4.1. Let ind(V) > 1. Then

(a) J2(V) = O+(V)nker(0).
(b) Ifn > 5 then P£Z(V) is simple.
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LEMMA 4.2. (a) Ifn = 3 andind(V) = 1 then Q(V) =
(b) Ifn =4 and ind(V) = 1 then Q(V) = PSL2(K(S)) where S2K*2 = dV.
(c) Ifn =4 and ind( V) = 2 then PQ(V) = PSL^fK) x PSLz(K).

LEMMA 4.3. (a) Let a G O(V) be an involution. Then Q(a) = dB(a).
(b) (Zassenhaus-formula) 0(7r) = det(^(l-Tt)\Bo.{!r))-dB00(n)foreach7t € O(V).

In particular, n e ker(0) when n is unipotent.

LEMMA 4.4. Let V = U ® Wwhere U and W are totally isotropic. Then every a G
GL(U) admits a unique <p G O(V) such that <p\u = a and Wcp = W. Furthermore,
<p G O+(V) (as d\m(B((p)) is even). If a is an involution then <p is also an involution.

PROOF. This follows from a simple matrix calculation.

Next, we state a theorem which is due to [21]; however, this proof contains a gap.
For the real and the complex numbers Frobenius gave a proof in 1910.

PROPOSITION 4.5. The orthogonal group O( V) is 2-reflectional.

We outline a short proof. Given n G O(V). We want to write n as a product
of two orthogonal involutions. Hence we can assume that V is an orthogonally
indecomposable ^-module. If jr-type(V) G {2, 3} then V is a 7r-cyclic module; that
is, we find v € V such that v, vn,..., vn"'1 is a basis for V. Define a linear mapping
p : V -*• V, v7Tj i-»- IOT""'--' for j G {0, . . . , n — 1}. Clearly, p is an involution, and it
is easy to check that p e O(V). From the fact that mip(7r) is symmetric it follows that
a := pn is an involution. Now suppose that n- type( V) = 1. Let U and W denote the
cyclic n-modules occurring in Lemma 3.5. We define involutions Pu,av G GL(U)
such that nu — Puav by the same definition as above (with U instead of V). Now
Lemma 4.4 implies that pu and av admit (unique) liftings to orthogonal involutions
p, a € O( V) that leave W invariant. The uniqueness statement of Lemma 4.4 yields
that n = pa.

The following proposition was proved in [10].

PROPOSITION 4.6 (involutions-invariance-theorem). If n = pa where p,a G

O(V) are involutions then V admits an orthogonal decomposition into orthogonally
indecomposable n -modules that are simultaneously p-modules and a -modules.

LEMMA 4.7 (discriminant, spinorial norm of orthogonally indecomposable mod-
ules). Let n G O(V), p := mip(7r) and V an orthogonally indecomposable n-
module.
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(a) If it- type( V) = 2* or 3 then

dV = p(l)p(-l)K*2 and @(n) = p(-l)K*2.

(b) Ifn-type(V) = 3 w/iere /? = qq* then V = U © W where U := ker(<?(7r)) and
W := ker(<7*(?r) are indecomposable n -modules and

G(TT) = (-iy/2q(0) = det(nv) • K*2.

(c) //Tr-type(V) = 1", 1+ or 2~ thernt € fi(V).
(d) //Tr-type(V) = 2+ ften 0(;r) = d(V).

PROOF. Let 7r-type(V) e {2*, 3}. Then dim(V) is even and B°°(7r) = V =
B°°(-jr). From Lemma 4.3 we obtain dV = 0 ( - l ) = 0(7r)0(-7r) = det(l -
n) • det(l + n) • K*2 = p{\)p(-\)K*2. Hence we obtain (as dim(V) is even)
6(TT) = det((l-7r)/2)-dV = det(l-7r)dV = p{-\)K*2. Now consider type 3 only.
Letm := n/2mdq = xm+- • +Oo. Then0(^) = p{-\)K'2 = q(-l)q*(-l)K*2 =
( ( - l ) m + a m _ , ( - i r - ' + • • • +ao)2(-Omao • K*2 = (-l)ma0 • K'2 = det(rcv) • K*2.

If 7T-type(V) = 1~ then n is unipotent; hence n € ker(0) by Lemma 4.3. If
;r-type(V) = 1+ then (—7r)-type(V) = 1~, hence 0(—n) = K*2 by the previous
argument. Furthermore, V is the orthogonal sum of an even number of hyperbolic
planes (cf. Definition 3.5), hence 0 ( - l v ) = K*2. We obtain 0(TT) = K*2. In both
cases dim(B(jr)) is even. Hence it e Q(V). Also if ;r-type(V) = 2~ then n is
unipotent and dim(B(7r)) is even.

LEMMA 4.8. Let n e O(V) and 7T-type(V) = 2*. Suppose that mip(7r) is not a
square (in K[x]), and K is finite or K = R. Then V is not a hyperbolic space.

PROOF. See [5,4.1].

LEMMA 4.9. Let n = 2, n e O(V) and n- type(V) = 2*. Then V is anisotropic.

PROOF. We have q := mip(7r) = x2 + ax + 1 for some a € K. As mip(7r) is
irreducible it follows that a2 — 4 £ K*2. The characteristic polynomials of 1 —n,
respectively 1 + n, are ^(1 — x) € K[x], respectively q(x — 1). As B°°(7r) = V
we obtain from Lemma 4.3 that 0(TT) = det(l - n)dV = ^(l)d(V) = (2 + a)dV,
and 0 ( - J T ) = q(-\)d(V) = (2 - a)dV. Hence, dV = 0 ( - l v ) = @(-iut) =
(4-a2)K*2 ^ -K*2. This implies that V is not a hyperbolic plane.

LEMMA 4.10. Suppose that K is finite and n, \jf € O(V) such that F(n2) = 0 =
F(ijr2). Then n is a conjugate ofifr in O(V) if and only ifn is a conjugate ofijf in
GL(V).
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[9] Involutions and commutators in orthogonal groups 9

PROOF. This follows from [20, p. 38].

LEMMA 4.11. Letn>2.

(a) If U is a l-dimensional subspace of V then V contains at least (\K\ — l)/2 [if
V isanisotropic then (\K\ + l)/2] 1 -dimensionalsubspaces W such thatdW = dU.
(b) Ifu(K) < 2, then for each X e K*, V contains at least (\K\ - l)/2 [if V is

anisotropic then (|K\ + l)/2] l-dimensional subspaces W such that dW = XK*2.

PROOF. See, for example, [9, 3.7].

PROPOSITION 4.12 (Scherk's Theorem). [16] Letn e O(V). Then n is a product
o/dim(B(7r)), but not less, symmetries, except when B(7r) is totally isotropic. If
B(JT) is totally isotropic then dim(B(jr)) + 2 symmetries are sufficient and this is the
minimal number needed.

LEMMA 4.13. Let M be a finite subset of the field K, a € K* and m e N>2. Then
degree(p) = m, p(0) = a, each zero of p is simple and M does not contain a zero of
p for some monic p € K[x].

PROOF. If K is infinite then one has <*i,... , orm G K such that p = (x — a^) • • • (x —
am) fulfils the required properties. Let K be finite. Then |K |m~' monic polynomials of
degree m satisfy p(0) = a. Each X € K* admits precisely |ATP~2 monic polynomials
pofdegreem — 1 and such that p(0) = a/X; this is also the number of polynomials <? of
degree m such that 4 (̂ .) = 0and<?(0) = a. Hence there are at most (|AT| — l)\K\m~2 <
|#|m~' monic polynomials p of degree m such that p(0) = a and p has a zero in K.
We conclude that at least one monic polynomial of degree m satisfies p(0) = a and
has no zero.

5. Products of orthogonal involutions

Each orthogonal mapping n e O(V) is a product of two orthogonal involutions.
How can we choose the involutions when n is given and V is an orthogonally inde-
composable 7r-module? The following answers are essential tools for our study of

LEMMA 5.1. Letn = pa where p and o are orthogonal involutions and n-type(V)
2~ or7r-type(V) = 2+ . Let

.. . ., if n = 3mod4
k := { ,

if n = 1 mod 4.
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Then one of the following cases occurs:

(a) p e O+(V)andB(p) is a k-dimensional hyperbolic space (inparticular @(p) =
(-l)k/2K*2), or
(b) p e O~(V) andind(B(p)) = (n - k - l)/2 and 0(/o) = (-l)*/2dV.

PROOF. If 7r-type(V) = 2+ and n = pa then (-7r)-type(V) = 2" and —it =
p(—a). Therefore, it suffices to study the case 7r-type(V) = 2~. Solet7r-type(V) =
2~. In 4.7 (c) we proved that n e £2(V). From Lemma 2.10 it follows that W :=
ker((jr - l)<"-»/2) is totally isotropic and dim(W0 = (n - l)/2. Hence ind(V) =
(n - l)/2 (observe that n is odd; cf. Definition 3.5). We have W = Wp = Wo = Wn
[as ((jr - I)*"-1)/2)" = 7r-("-|)/2(l - 7Ty-1)/2]. Now Lemma 2.7 implies that

(1) dim(B(p)) = dim(B(a)) € {(n - l)/2, (n + l)/2}, and (2) or (2"):
(2') If dim(W) is even, that is, n = 1 mod4, then dim(B(pw)) = dim(B(ov)) =
(n - D/4,
(2") If dim(W) is odd, that is, n = 3 mod4, then dim(B(pM,)) = dim(B(aw)) e

Clearly, (1), (2') and (2") imply
(3) dim(B(pw)) = dim(B(p))/2 or dim(F(pw)) = dim(F(p))/2.

In particular, it follows that
(4) B(p) is a hyperbolic space of dimension/: (hence 0(p) = (-l)^2^*2), orF(p)

is a hyperbolic space of dimension k and ind(B(p)) = (dim(B(p)) — l)/2 (hence
l) = ®(-p)dV = ( -

REMARK 5.2. We refer to the previous lemma.

If case (a) is present, we can replace p, o by —p, — a and arrive at case (b). The

analogue applies when case (b) holds true.

LEMMA 5.3 (type 2* and 3). Letn = pa where p and a are orthogonal involutions
and 7r-type(V) = (2*) or 7r-type(V) = (3). Let mip(7r) = pm where p € K[x].
Thendim(B(p)) = «/2 — dim(B(cr)). Ifm is even thenB(p) andB(a) are hyperbolic
spaces. Ifm is odd thenind(B(p)), ind(B(cr)) > (n — degree(p))/4.

PROOF. The vector space V is a n -cyclic module. If m is odd, m = 2t — 1, let
W := ker(p'-'(7r)). Ifm is even, m = It, let W := ker(/?'(7r)). Then W is totally
isotropic (cf. Lemma 2.10) and invariant under it, p and a [indeed: p~" p'(n)p =
p'(n") = p'(n-1) = n'-d^neip)p'(ji)l We have N(TT) = 0 = F(;r) and thus
dim(B(pw)) = dim(W0/2 = dim(B(aw)); cf. Lemma 2.7(a). We obtain ind(B(p)) >
dim(B(pw)) = dim(W)/2. Clearly, a satisfies the analogous statement. If m is odd
we have dim(W) = (/ — ! ) - degree(p) = (n — degree(/?))/2. If m is even then

https://doi.org/10.1017/S1446788700039379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039379


[11] Involutions and commutators in orthogonal groups 11

dim(W) = n/2. Furthermore, dim(B(p)) = n/2 by Lemma 2.7(a). This yields the
assertion.

REMARK 5.4 (real case). Assume that K = R, it = pa where p, a are orthogonal
involutions and 7r-type(\') = 2*. Then7r € S2(V),and:

Ifn = 0mod4 then dim(B<p)) = n/2 = dim(B(a)) and B(p), B(a) are hyperbolic
spaces.
If n = 2mod4 then dimiBtpM = n/2 = dim(B(cr)) and indB(p) = (n - 2)/4 =
indB(a) (that is. the maximum possible value when the dimension is n/2).

In each case B(p( î  isometnc to B(CT).

PROOF. We have q ~ mipi T ) = pm for an irreducible and symmetric polynomial
p ^ x - 1, x + 1. Thus r = *" +otx + 1 where a € R and^ ( - l ) = p(-\)m is
positive since all valucx o) p arc positive. Now Lemma4.3 yields that ®(n) = 1 • AT*2.
Furthermore, rr € O* 11 t Hence .T € fi(V). If m is even then the assertion follows
immediately from the pro HHĴ  lemma. Suppose that m is odd. The previous lemma
showsthatm/2 = n 4 • indBipf > (n-2)/4,henceindB(p) = (n-2)/4. Finally,
dB(p) = 0(p) = Htn . = dBin i implies that B(p) is isometric to B(CT).

LEMMA 5.5 <t>pc 1 jr»d I i Lei T = pa where p and a are orthogonal invo-
lutions and , 7 i \ ( i f i l > ••• \ i ' r \ \ Then d i m ( B ( p ) ) = n/2 = d i m ( B ( p ) ) and

B ( p ) , B ( a ) are h\prrt+>i: \;\., n In particular, p,a € Q(V).

PROOF. Let .7 -1> pc- I • ! hence mip(7r) = pk where p — x — 1, k is even and
n = 2k.

The same arguments j ^ m the pmof of Lemma 5.3 yield that Z := ker(7r — 1)*/2 is
totally isotropic and imaiiant under p and a. Clearly, dim(Z) = k. From Lemma 2.7
we obtain dim(B(p/)» = dimiBia^)) < dim(B(p))/2 [as N(;r) = 0 and B(p)
is regular]. Furthermore. dimiFtp^)) < dim(F(p))/2 as F(p) is regular. So we
obtained* = dim(Z) = dim(B(p/))+dim(F(pz)) < dim(B(p))/2+dim(F(p))/2 =
n/2 = k. Therefore. dim(Btp/)) = dim(B(p))/2 and B(p) is a hyperbolic space.
Similarly, F(p)), B(CT)) and F(a) are hyperbolic spaces. We have m := dim(B(p)) =
dim(B(a));cf.Lemma2.7. As2(/c- 1) = n-2 = dim(B(7r)) < 2m (cf.Lemma2.6)
and k, m are both even numbers we obtain k < m. Furthermore, dim(F(7r)) = 2
implies that m < k + 1; cf. Lemma 2.7. We conclude that m = k.

Analogous arguments apply when 7r-type(V) = 1+.

LEMMA 5.6. Suppose that n,<p e O(V) are mappings such that it- type(V) = 3 =
tp- type(V) and mip(7r) = mip(<p). Then ita = <pfor some a G O(V).
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12 Frieder Kniippel and Gerd Thomsen [ 12]

PROOF. Letp = qq* be the minimum polynomial of n and <p. Choose u,z € Vsuch
thatker(4(7r)) = (u}n andker(^(^)) = (z)v. We have V = ker(g(7r))©ker(<7*(7r)) =
ker(<? (<p)) ©ker(g* (<p)) and each direct summand is totally isotropic and has dimension
n/2. Define a linear mapping a : k&T(q(n)) -*• ker(q(<p)), unj H> WTZJ. Then a is a
bijectionand7r|ker(,(B)) = oK^lkerw?)))**"'- Obviously, there is an extension a e O(V)
of a that maps ker(^*(^)) onto ker(g*(^>)). Hence it and a(pa~] are both orthogonal
mappings of V which leave ker(<7*(7r)) invariant and whose restrictions to ker(^(7r))
coincide. Hence they are equal; cf. Lemma 4.4.

LEMMA 5.7 (type 3). Letn € O(V), n- type(V) = 3 and mip(7r) = qq*. Let X €
K*. Then it = pa for involutions p, a € O(V) with dim(B(p)) = n/2 = dim(B(a))
and the following additional properties.

(i) Ifn=0 mod 4 then B(p) is a hyperbolic space and 0 ( p ) = (-1)" / 4 K*2 and
indB(a) > n/4 - 1.

(ii) Ifn = 2 mod 4 then indB(p) = indB(a) = (n — 2)/4 (hence the maximum
possible for a regular space of dimension n/2); furthermore, @(p) = XK*2.

PROOF. The statement dim(B(p)) = n/2 = dim(B(a)) follows from Lemma 2.7.
Our type-classification yields V — U © W where U := ker(g(7r)) and W :=
ker(<7*(7r)); U and W are totally isotropic. Take a basis i i i , . . . , um for U and a basis
i o , , . . . , wm for W such that / ( « , , wm.j) = S(i, j) • fi where /x := 2A.(-l)m(m+1)/2.
Define x/r € GL(U) such that M, I-»- M,+, for i = 1 , . . . ,m - 1 and um i-»-
- a m _ ,« m - • • - aO"i where 9 = J:"1 + am_,jcm-' H \- a0. Then mip(i/f) = q.
According to Lemma 4.4 r/s admits a unique extension to a mapping in O(V)
which leaves W invariant. Call this mapping \j/ also. Then mip(^) = qq*
[as mip(V0 is symmetric and q is prime to q*] and ^ is a conjugate of n in
O(V) by the previous lemma. Hence we can a priori assume that n = if/. Let
u := Mi and w := W\. Define p € GL(V) by the properties ux(/' t-+ w4r~'
and wx/f~' i->- M ^ ' for 1 = 0 , . . . ,m — 1. Then p € O(V); furthermore, p and
CT := px}r are involutions and B(p) = {wx//~' — M^-' | i e {0 , . . . , m — 1}). We obtain
/OV*--' - M V ' , wty-i -uf') = - 2 / ( H V ' , wVf~-') = -2f(ufi+i, w). This equals
OifO < i + j < m — 1 a n d - 2 / x i f i + y = m — 1. Hence indB(p) attains the maximal
possible value. If m is even then B(p) is a hyperbolic space; hence 0 ( p ) = dB(p) =
(-l)m/2K*2. If m is odd we obtain that 0 ( p ) = dB(p) = XK*2. Furthermore,

B(CT) = {wir1-' - u\j/' \ i € {0 , . . . , m - 1}) and for i , j e { 0 m - 1} one has
fiwx/r1-' - uijr1, wiffl-j - ur//j) = -2f(w, uij/'+J-1). This is 0 if 0 ^ i + j < m.
Hence ind B(a) attains the maximal possible value if m is odd. If m is even we obtain
indB(a) > TO/2- 1.
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LEMMA 5.8. Let n = 2 mod 4 and TC e O(V) and k e K*. Suppose that
jr-type(V) = 3 or [K finite andn-type(V) = 2*]. Then n = pa and 0 (p) = kK*2

for some involutions p,a € O(V).

PROOF. Take involutions a>, r) e O(V) such that n = corf. Choose (A € k@(<o). As
u(K) < 2 or V is a hyperbolic space we can obviously find cp e GL(V) such that
f(v<p, w<p) = fif(v, w) for all v, w e V. Then itv, of, if e O(V). If 7r-type =
3 then Lemma 5.6 supplies a e O(V) such that n = it*"'. If K is finite and
^•-type(V) = 2* then Lemma 4.10 yields the same result. Letp := ^"andcr := if".
Then p,a € O(V), both elements are involutions, n = pa and ©(/?) = dB(/o) =
d(B(.co)(pa) = d(B(a))<p) = fin/2dB(co) = fx@(co) = kK*2 asn = 2mod4.

COROLLARY 5.9. Let n = pa where p,a G O(V) are involutions and V is an
orthogonally indecomposable n-module.

(a) Ifn-type(V) i {2+, 2~) then dim(B(p)) = n/2 = dim(B(<r)).
(b) Ifn- type(V) = 2" then dim(B(p)) = (n - l ) /2 = dim(B(a)) ordim(B(p)) =

(n + l)/2 = dim(B(or)), and we can achieve each of the two possibilities.
(c) //Tr-type(V) = 2+ then dim(B(p)) = (n - l) /2 anddim(B(a)) = (n + l)/2,

or dim(B(p)) — (n + l)/2 and dim(B(a)) = (n — l ) /2; we can achieve each of the
two possibilities.

Unless 7i-type(V) = 2+ it follows that dim(B(p)) = dim(B(a)). Furthermore,
detOr) = - 1 if and only ifn-type(V) = 2+.

This follows immediately from Lemmas 2.7,5.1 and 5.5.

COROLLARY 5.10. Let n e O(V) and s e N n {(« - l) /2, n/2, (n + l)/2}. O«e
has n = pa for involutions p,o € O( V).

(a) /f 7T G O+( V) one can achieve that dim(B(p)) = s = dim(B(<7)).
(b) If 7i € O~(V) one can achieve that dim(B(p)) = [n/2~\ + 1 and dim(B(a)) =

r / 2 i
A decomposition of V into orthogonally indecomposable n -modules contains at

least | dim(B(p)) — dim(B(cr))| n-modules of type 2+.

PROOF. If n e O+(V) then an orthogonal decomposition of V into orthogonally
indecomposable n -modules contains an even number of modules of n- type = 2+; if
TZ € O~(V) then this number is odd. Hence the assertion follows from the previous
corollary.
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6. Symmetries in the kernel of the spinorial norm

Let S denote the set of symmetries in ker(@). We want to write a given n e ker(@)
as a product of as few as possible symmetries in S. This problem was studied within
a more general framework in [9]. We quote a result.

PROPOSITION 6.1 (cf. [9], Corollaries 12 and 13). Let \K\ > 7, V be isotropic, n €
kcr(0) andk := dim(B(7r)).

(a) 1/TZ2 7̂  1 and B(n)/ rad(B(7r)) is isotropic (that is, there is an isotropic vector
* 0 in B(n)\ rad(B(jr))) then n is a product ofk but not less than k symmetries in S.
(hi 7i is a product ofk + 2 elements ofS

From the previous proposition one obtains:

COROLLARY 6.2. Suppose that u(K) < 2 and \K\ > 5. Then S generates ker(0).

iai Letn € ker(0), k := dim(B(7r)) and dim(B(;r)/rad(B(jr)) > 2. Then n is a
product ofk but not less than k symmetries ofS.
• hi Letn € ker(0), k := dim(B(7r)) amidim(B(;r)/rad(B(7r)) = 1. //d(B(7r)/

raJiB(.T)) = K*2 then n is a product of k but not less than k symmetries of S;
otherwise one needs k + 2 symmetries in S.
u i Let n e ker(0), k := dim(BOr)) and B(n) be totally isotropic. Then it is a

r>n>Juct ofk + 2 but not less than k + 2 symmetries ofS.

R ( \ U R K 6 . 3 . Let \K\ = 3.

i a i It n € {3,4} and d V = K*2 then S does not generate ker(0).
i h i If n > 5 or if dV / K*2 then S generates ker(0); however, it is not so easy to

tmd the minimal number of factors needed. For example, if n > 5 one can find some
T >: ker(0) where dim(B(7r)) + 4 symmetries in ker(0) are needed.

7. Reflections in Q(V) and ker(0)

LEMMA 7.1. Let \K\ > 4. Then PSUiK) is 3-reflectional. PSL^iK) is 2-
reflectional if and only if's(K) = 1.

PROOF. Let " denote the canonical homomorphism of SL2(#) onto PSL2(/O. For
A, /u e K where A ^ 0 let
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Then p(/z, X) e SL2(£) and p is an involution. Furthermore, if s(K) ^ 1 then each
involution ^ 1 in PSL^AT) has this form. Now let TC e Shz(K) be such that n ^ 1.
Then (up to similarity)

K—\ K

for some A: € J .̂ If *• = 0 then ir is an involution. So let K ^ 0. If s(#) / 1 take
X2 ^ 1. Then

7T = p(-A, (XK)~\X2 - 1)) - p<l, (A.2#c)~'(l -X2))- p(0, X~l).

If s(^) = 1 then take Xe K such that X2 = - 1 . Then 7r = p(0, X)p(X, X/c).

1 check that

X =

is not a product of two p's; hence f is not a product of two involutions in PSL2(^).

COROLLARY 7.2. (a) If n = 3, V « isotropic and \K\ ^ 3, f/zen Q(V) is 3-
reflectional; Q(V) is 2-reflectional if and only ifs(K) = 1.
(b) Letn = 4andind(V) = 1. Then Q(V) is 3-reflectional; Q(V) is 2-reflectional

if and only ifs(K) = 1 or dV = -K*2.

PROOF, (a) We know that S2( V) = PSLzCA'); cf. Lemma4.2. Hence the previous
lemma yields the assertion.
(b) As Q(V) = PSL2(A:(<5)) where 82K*2 = dV (cf. Lemma 4.2) the previous

lemma yields the assertion.

LEMMA 7.3. Let u(K) < oo and X e K*. Letco € O(V) be an involution such that
dim(B(w)) > u(*T) or dim(F{a))) > u(Ar). Then:

(a) Some symmetry p € O(V) satisfies ®(p) = XK*2 and pco is an involution.
(b) If co e {1,-1} suppose additionally that n > u(K) + 1. Some involution

p € O(V) then satisfies dim(B(p)) = 2 and@(p) = XK*2 and pco is an involution.

PROOF. We may assume that dim(B(a>)) > u(K) (otherwise replace co by — co).
(a) Choose v € B(co) such that q(v) = X. Then the symmetry p whose path is (v)
fulfils the requirements, (b) If co = —1, take any anisotropic vector v e V. As
dim(u±) > u(K) we find w e v1 such that q(w) = Xq(v). The orthogonal involution
p whose path is (u, w) meets the requirements. Now let co ^ — l. Take an anisotropic
vector z € T(co). As dim(B(o>)) > u(K) we find v e B(cu) such that q(y) =
Let p € O(V) be the involution with B(p) = (z, y>.
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LEMMA 7.4. Suppose 2 < n(K) < oo. Let n = pa where p and a are orthogonal
involutions.

(a) Ifn > 2u(A") + 2 and dim(B(p)) = 1, then it = p'a', where p' and a' are
orthogonal involutions and p' 6 £2( V).
(b) Ifn > 2u(K) + 4 and dim(B(p)) = 2 then n = p'a' where p' and a' are

orthogonal involutions and p' € Q{V).

PROOF. AS n > 2u(K) + 1 we have ind(V) > 1; hence S2(V) = ker(0) n O+(V).
Furthermore, it2 = pp"'.

(a) We observed that it2 is a product of two symmetries. Hence dim(B(7r2)) < 2and
dim(rad(B(7r2))) < 1. This yields that dim(F(7r2)) > n-2anddim(rad(F(jr2))) < 1.
Furthermore, F(7r2) = F(7r)©N(7r). Therefore, we find a regular subspace U such
that dim(C/) > n — 3, U is a n-module and ixu is an involution. We know that
TZVL — p,CTi for involutions p\,O\ e OiU-1) (2-reflectionality of orthogonal groups).
Now co := nu is an involution and dim(B(a>)) > u(K) or dim(F(<w)) > vt(K)
(as dim(t/) > 2u(K) — 1). Hence Lemma 7.3 supplies an involution pi such that
a2 :— Pico is an involution with spinorial norm equal to ®(p\) and additionally
that dim(B(p2)) = 1 if dim(B(p,)) is odd, dim(B(A>)) = 2 if dim(B(p,)) is even.
Thus TTu = P2O2. Let p' := Pi@P2 and a' := axQ)a2. Then n = p'a' and
p ' eke r (0 )nO + (V) .
(b) We have dim(B(7r2)) < 4 and dim(rad(B(7r2))) < 2 (see the previous section).

So we obtain a regular subspace U such that nv is an involution and dim((/) > n — 6.
Choose a maximal it -module U with these properties.

Case 1: dim(f/) > n — 5 > 2u(AT) — 1. Then the analogue arguments as in the proof
of (a) yield the assertion.
Case 2: dim(£/) = n - 6. Then dim(B(7T2)) = 4 and dim(rad(B(7r2)) = 2. Inspec-
tion of the types of orthogonally indecomposable 7r2-modules yields the following
possibilities for

V = A®B®C: either (1) n2-type(A) = l~, dim(A) = 4 and B(7r2
fi) = B

2-dimensional and nc
2 = 1(S or

(2) 7r2- type(A) = 2" and dim(A) = 3, the same holds true for B and itc
2 = lc-

As it2 is a product of two involutions with 2-dimensional paths (jt2 = pp") we
conclude that only (2) is possible; cf. Corollary 5.9 and Proposition 4.6. Hence
mip(7r2) = (x — I)3 and therefore t/x decomposes into two 3-dimensional n-
modules of type 2" or 2+. Using Lemma 5.1 and Remark 5.2 we obtain involutions
P\,a, € O((/x) such that jryi = p\O\ and B(p,) is a4-dimensional hyperbolic space.
Thus, pi € S2((/±). The involutions p' := pi@l(y and a' := a\@Ttv fulfil our
requirements.
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THEOREM 7.5. Let 2 < \x(K) < oo.

(a) Letn> 2\i(K) + 2. Then ker(©) is 3-reflectional.
(b) Let n > 2u(K) + 3, or [u(/O even and n > 2u(K) + 2]. 77zen fi(V) is

3-reflectional.

PROOF. As « > u(/sT), V is isotropic. Hence S2(V) = ker(0) fl O+(V). Let
n € ker(0). Then Corollary 5.10 provides involutions p,a e O(V) such that
7r = pa and fc := dim(5(p)) > n/2; if 7r e O+(V) then k = n/2 or it is odd.

Proof of (a). Lemma 7.3 supplies a symmetry K such that pic is an involution and
pK 6 ker(0). The previous lemma provides involutions p' € ker(©) and a' € O( V)
such that KO = p'a'. As KO e ker(©) it follows that a' € ker(@). We have
n = (pK)p'a'.
Proof of (b). If k is even then our assumptions imply that n > 2u(^f) + 4. From
Lemma 7.3 we get an involution K e O(V) such that dim(BOO) 5- 2 and pic is an
involution in Q(V). So dim(B(*c)) = 2 if and only if k is even. Hence KO e Q(V),
and the previous lemma supplies involutions p', a' € £2( V) such that ica = p'a'. We
obtained n = (pic)p'o' and proved that £2(V) is 3-reflectional.

COROLLARY 7.6. Let u(K) = 2 and n > 6. T/ien S2(V) W a/so ker(0) are

For finite fields K we will also study the small dimensions n = 2, 3,4,5 which are
not subsumed in the previous corollary.

8. Special cases: finite and euclidean fields

Let n > 3. Then O+(V) is 3-reflectional; O+(V) is 2-reflectional if and only if
n ^2mod4;cf. [8].

If A' is a euclidean field and V is anisotropic, or if u(K) = 1, then obviously
= O+(V). Hence we obtain:

PROPOSITION 8.1. Let n > 3. Suppose that K is a euclidean field and V is
anisotropic, or xx(K) = 1. Then S2(V) is 3-reflectional. Furthermore, Q(V) is
2-reflectional if and only ifn ^ 2 mod 4.

LEMMA 8.2. (a) Suppose that n = 2 and [\K\ ^ 3 or V is not a hyperbolic
plane]. Then O+(V) ^ {1, -1}.
(b) Suppose that n is odd and ind(V) = {n — l)/2. Then some IT eO(V) satisfies

Tr-type(V) = 2-{hence (-Tr)-type(V) = 2+).
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(c) Let V be a hyperbolic space, q a polynomial of degree n/2 and a power of
an irreducible monic polynomial such that q is prime to q*. Then some n € O(V)
satisfies 7r-type(V) = 3 where mip(7r) = qq*.
(d) Suppose that V is hyperbolic and n = 0mod4. Then some n € O(V) satisfies

jr-type(V) = l,

PROOF, (a) Take an anisotropic a € V and an anisotropic b e V \((a) U a-1).
Thenjr := oaob e O+(V) \ {1, - 1 } .
(b) Let dV = XK*2. Take a basis v , , . . . , vn for V such that f(v,, Vj) = 0 for all

i,j <E { 1 , . . . , /z}when/+y > n + l,and/(u,-, Vj) + f(Vj-u Vj) + f(vh VJ-I) = Ofor
all/, j € { 2 , . . . , « } (the construction will be done later). Define 7r € GL(V) such that
U/7T := u, + Vj+t for / e { 1 , . . . , n - 1} and i;n7T := vn. Then mip(7r) = (A: — 1)" and
n e O(V) as f(Vjn, v}n) = /(i>,, uy) for all /, y € { 1 , . . . , n) by our assumptions.
Hence Tr-type(V) = 2~. We will construct a basis with the above properties:

Consider a system of linear equations with unknowns / . ; where i, j 6 { 1 , . . . , n}
and / < j :

fij = 0 if i + j > n + 1 and /,.„ =X

fi.j + fi-\.j + fi.j-\ = 0 if/, y € {2,.. . , n] and / < j

fi.i+2f,.ij=0 for/ e {2 , . . . ,/i}

This system of equations has a solution: compute recursively fLj for fixed / + j .
Now let ^ be the symmetric bilinear form whose Gram matrix (g, ; ) is given by

gij '•= f.j when / < j and gtJ := f}J when y < /. Then ind(V, g) = (n - l ) /2 =
ind(V, / ) and d(V, g) = XK*2 = d(V, / ) . Hence (V, / ) is isometric to (V, g).
Therefore, one can find a basis v\,... ,vn for V such that the Gram-matrix of /
associated with this basis is G. This basis fulfils our requirements.
Proof of (c) and (d). Take totally isotropic subspaces U, W such that V — U © W.
Suppose that q € K[x] where degree(^) = n/2 , q ^ q* and q is a power of an
irreducible polynomial. Let <p € GL(V) be such that mip(v) = <?• Then Lemma 4.4
supplies n € O(V) such that 7Zu = <p. As char(^) is symmetric we conclude that
mip(7r) = qq*. We proved (c) and assume that n = 0mod4. Take <p € GL(f/) such
that mip(<p) = (x + 1)"/2. Again Lemma 4.4 supplies n e O(V) such that 7TV = <p
and mip(?r) = (^ + 1)". Hence 7r-type(V) = 1+. The same argument applies to
x - 1.

LEMMA 8.3. Letn > 3 and u( A") < 2.

(a) Ifn = 2 mod 4 rtew fi (V) is not 2-reflectional.
(b) If n is odd and n ^ 9 amf s( AT) # 1 rten f2 (V) is not 2-reflectional.
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(c) Ifn i {8,9}, s(K) ^ 1 and dV = K*2 then £2( V) contains some n which is not
a product of two involutions in ker(0).

PROOF OF (a). We have V = AQHtQ)H2Q)W where //, are hyperbolic planes,
W is a hyperbolic space such that dim(W) = 0mod4 and dim(A) = 2 where A is
a hyperbolic plane or an anisotropic space. Hence dA = dV. If A is anisotropic or
\K\>3 then Lemma 8.2 (a) supplies \jr e O(A) such that ^-type(A) = 2* or 3. If
W z£ 0 then Lemma 8.2 (d) supplies some f € O(W) such that £- type(W) = 1.

Case 1: K is an infinite field. Let X e K* be such that 0(i/O = XK*2. Select
Mi € K* \ {1, -1 , A"1,-A"1} and let fi2 •= (*Mi)~'- Let <p, € O(//,) be such
that <prtype(Hj) = 3 and @(̂ >,) = fi/K*2; cf. Lemmas 8.2 (c) and 4.7. Then
it := ^©ViQ^2®? e £2(V).
Case 2.1: A" is finite and A is anisotropic. Choose an irreducible quadratic monic
polynomial q e K[x] such that $(0) • K*2 = 0(^r). If 0(T^) ^ K*2 then q ^ q*
and Lemma 8.2 (c) supplies <p e O(// |©//2) such that mip(<p) = ^^* and we
obtain 0(<p) = q(0)K*2 = 0 ( ^ ) ; cf. Lemma 4.7 If 0 ( ^ ) = /(T*2 choose (p e
O(/y|©//2) such that <p-type(//,©//2) = 1; cf. Lemma 8.2 (d). This choice yields
;r := Vr©<p©< € « ( V ) .
Case 2.2: A" is finite and A is a hyperbolic plane. Take an irreducible monic poly-
nomial q e K[x] of degree 3 such that g(0) = — 1; cf. Proposition 4.13. Now
Lemma 8.2 (c), provides <p € O(A©//,©//2) such that mip(ip) = qq*. Then
it :=v>©£ 6fi(V).

In each of the cases 1,2.1 and 2.2 we conclude from Proposition 4.6 and Corol-
lary 5.9 that n is not a product of two involutions in O+( V).

PROOF OF (b). Case 1: n = 3or5mod8. LeUr € C2(V)besuchthat7r-type(VO =
2~: cf. Lemma 8.2 (b). Suppose that p,a € O(V) are involutions such that n = pa.
Then Lemma 5.1 implies that

(*) peO + (V) and 0(p) = -A:*2, or p e O " ( V ) and 0(p) = - d V .

Case 2: n = 7 mod 8. As u(A") < 2 we have a decomposition V = V,® V2© V3

where dim( V,) = dim( V2) = 1 and dim(V3) = 5 mod 8 and d V, = dV2 = dV3 = dV.
Now Lemma 8.2 provides n e O(V) such that V, < F(^) and V2 < N(n) and
7r-type(V3) = 2+. Hence n € S2(V); cf. Lemma 4.7. Let p, a € O(V) be arbitrary
involutions with n = pa. Due to Proposition 4.6 we can assume that the above
decomposition is invariant under p. Therefore, Lemma 5.1 implies that (*) holds true.
Case 3: n = 1 mod 8. Then n > 17 since B ^ 9 . Thus we find a decomposition
V = \z,©V2©V3 where dim(V,) = dim(V2) = 7anddim(V3) == 3mod8 anddV, =
dV2 = dV3 = dV. Choose n e O(V) such that 7r-type(V,) = 2~, 7r-type(V2) = 2+
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and ^-type(V3) = 2+; cf. Lemma 8.2 (b). Again we obtain that n € £2(V) and (*)

for arbitrary orthogonal involutions with n = pa\

In each of the three cases we obtained in particular that arbitrary involutions
p,a e O(V) with n = pa are not elements of £2(V). Furthermore, under the
assumption that dV = K*2, p and a are not elements of ker(©).

PROOF OF (C). Suppose that the assumptions of (c) hold true. If n is odd then the
claim was proved in the proof of (b). Suppose that n is even.

Case 1: n = 0mod8. As n ^ 8 we have n > 16. Hence we find a decomposition
V = V,© V2© V3© V4 such that dim(V,) = dim(V2) = 1, dim(V3) = 9, dim(V4) =
5 mod 8 and dV, = - • • = dV4 = AT*2. Using Lemma 8.2 we obtain n e O(V) such
that V, c F(TT), V2 C N(TT), 7r-type(V3) = 2+ and ;r-type(V4) = 2". This choice
yields in particular n e £2(V). From Proposition 4.6 and Lemma 5.1 we conclude
that n is not a product of two involutions in ker(@).

Case 2: n = 2mod8. Then n > 10. We find a decomposition V = VlQ)V2 such
that dim(V,) = 7 and dim(V2) = 3 mod8 and dV, = dV2 = K*2. Using Lemma 8.2
we obtain n € O(V) such that ^-type(V|) = 2~ = 7r-type(V2). Again we conclude
that n € S2 and n is not a product of two involutions in ker(0).
Case 3: n = 4 mod 8. As dV = K*2 we know that V is a hyperbolic space. Hence
Lemma 8.2 provides n e O(V) such that n- type(V) = 1. So n e Q(V) and n is not
a product of two involutions in ker(0); cf. Lemma 5.5.
Case 4: n = 6 mod 8. We find a decomposition V = Vt © V2 such that dim( Vi) = 1
and dim(V2) = 5 mod 8 and dV) = dV2 = K*2. Using Lemma 8.2 we obtain
n € O(V) such that 7r-type(V,) = 2~ = 7r-type(V2)- We conclude that n e S2(V)
and n is not a product of two involutions in ker(©); cf. Proposition 4.6 and Lemma 5.1.

LEMMA 8.4. Let 7 < \K\ < oo.

(a) Ifn = 4 and V is a hyperbolic space, or n = 5, then Q.(V) is 3-reflectional.

(b) Ifn € {3,4, 5} then ker(0) is 3-reflectional.

PROOF OF (a). First suppose that n = 4 and V is a hyperbolic space. Let7r e £2(V).

Case 1: F(n) U N(7r) contains an anisotropic vector v. Then Corollary 7.2 (a) implies
that it or — n is a product of at most three involutions in Q (V). So 7r is a product of
at most three involutions in Q(V).

Case 2: V = t /@ W for TT-modules U, W where dim(t/) = 2 and TT̂  € O+(t/). As
u(AT) = 2 we find symmetries pi, ^ € O(f/) andcr,, a2 e O(W) such that 7Tf/ = P\fc,
nw = <7|(72 and 0(pi) = 0(CT,). Then 7r = (piQa,) • (p2®a2) shows that n is a
product of two involutions in
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Case 3: None of the cases 1 or 2 applies. Then an orthogonal decomposition of V into
jr-modules does not contain modules of dimension 1 or 3 (case 1). Definition 3.5 leaves
the possibilities: V is an orthogonally indecomposable 7r-module [then n- type( V) =
1, 3 or 2*, where in the latter case mip(7r) is a square] or V = UQ)W where
U and W are 2-dimensional orthogonally indecomposable it -modules. The second
possibility does not occur: as case 2 is excluded we have dtUjty) = —1; hence
7r-type((7) = 2+, in particular dim(f/) is odd. Hence V contains a 2-dimensional
totally isotropic n-module T < V which is 7r-cyclic unless TtT = l r or - l r . (that is,
when 7r-type(V) = 1). Clearly, one can find a totally isotropic subspace S such that
V = T © 5 and Sir ^ 5. Take a basis t\, t2 for T and a basis S|, s2 for S such that
the Gram-matrix of / (associated to the basis tt,t2,su s2 of V) is G = (° f) where
£ denotes the 2 x 2-unit-matrix. If 7r-type(V) ^ 1 we can additionally assume that
ttn = t2. Then n = (£ ^) where P = (° ],) for some a, (3 e K, respectively P = E
when 7r-type(V) = 1. As n is orthogonal we have G = TtGn'. This implies that
Q = (P-1)' and X = (_°y

 Y
o) where y e K\ provided P $ {£, - £ } . As \K\ > 5 we

can choose A € K*2 \ {-a}. For 8 € K* let ct> := (/,°_, £) where A := (£ &). Observe
that a> is an involution and o> € ker(0) n O+(V) = £2(V). Hence nco e £i(V).
An elementary calculation yields that char(7r<w) = x4 + ixx3 + vx2 + fix + 1 where
M = -trace(XA) = 8y(X - a) and v = -(AcT')((<$/a)2 + 1 + (a*-')2) provided
F ^ {£, - £ } , or else /n = Oand v = X82y2 - 2.

We contend that a suitable choice of 8 entails that nco fulfils the assumptions of
case 2; then nco is a product of two involutions in Q(V) and 7r is a product of three
involutions in Q(V).

First, let us consider the case P € {£, —£}. As u(K) < 2 and \K\ > 7 we can
choose J e T and some u € K* such that X82y2 + u2 = 4; cf. Lemma 4.11. This
choice yields that char(7rco) = {x2 + ux + l)(x2 — ux + 1); hence char(7ro>) is a
product of two symmetric quadratic polynomials where the first is prime to the second
one. Therefore, nco fulfils the assumptions of case 2 and we have finished.

Secondly, assume that P g {£, - £ } . Take K,r\ e K* such that K2 - rj2 =
-(Aor')(l + aX"')2 [this is possible as a hyperbolic plane is universal and, due
to | AT | > 7, one has at least 3 linearly independent solutions (/c, r?) e K x K;
cf. Lemma 4.11]. Take 8 := 2/c(y(a + A.))"1. Then char(rcco) = (x2 + ux + l)(;c2 +
IDJC + 1) where u := r) + (i/2 and w := fi — u. Furthermore, u ^ w (as r) ^ 0).
So char(7ra>) is a product of two symmetric quadratic polynomials where the first is
prime to the second one. Hence nco fulfils the assumptions of case 2 and we have
finished.

Now we consider n = 5.

Case 1: F(7r) contains an anisotropic vector. Then the assertion follows immediately
from the previous one (when vL is a 4-dimensional hyperbolic space) or Corollary 7.2
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(b).
Case 2: V contains a 2-dimensional regular ;r-module U such that itu € O+(U).
Then irv± = ata2 where a, are orthogonal involutions. As u(AT) < 2 we have nv =
P\Pz where p, are symmetries and 0(pi) = 0(<7i). Hence 7r = (pi©cri) • (P2@or2)
proves that ;r is a product of two involutions in £2(V).
Case 3: Neither case 1 nor case 2. Then V is an orthogonally indecomposable n-
module,and,sincedim(V)isoddand7r e O+(V),7r-type(V) = 2~. LetdV = nK*2.
Select A such that dV ^ A.AT*2. Then 4A. - n # 0. Clearly, dim(rad(B(;r))) = 1
and dim(rad(B2(7r))) = 2. Hence we find isotropic vectors y,z such that v €
B(;r) \ B2(7r) and z e B2(?r) and (v, z) is a hyperbolic plane. In particular, one has
someu e B(7T)\B2(JT) such that q(u) = 4X—/X. Let v € V be such that v(n — \) = u
and u> € F(7r) = rad(B(^r)) with w ^ 0. Then u £ B(7r); hence (u, «;) is a hyperbolic
plane. Therefore, q(z) = A for some z = v+fiw where )S € £ . We have z(^ — 1) = u
and?(z(7r + l)) = 29(z)+2/(z, z^-) = 4q(z)-q(z(7t-1)) = 4 X - 9 ( M ) = M e dV.
Let o) := - a ^ + i ) . Then det(a>) = 1 and 0(a>) = q(z(jt + l))dV = A"*2. We have
z € F(7ro>) and d(zx) = ^(z)dV ^ K*2. Thus rcw is a product of two involutions of
Q (V) (apply Corollary 7.2 (b) to the restriction of nco to zx). We have proved that n
is a product of three involutions in

PROOF OF (b). Let n € {3,4, 5} and n e ker(0). We want to prove that n is
a product of three involutions in ker(©). If n G Q(V) then Corollary 7.2 or part
(a) prove the assertion. Hence we can assume that n & Q(V). Take orthogonal
involutions p, a such that n = po. If dV ^ AT*2 then p e ker(0) or —p € ker(0)
and it follows that it is a product of two involutions of ker(0). So let dV = A"*2.
If n € {3,5} then — n e Q(V), and we have seen that — n is a product of three
involutions in Q(V); hence n is a product of three involutions in ker(0). Letn = 4 .
As det(7r) = — 1 an orthogonal decomposition of V into orthogonally indecomposable
7i -modules contains at least one module of type 2+. All n -modules but those of type
2+ or 2~ have even dimension. Hence V contains an anisotropic / e N(7r) U F(7r).
From our result for n = 3 we know that — n or n is a product of three involutions in
ker(0). So it is a product of three involutions in ker(0).

THEOREM 8.5. Let K be finite and n > 3. If\K\ = 3 suppose additionally that
n>6or[n = 4anddV = -AT*2]. Then Q(V) is 3-reflectional. £2(V) is 2-
reflectional if and only if

(i) s(AT) = 1 andn ^ 2 mod4, or
(ii) n = 0mod4 and dV = -K*2, or

(iii) n e {8, 9}.

PROOF. First we prove that £2( V) is 2-reflectional provided one of the assumptions
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(i), (ii), (iii) holds true. Under each of these assumptions we get involutions p , a €
O+(V) such that n = pa (first statement in Section 8). Consider a decomposition
$ of V into orthogonally indecomposable n-modules which are simultaneously p-
modules; cf. Proposition 4.6.

(+) The assertion is correct if Ql contains a summand X such that dim(X) =
2mod4, or 7r-type (A') = 2" and mip(n\x) isnotasquare in K[x~\.

PROOF OF (+). An orthogonal summand whose dimension is congruent 2 mod 4 has
type 2* or 3. So in this case Lemma 5.8 yields the assertion. Now suppose that &
contains an orthogonal summand X of type 2* such that mip(7r \x) is not a square in
K[x]. We may assume that dim! X) = 0mod4 (else the previous argument applies).
From Lemma 4.8 n lollops that X is not a hyperbolic space. Hence dX =£ K*2. We
conclude that (->u>, \ * *-*t-px) and dim(B(px)) = dim(B(—px)); cf. Corollary 5.9.
Hencep € ft(\'ior / - - p , 3) Px± € S2(V). So it — pa or n = p'a' is a product
of two involutions m V. < \ i We have proved statement (+).

In what follows vn- jsvumc that the assumptions of (+) are not fulfilled. Hence
every orthogonal I > irxlc>>mrn»sar>le 7r-module X in V satisfies:

(++) j/.T-tvpci \ i r* then mip(7rx) is a square and dim(X) = 0mod4; if
jz--type(X') = 3 thrr Jin: \ i = (»mod4.

(i) Let s( A' i = I jr>J r j 2 mod 4. Statements (++), 5.1, 5.2, 5.3, 5.5 and 5.7
provide orthogonal imoiuiioru i, .w such that it = rjco and B(?j) is a hyperbolic space.
Since s(K) = I n toll.ms thai H I ^ ) = K*2 and n is a product of two involutions in
Q(V).

(ii) Let/i =0m«xl4jnddV = —K*2. From case (i) we may assume that s( K) =
2. As \K*/K':. = 2anddV = -K'2 we have p , a eQ(V) or -p,-o e « ( V ) .

(iii) Now let n e (8. Q| Let U := F°°(TI2) and W := B°°(;r2). Then U, W are
n -modules and V = i' ^, M . An orthogonal decomposition of U into orthogonally
indecomposable n -modules contains only modules of type 1,2" or 2 + ; and W contains
only those of the remaining types 2* and 3 (where (++) imposes additional restrictions).
Therefore, dim(VV) € {0.4. 8}.

If dim(W) = 8 then Lemma 5.3 (for type 2* and m even) or Lemma 5.7(i) supply
involutions p\,<J\ € O+(W) such that nw = pxo\ and O(pi) = K*2. Clearly, this
yields the assertion.

Now let dim(W) = 4. Then Lemmas 5.3 or 5.7 (i) supply involutions p,, ax e
O+(W) such that nw = pi<7: and @(p0 = — K*2. Consider the possible orthogonal
decompositions of U (taking into account (++)). Using 5.1, 5.2 and 5.5 we obtain
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that TTU = P2O2 for involutions p2.o
r2 G O+(£/) such that ©(P2) = —K*2. As

n — (pi©p2)(o'i®<T2) and P\®fh 6 £2(V) the claim is proved.

Finally, let dim(W) = 0; hence V = U.

We study the possible orthogonal decompositions of V into orthogonally inde-
composable n-modules. The claim follows immediately from 5.1, 5.2 and 5.5 with
one exception that deserves special analysis, namely the following one: n = 9 and
V = X © K © Z where X, Y, Z are 3-dimensional and of 7rtype 2+ or 2". We may
assume that jr-type(X) = 2+ = 7r-type(y) and 7r-type(Z) = 2~. We claim that
X ® y = X ' © y where jr-type(X') = 2+ = Tr-type(r) and dY' = -dZ.

PROOF OF THIS CLAIM. Let A := (X©y)(7r + 1). Then dim(A) = 4 and A
contains a 2-dimensional regular subspace. As u(AT) < 2 we find a e A such that
q(a) € dZ. Letu e X Q K be such that u(7r + 1) = a. Then {v,a,a(x + l)} is a basis
for the n-cyclic subspace {v)n and the assigned Gram-matrix is (cf. Lemma 2.10)

f(v,a)

0

Therefore, d(w>, = - d Z . Take J" := <w), and X' := (X®Y) D X'L. Then X', J"
fulfil the requested properties.

Now nx> = O\Oi for involutions oua2 G SO(V) with ®(o\) = — T̂*2 by 5.1
and 5.2. Also 5.1 and 5.2 yield that nr = P1P2 for involutions pt, f>x € O~(J")
with 0 (p i ) = —dY' = dZ, and 7rz = (Dia>2 for involutions «U|,o>2 e O'(Z) with
©(o;^ = —dZ. The identity n = (cri©p2©^i)(cr2©P2©W2) proves the assertion.

If none of the cases (i), (ii) or (iii) is present then £2(V) is not 2-reflectional; cf.
Lemma 8.3. If n > 6 then Theorem 7.5 yields 3-reflectionality of Q(V). If n < 5
then Corollary 7.2 and Lemma 8.4 yield 3-reflectionality of Q (V) provided K ^GF5.
The case K =GF5 is covered by (i) as s(GF5) = 1.

THEOREM 8.6. Let K be finite and n > 3. If \ K\ = 3 suppose additionally that
n > 6 or dV = -K*z. Then ker(0) is 3-reflectional. Furthermore, ker(0) is
2-reflectional if and only if

(i) s(K) = l,or
(ii) dV = -K'2, or

(iii) n g {8, 9}.

The proof is an analogue of the previous one.
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LEMMA 8.7. Let K be a euclidean field, n > 4 and'ms\(V) ^ 2. Let re = pa where
p, a are orthogonal involutions and dim(B(p)) < 2. Then n = coS for involutions
co € £2(V) and8 € O(V).

PROOF. Choose a regular subspace U of V such that n\u is an involution and
dim(L/) is maximal. Then U < F(7r2), hence B(7r2) < U1.

We claim that nv^ = p'a' for involutions p', a' € O(£/x) such that one of the
following additional statements holds true:

(i) p'eQ(Ux),
(ii) p' € O~(£/x) and q(y) e ©(p') for some y eU,
(iii) p' € O+(£/x) and G(p') = -AT*2 and U is isotropic.

Before we will prove this claim, let us show that the assertion is indeed a conse-
quence.

If (i) is true let co := p '© lv and S := c r ' © ^ . Now suppose that (ii) is given. As
K is a euclidean field we can assume that y e B(7T(/) U ¥{TXU)- Let co := P'©CT} and
5 := o'Qoyiiu where ay denotes the symmetry whose negative space is (y).

Finally, suppose that (iii) is valid. As U = B(^[/)@F(7rt/) and U is isotropic
and A" is a euclidean field one has a hyperbolic plane H in U such that H =
(H n B f e ) ) © ( / / r\F(7Tu)). Let K denote the involution in O(U) with negative space
H, co := P'®K and 8 := o'Qiaiu. In each of the three cases we defined involutions
co,S € Q(V) satisfying n = a>8.

Now let us prove the above claim. If n is an involution then (i) is valid as U = V.
So we can assume that it is not an involution, hence dim((/J") > 2.

Case 1: n — aft where a is a symmetry and yS is an orthogonal involution. Then n2\s
a product of two symmetries; hence dim(B(7r2)) < 2 and B(JT2) is not totally isotropic.
This yields that dim(i/) > n - 3 and dim(f/x) < 3. Due to Corollary 5.10 we have
iiui. = p'a' where p' € O~(f/-L) and a' e O(f/±) are involutions. If some y € U
satisfies q (y) € ©(p') we arrive at (ii): Otherwise U is anisotropic. We may assume
that 0(p') = K*2 and sgn((/) = (0, dim(f/)). If f/x is a hyperbolic plane, 4.9, 5.8
and 5.9 provide p", a" e O-(C/X) such that j ^ i = p"a" and @(p") = -K*2; so (ii)
is valid. If U1- is a 2-dimensional anisotropic space it follows that sgn(f/x) = (2,0)
[since @(p') = K*2]. If dim(t/x) = 3 then f/x is an orthogonally indecomposable
7T2-module, and in1)-type(f/x) = 2~ [as dim(B(jr2

i) < 2]; in particular, U1 is
isotropic. Since d(C/x) = -K*2 [as d(f/x) = -Tr2^ = (-p')p"7' and 0(p') = K*2

by 5.1], it follows that sgn((/x) = (2, 1). Thus we obtained in both of the previous
cases that ind(V) = 2, contrary to our assumptions.

Case 2: Case 1 does not apply. Then dim(B(p)) = 2 and dim(f/x) > 4 [indeed: If
dim(f/x) < 3 then rc^i is a product of a symmetry and an involution in O(f/X) by
Corollary 5.10, hence n is a product of a symmetry and an orthogonal involution and
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we arrive at case 1]. As7T2 = pp" wehavedim(B(7r2)) < 4anddim(rad(B(7r2))) < 2.
Hence 4 < d'im(Ux) < 6. Due to Proposition 4.6 we can assume that B(p) < U1. If
p € Q(V) then (i) holds true; if U is isotropic and p £ £2(V) then (iii) applies (with
p := plj/i. anda' := a\w-).

So we assume U is anisotropic and p ^ £2(V); hence B(p) is a hyperbolic plane.
Suppose that sgn(t/) = (0, dim(f/)). If dim([/x) = 6 then dim(B(7T2)) = 4 and

dim(rad(B(7r2))) = 2. Hence Ux is the orthogonal sum of two 3-dimensional n2-
modules of type 2~. This implies that Ux = X Q K where X and K are 3-dimensional
.T-modules and ;r-type(X) = 2~ or 2 + ; the same holds true for Y. Therefore, 5.1
and 5.2 yield that JT^X = p'a' where p ' , a' € 0{Ux) are involutions and B(p') is a
4-dimensional hyperbolic space. Thus (i) is fulfilled.

Now suppose that dim(lJx) = 5. Then Ux is an indecomposable 7r2-module of

t\pe .T^typeCt/-1) = 2~, or Ux = X®Y where ^2- type(X) = 2~ and dim(X) = 3.

We discuss the first possibility. This yields that sgn((/ x) = (3, 2) and n ^ 5 [as
ind< V) y£ 2]. In particular, dU1 = K*2. Thus 5.1 and 5.2 yield that 7ryi = p 'a 'where
('•n'z OiU1) are involutions and dim(B(p')) = 3and©(p ' ) = —K*2. Furthermore
|as (•' ^ 0 and sgn(<7) = (0, dim([/))] we have some y e U such that <?(v) = — 1.
Hence we have arrived at (ii).

Now we study the second possibility. If Y is a hyperbolic space then Lemmas 5.8
and 4 9 yield that nVi. = p'a' where p ' , a' e O( ( / x ) are involutions and p ' € ^(f/-1-);
hernx (i) applies. So assume that Y is anisotropic.

IMng sgn(L/) = (0, dim(f/)) and ind(V) ^ 2 we see that three cases may occur:

. j ' syn(K) = (0, 2) and sgn(X) = (1,2), or
«h> scn(K) = (2, 0) and sgn(X) = (2, 1), or
u i sgn(K) = (2, 0) and sgn(X) = (1,2) andn # 5.

Clearly nY is a product of two positive symmetries in case (b) and (c) and two
negative symmetries in case (a). Thus in case (a) and (b) 5.1 and 5.2 yield that
.7, = p'a' where p ' , a' e O{UX) are involutions and p ' 6 £2(V), hence (i) holds
true. Let us consider (c). Then we obtain from 5.1 and 5.2 that 7tvj. = p'a' where
p . a' € O(UX) are involutions such that dim(B(p')) = 3 and ®(p') = — K*2; hence
(ii) is fulfilled.

Finally, suppose that dim(f/±) < 4. Thendim(f/-L) = 4 (by assumptions in case 2).
As B(p) is a hyperbolic plane it follows that indiU2-) > 1; furthermore, ind(t /x) =£ 2
[or else ind( V) = 2]. Hence ind(f/x) = 1 and therefore dUx = -K*2. We conclude
tha t -p |y± € Q.(UX) and7T(/x = (—p|(yi)(-or|[/i); so (i) is valid.

THEOREM 8.8. Let K be a euclideanfield, n > 3 and ind(V) # 2.
also ker(@) are 3-reflectional.
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PROOF. First consider Q(V). If n = 3 and ind(V) = 1 then Corollary 7.2 yields
the assertion. If n = 3 and V is anisotropic then each element of £2(V) is a product
of two involutions in O+(V) = Q(V); cf. Corollary 5.10.

Now let n > 4 and n e Q(V). We have involutions p,a e O(V) such that
n = pa. Take an orthogonal involution a> such that B(w) < B(p), &>p € £2(V)
and dim(B(ct))) is as small as possible. Clearly, dim(B(<y)) < 2 as K is a euclidean
field. Let 77 := (cop)jr = coo. From Lemma 8.7 we obtain that r\ is a product of two
involutions in £2 (V); hence it is a product of three involutions in Q. (V).

Now we turn to ker(@). Let 7r € ker(0). First, assume that n = 3. By our result
on fi(V) we may assume that jr £ fi(V). If dV = K*2 (hence - l v e ker(0)) then
-7r € £2(V) and again the result on £l(V) proves the claim. So let dV = —K*2. We
have involutions p,a e O(V) such that n = po = (—p)(—a) and p,a € ker(0) or
-p,-<i € ker(0).

Now let n > 4. Take involutions p,cr € O(V) such that jr = p a . If p € ker(0)
we have finished. So let 0 ( p ) = —AT*2. Then one has a symmetry p ' e O(V)
such that B(p') < B(p) and 0 (p ' ) = — K*2. Hence pp' e ker(0) is an involution.
Furthermore, p'a is a product of two involutions in ker(0); cf. Lemma 8.7. We have
proved that n = (pp')p'a is a product of three involutions in ker(0).

9. Commutators in orthogonal groups

Let G be a group. A commutator (in elements of G) is an element of the form
afia~] j3~l where a, f) € G. The subgroup generated by the set of all commutators
is the commutator subgroup G' of G. Each n € G' is a product of commutators.
Let C1C(JT) denote the minimal number of factors in such a product, and cl(G) :—
max{clc(7r) | n € G'} e N U {00}. O. Ore conjectured: every element of a finite
simple nonabelian group is a commutator. This was proved for PSL( V) by Thompson
and for projective symplectic groups PSP( V) by Nielsen (cf. [13]). We want to study
the problem when G = Q(V) is the commutator subgroup of an orthogonal group.
If the field is algebraically closed it is known that cl(£2(V)) = 1; cf. [15]. Our
approach essentially treats fields with u-inyariant u(AT) < 2 and the reals R. We write
cl(7r) := cln(v)(7r).

If n < 4 then the isomorphisms of Lemma 4.2 and R. C. Thompson's result solve
our problem:

LEMMA 9.1. Let [n = 3 and \K\ ^ 3] or n = 4. Let ind(V) = 1. Then
c\(Q(V)) = 1.

If [\K\ = 3 and n = 3] or [n = 4 and ind(V) = 2] then the commutator subgroup
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of Q(V) is a proper subgroup of £2(V); cf. [17].

LEMMA 9.2. Let u(K) < 2 or K = R, and n > 3. IfU,W are isometric regular
subspaces of V then Ua = W for some a 6

PROOF. Witt's theorem supplies £ e O( V) such that Up* = W.

Case 1: 0 e CT(V). If u(AT) < 2 then (as dim((7) > 2 or dim((/x) > 2) some
v e UUU-1 fulfilsq(u) € @(p"). If/: = R then some v e V satisfiesq(v) e 0(p")(or
else each symmetry has spinorial norm ^ @(/J), and /8 is a product of an odd number
of such symmetries; this is impossible). As V = UQUX we may again assume that
v € U U £/x. Now a := av)6 (where cru denotes the symmetry with negative space
(u)) satisfies the requirements.
Case 2: p1 e O+(V). We can assume that £ $ Sl(V) anddim((/) > dimlt/1) (or else
exchange U and (/-1-). Then dim((7) > 2. First, suppose that u(K) < 2. If U1- ^ 0
select an anisotropic v e t / 1 ; otherwise an anisotropic v € U. Take ^ € v1 n {/ such
that q(y) e q(v)@(f}) and let K € O(V) denote the involution whose negative space
is (v, y). Now consider the case K = K. Then ind(V) ^ 0 as ^ £ £2(V) and & is
a product of an even number of symmetries. Hence one can find a hyperbolic plane
H such that H = (H n U) ffi (H n (/x). Let K be the orthogonal involution whose
negative space is H. In both cases a := K$ satisfies the requirements.

COROLLARY 9.3. Let n > 3 and let p , o e Q(V) be involutions such that
dim(B(p)) = dim(B(<7)).

(a) Ifu(K) < 2 then cl(por) = 1.
(b) If K = Randsgn(B(p))) = sgn(B(a))) thencl(pa) = 1.

PROOF. 2.3 yields that B(p) is isometric to B(<r). Hence B(p") = B(p)a = B(a)
for some a € £2(V) by Lemma 9.2 and we get pa = a. So pa = pa~lp~la is a
commutator in elements of S2( V).

LEMMA 9.4. Let K be a euclidean field and it € Q(V) be such that V does not
contain an orthogonally indecomposable n-module of type 2*. Then n = pa and
B(p) is isometric to B(CT) for some orthogonal involutions p, a.

PROOF. We will prove the assertion under each of the following additional assump-
tions and explain later why the assertion follows.

(i) V is an orthogonally indecomposable n -module.
(ii) V = U® W where it- type((/) = 3 = n- type( W).

(iii) V = UQW where jr-type(I/) = 2+ = jr-type(W).
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(iv) V = UQWQZ where n-type(U) = 2+ = n-type(W) and7r-type(Z) = 3.

As K is a euclidean field recall that

(1) Two regular subspaces of V are isometric if and only if they have the same
signature.

An immediate consequence is
(2) If A, B < V are regular subspaces and m := dim(A) = dim(B) is odd and

ind(A) = (m - l)/2 = ind(B) and dA = dB then A is isometric to B.
(3) Let n = pa € ker(@) where p, a are orthogonal involutions with m :=

dim(B(p)) = dim(B(oO). If m is even and ind(B(p)) = m/2 = ind(B(a)), or if m is
odd and ind(B(p)) = (m - l)/2 = ind(B(a)) then B(p) is isometric to B(cr).

Clearly, this follows from (2) since dB(p) = 0(p) = 0(CT) = dB(<r).

Now we will prove the assertion in the special cases (i) to (iv).

(i) If 7r-type(V) = 2+ then n G O~(V); hence this case does not occur. Fur-
thermore, 2* is excluded. If 7r-type(V) = 2~ the assertion follows from (3) and
Lemma 5.1. If jr-type(V) = 1 see Lemma 5.5 and (3). If 7r-type(V) = 3 then the
assertion follows from Lemma 5.7 and (3).

(ii) We may assume that ®(rtu) = —K*2 = ®(7zw) (or else the assertion follows
from case (i)). Then Lemma 5.7 supplies p\,o\ e O(U) and p2, o2 € O(W) such
that nu = pi<T|, sgn(B(p,)) = (r,s), sgn(B(a,)) = (r - l,s) and TTW = P2O2,
sgn(B(p,)) = (r'; s'), sgn(B(a,)) = (r' + 1,5') for numbers r, s, r', s' € No. Hence
the identity n = (Pi®P2)(<^i@o'2) and (1) prove the assertion.

(iii) We have (-jr)-type(t/) = 2", hence dU • 0(7ry) = ©(-Try) = K*2. So
®{KU) — dU and analogously ©(JT^) = dW. As 0(7r) = K*2 we conclude that
dU = dW = K*2 or dU = dW = -K*2. We discuss the first case (the second one
is similar). So let ®(jiu) = ©(TTW) = K*2. Using Lemma 5.1 and Corollary 5.10
we get orthogonal involutions p,,CT, such that nu = p\<J\, sgn(B(pi)) = (r,s),
sgn(B(a,)) = (r - l,s), and nw = P2a2, sgn(B(p2)) = (r',s'), sgn(B(<r2)) =
(r' + 1,5') where r, s, r', s' € No. Hence n = (p,@p2)(a,©or2) and B(pi@p2) is
isometric to B (p\ Q a2) •

(iv) One has nz € O+(Z). If ®(nz) = K*2 then nz e S2(Z) and nv®w e
£2(t/@W); hence (i) and (iii) yield the assertion. So let @(nz) = -AT*2. We may
assume that ®(nu) = AT*2 and @(nw) = —Â *2. Using 5.1, 5.10 and 5.7 we obtain
orthogonal involutions p,, a, such that:

*•{/ = pia,, sgn(B(p,)) = (r, s), sgn(B(a,)) = (r + 1, s);
nw = P202, sgn(B(p2)) = (r\ s'), sgn(B(a2)) = (r, s' - 1); and
TTZ = p3a3, sgn(B(p,)) = (r", s"), sgn(B(a,)) = (r" - 1,5" + 1)

where r,s,r',s',r",s" € No are suitable numbers. Hence 7T =
(or,@a2©cr3) and B(pi@p2©p3) is isometric to B(a1©a2©CT3).
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Why does the general assertion follow from the four special cases that have been
dealt with ?

Suppose that the assertion is wrong. Then some it e £2(V) does nor satisfy the
claim, and we can take an example where dim(V) is minimal. Clearly, V does not
admit a proper decomposition V = A@B into it-modules such that itA e Q(A). In
particular, V is not an orthogonally indecomposable n -module (special case (i)), and
a decomposition of V into orthogonally indecomposable it -modules does not contain
modules of type 1 or 2~ or (by assumption) 2*. Hence only modules of type 2+ and 3
can occur, and modules of it- type 3 have spinorial norm —K*2. Pairs of modules of
it- type 2+ with the same spinorial norm cannot occur (due to case (iii)), and the same
statement holds true for type 3 (due to case (ii)). Hence at most one module of type 3
occurs (only type 3 modules with negative spinorial norm are admitted), at most one
type 2+ module with negative spinorial norm, and at most one type 2+ module with
positive spinorial norm. So we arrive at case (iv).

The proof is finished.

COROLLARY 9.5. Let K = R and it € ft(V). Then it = pa for involutions
p,a e O(V) where B(p) and B(CT) are isometric.

PROOF. This follows immediately from the preceding lemma and Remark 5.4.

THEOREM 9.6. Let \x(K) <2orK = R. Thenc\(O(V)) = 1, that is, every element
ofQ(V) is a commutator in elements ofO(V).

PROOF. Let it e Q(V). First let u(K) < 2. From Corollary 5.10 we obtain
involutions p,o € O(V) such that it = pa and dim(B(p)) = dim(B(cr)). Then
dB(p) = dB(cr) as ®(n) = K*2. Now Lemmas 2.3 and 9.2 yield some a e £2(V)
such that B(p") = B(p)ot = B(CT) and we get pa = a. So pa = p a ~ ' p ~ ' a is a

commutator in elements of O(V).

If K = R, the assertion follows from Corollary 9.5 and Lemma 9.2.

LEMMA 9.7. Let n > 3 and it € £2(V). Let p, a € O(V) be involutions with
it = pa and suppose that (a) or (b) hold true:

(a) u(^O < 2 and [p, a are symmetries and n > 5] or [dim(B(p)) = 2 =
dim(B(er)) andn > 8].
(b) K = R, ind(V) / 2, dim(B(p)) = dim(B(a)) < 2 and sgn(B(p)) =

Then cl(jt) = 1, that is, it is a commutator in elements ofQ(V).
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PROOF. We may assume that n ^ 1. Choose a regular subspace U < F(7r) of
maximal dimension and let W := I/-1. Then B(n) = Fin)1- < W. First suppose that
(a) holds true.

Case 1: p and a are symmetries and n > 5. Then dim(B(7r)) < 2 and B(7r) =
B(p) © B(CT) < W is not totally isotropic. Son > dim(C/) > n - 3 > 2. As
u(#) < 2 we find a symmetry a> such that B(co) < U and @(CD) = 0(p) = 0(CT).

Hence p' := pco and a' := aco € £2(V) are 2-dimensional involutions such that
it = p'o'. The assertion follows from Corollary 9.3.
Case 2: dim(B(p)) = dim(B(cr)) = 2. We may assume that n is not a product of
two symmetries (case 1) and that B(p), B(<r) < W; cf. Proposition 4.6. Furthermore,
dim(B(7r)) < 4 and dim(rad(B(7r))) < 2 (consider, for example, orthogonally inde-
composable 7i-modules). Hence dim((7) > n — 6 > 2. If dim((/) > 3 then we find
a 2-dimensional subspace T < U such that dT = @(p). Let K denote the orthogonal
involution with negative space T. Then n = (PK)(OK) is the product of two invo-
lutions in £1{V) with 4-dimensional path and Corollary 9.3 yields the assertion. Let
dim(t/) = 2. Then dim(B(jr)) = 4 and dim(rad(B(7r))) = 2. Hence W = X®Y
where 7r-type(X) = 2" = ^-type(y) and dim(X) = 3 = dim(y). Now 5.1 and 5.2
supply n = r)co where r) and o> are orthogonal involutions such that B(>j) and B(<y)
are 4-dimensional hyperbolic spaces. So 9.3 yields the assertion.

Now we prove part (b).

Case 1: dim(B(p)) = 1. As B(7T) = B(p) © B(CT) < W is not totally isotropic we
find a 3-dimensional regular subspace X such that B(JT) < X. If ind(X) = 1 then
Lemma 9.1 yields the assertion. Otherwise X is anisotropic, and X = B(7r)Q Y where
Y := X n F(7r). Let K be the symmetry with negative space Y. Then n = (PK)(GK)

is a product of two involutions in £2(V) whose paths are isometric. The assertion
follows from Corollary 9.3.
Case 2: dim(B(p)) = 2. We may assume that n is not a product of two symmetries.
So dim(W) > 4. Due to 4.6 we may assume that B(p),B(a) < W. We have
dim(B(7r)) < 4, dim(rad(B(jr))) < 2 and 4 < W < 6.

If p € Q(V) then the assertion follows immediately from 9.3: Otherwise B(p)
and B(CT) are hyperbolic planes. If U is isotropic then we take a hyperbolic plane
H < U and have n = (PK)((TK), a product of two involutions in S2(V) whose paths
are isometric (4-dimensional hyperbolic spaces).

Suppose that U is anisotropic. We discuss the case sgn(i/) = (0, dim(£/)), using
4.6, 5.1 and 5.2.

If dim(W) = 6 then dim(B(7r)) = 4 and dim(rad(B(7r))) = 2. This implies
that W = XQ)Y where X, Y are both 3-dimensional orthogonally indecomposable
n-modules of type 2". From 5.1 and 5.2 it follows that n = p'o' where p', o' are
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orthogonal involutions whose paths are 4-dimensional hyperbolic spaces.
Now let dim(W) = 5. Then

(1) W is an orthogonally indecomposable n -module of type 2~, or
(2) W = XQ)Y where X, Y are n-modules, n-type(X) = 2" and dim(X) = 3.

Consider the first possibility. Then ind(W) = 2, and as ind(V) ^ 2 this yields that
sgn(W) = (3, 2) and n ^ 5. Thus 5.1 supplies orthogonal involutions p", a" such
that n = p"a" and sgn(B(p")) = (2, 1) = sgn(B(a")), and we have v € 1/ such that
q(y) = — 1. So 7r = p'o' where p' := p"oy and a' := a"ay proves the assertion
(crv denotes the symmetry whose negative space is (y)). Now we study the second
possibility. We may assume that Y is not a hyperbolic plane (otherwise 4.9 yields that
7T-type(y) ^ 2*; hence n-type(Y) = 3 and using 5.8 we can prove the claim). As
ind(V) ^ 2 one of the following situations occurs:

(a) sgn(y) = (0, 2) and sgn(X) = (1,2); or
(b) sgn(r) = (2,0) and sgn(X) = (2, 1); or
(c) sgn(K) = (2,0) and sgn(X) = (1,2) and n # 5.

So 7Ty is in all three situations a product of two symmetries which are in cases (b)
and (c) both positive, and in case (a) both negative. Using this remark and 5.1 (applied
to nx) we obtain n = p'o' for orthogonal involutions p', a' such that in case (a)
sgn(B(p')) = (0, 2) = sgn(B(<r')), in case (b) sgn(B(p') = (2, 0) = sgn(B(a')), and
in case (c) sgn(£(p') = (2, 1) = sgn(B(a')). In cases (a) and (b) we have finished,
as p', a' € Q(V) and Corollary 9.3 applies. In case (c) we take a symmetry K such
that B(K) < U. Then K is negative and p" := p'tc, o" := O'K fulfil the requirements.
Again 9.3 yields the assertion.

Finally, we study the case dim(W) = 4. Then ind(W) # 2 as ind(V) ^ 2.
Furthermore, W is isotropic as B(p) is isotropic and B(p) c W. Hence ind(W) = 1
anddW = — K*2. Therefore, — pw = —\w-pw e £1(W). The same argument applies
to o. Thus TC = (—pvfQlt/)(—0wQ)lu) proves the assertion.

THEOREM 9.8. Letn > 3andletu(K) < 2or[K = Randind(V) ± 2]. If\K\ = 3
suppose additionally that n >5 or[n = 4 and ind(V) = 1]. Then cl(S2(V)) < 2.

PROOF. Let;r € fi(V)\{l}.

First suppose that u(AT) < 2. If n € {3,4} and ind(V) = 1 then 9.1 shows that
cl(fiV)) = 1. If« =4andind(V) = 2thencl(P^(V)) = 1; this follows from 4.2 and
cl(PSL2(/O = l;cf. [17]. Hence cl(7r) = 1 orcl(-;r) = 1. One has a decomposition
V = AQ)B where A, B are 2-dimensional subspaces such that dA = dB = K*2.
Let p and a denote the orthogonal involutions with negative spaces A respectively B.
Then - 1 = pa; hence cl(- l ) = 1 by 9.3. SOCI(JT) < 2.
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Now we assume that n > 5. Take involutions p,a € O(V) such that n — pa and
k := dim(B(p)) = dim(B(cr)) and k is odd unless n = 0mod4; cf. Corollary 5.10.

Case 1: A: is odd. As u(K) < 2 we find symmetries co and <p such that B(cu) < B(p),
B(<p) < B(a) and G(a>) = 0(p) = &((p). Then n = pa = co<p(copf{<pa). Clearly,
(cop)9 and <pa are involutions in Q(V) and their negative spaces have the same
dimension. Hence c\((&)py<pa) = 1 by 9.3. Furthermore, c\(axp) = 1 by 9.7 (a). So
CI(TT) < 2.

Case 2: k is even. Then n > 8 by our choice of it. As u(K) < 2 we find orthogonal
involutions co and <p with 2-dimensional negative spaces such that B(a>) < B(p),
B(#0 < B(a) and @(co) = 0(p) = ©(^). Now apply the same arguments as in the
first case.

Second, let K = Kandind(V) ^ 2. Then Corollary 9.5 supplies involutions p, a €
O( V) such that n = pa and sgn(B(p)) = sgn(B((7)). Thus we find involutions K,r) €
O(V) such that B(KT) < B(p),B(?j) < B(a), sgn(B(/t)) = sgn(B(»j)),/cp, rjcr € Q(V)
and dim(B(/t)) = dim(B(>7)) < 2. As (fp)"7 and r\o are involutions in S2(V) whose
paths have the same signatures their product is a commutator in elements of Q(V);
cf. 9.3. Also Kr) is a commutator in elements of £2 (V); cf. 9.7.
(b). As Tt — K^^KpYi'qa) we conclude that cl(7r) < 2. The proof is finished.

Under the additional assumption that V is anisotropic the following theorem was
already proved in [19].

THEOREM 9.9. Letn > 3, K = Randm := ind(V) < 1. Thencl(S2(V)) = 1, that
is, every element ofQ.(V) is a commutator in elements ofQ(V).

PROOF. If n = 3 and m := ind(V) = 1 then Lemma 9.1 yields the assertion. Let
n > 3 + m. We may assume that sgn(V) = (n — m, m). Let it € Q(V).

We claim:

(*) V admits an orthogonal decomposition into n-modules W such that each W
has one of the following four forms

(i) dim(W) = 1 andnw = W-

(ii) W is a hyperbolic plane and nw = (ox-<) wnere ^ e ^>o and X ^{1 , -1} .
(iii) W is anisotropic and nw = ( !£», ™£»)

(iv) dim(W0 = 3, dW = -K*2 and n- type(W) = 2~ {that is, nw is an Eichler-
transformation whose path is not totally isotropic).

Furthermore, we claim that nw e Q(W) for each summand W which does not
have form (i).
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PROOF OF (*). Consider an orthogonal decomposition of V into orthogonally in-
decomposable n -modules. Let U be such a n -module. As m < 1 it follows that
jr-type(f/) # l,and

(a) if 7T- type(f/) = 3 then dim(f/) = 2,
(b) if it- type(£/) = 2+ or 2" then dim(£/) < 3,
(c) if 7r-type(t/) = 2* then mipC^) = p' where /? € K[x] is irreducible of degree

2; as m < 1 it follows that t = 1, hence dim((/) = 2 (cf. Lemma 2.10).

Sodim(f/) < 3 in each case, andift/isanisotropicthendim(f/) < 2. Furthermore,
®(7T(j) = K*2 for each f/ (if ©(TI^) = - £ * 2 then 7ry # ly and £/ contains a vector
u such that f(w,«) < 0. As sgn(V) = (n - 1, 1) this implies that ®(nz) = K*2

for each n -module Z ^ f/ of the decomposition. Hence we get the contradiction
®(n) = —K*2). In particular, a 3-dimensional U where n-type(U) = 2+ does not
occur; cf. 4.7 (d). Hence, if det(7rt/) = - 1 , then n-typc(U) = 2+ and dim(i/) = 1,
that is, jry is a symmetry. We can put these 1-dimensional it -modules together to
pairs W as in (iii) (with cos(a) = — 1). The previous statements prove (*) and the
'furthermore' statement too.

Take an orthogonal decomposition into 7r-modules W of forms (i) to (iv).
Obviously we may assume: At most one module of the form (i) occurs. For each

7r-module W of the form (ii), (iii) or (iv) we claim

(a) nw = pa for symmetries p,a eO(lV) such that &(p) = K*2 = 0(CT), and
(b) nw = x(r2 and i/w = rj/~l for a symmetry co € O(W) and some rjr € Q(W).

PROOF OF (a). In case (ii) this follows from Lemma 5.7; in case (iii) it follows from
Scherk's theorem (Proposition 4.12) and from sgn( W) = (2, 0); in case (iv) apply 5.1
and 5.2.

PROOF OF (b). We will find \ji e Q(V) such that xj/2 = nw and f is also of type
(ii), (iii) or (iv). Then we write if/ in the form given by (a) (with nw replaced by \j/)
and thus obtain co as in (b).

In case (ii) take ir = (% °_, J where \x is the square root of A.

In case (iii) take V = ( " ^ £ $ , ) where 0 := a/2. In case (iv) one has
an Eichler-transformation ifr such that i]/2 = <j>w (K = OS is not needed); cf. for
example [3, p. 214].

We have proved (a) and (b).

(**) The assertion that n is a commutator in elements of £2 (V) holds true whenever
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V = AQB orV = AQBQ)C, where A, B, C are it-modules W of the form (i) to
(iv) and at most one of them has form (i).

PROOF. In the first case we put together two by two symmetries supplied by (a)
and get n = pa where p, a e £2(V) are involutions such that sgn(B(p)) = (2,0) =
sgn(B(cr)); hence n is a commutator in elements of J2(V); cf. 9.3 or 9.7.

Now consider the second case. We may assume that dim(C) = 2 and have
dim(/4®2?) > 3. The previous case yields involutions p, a e O(A@B) such that
sgn(B(p)) = (2,0) = sgn(B(<r)) and nA^B = P°'• Furthermore, 9.2 supplies
a' € S2(A®B) such that a = pa'. Take a symmetry K such that B(K) < B(p) and
let a := KO.'. Then a = p" and a € O~(A®B) and 0(a) = K*2. Now (b) yields
\fr € O(C) such that nc = if2 and a symmetry co € O~(C) such that V'"1 = Vf<" aiJd
0(a;) = /T2. Thus TT = (p®f){a©f) = (p®^)(p®V"l)(or®a>>- Hence TT is a
commutator in elements of £2 (V).

We proved have (**).

Finally, as n > 3 and « > 4 in the isotropic case a decomposition given by (*)
contains at least 2 modules W. Hence the assertion follows from (**).
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