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CHARACTERIZATION OF NON-LINEAR 
TRANSFORMATIONS POSSESSING KERNELS 

VICTOR J. MIZEL 

1. Introduction. Recently, in collaboration with Martin [10] and Sunda-
resan [11], I obtained a characterization of certain classes of non-linear 
functionals defined on spaces of measurable functions (see also [12]). The 
functionals in question had the form 

(1.1) F(x) = I (<p ox) dfx = f <p(x(t)) dfi(t) 

with a continuous "kernel" <p: R —> R, or 

(1.2) F(x,y)= I (<po(x,y))dfji®v= \ <p(x(s),y(t)) dfx(s) dv(t) 
** SXT *J SXT 

with a separately continuous kernel <p: R2 —> R. There are direct applications 
of this work to the theory of generalized random processes in probability (see 
[8]) and to the theory of fading memory in continuum mechanics [3]. How­
ever, the main motivation for these studies was an interest in possible applica­
tion to the functional analytic study of non-linear differential equations. From 
the standpoint of this latter application it would also be desirable to charac­
terize the broader class of functionals having the form 

(1.3) F(x) = f <p(x(t),t)d»(t), 

where the kernel ip\ R X T —> R satisfies "Carathéodory conditions". This 
can be readily understood if we recall that the existence theory for 
x{i) = <p(x(t), t), with <p a function satisfying Carathéodory conditions, is 
very close to that for x(t) = <p(x(t)) with <p: R —> R continuous (see, e.g., [2]). 

In the present paper we obtain an abstract characterization for functionals 
having the form (1.3), a characterization which is of the kind obtained earlier 
for functionals having the form (1.1). In addition, we characterize correspond­
ing transformations from LV(T) to C(S), where C(S) is the space of continuous 
functions on a compact Hausdorff space. Our proofs utilize some results 
appearing in Krasnosel'skifs important summary [9] of work on transforma­
tions of the type x —> cpox. For some work on a problem analogous to ours for 
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450 VICTOR J. MIZEL 

functionals on the space of continuous functions on a compact metric space, 
see [l].f 

2. Throughout this paper, T = (T, 2, /*) is a complete measure space, R is 
the real line with Lebesgue measure, and M(T) denotes the space of extended 
real-valued measurable functions on T. 

Definition. A real-valued function <p: R X T —-> R is said to be of Carathéodory 
type for T and we write <p G Car(T) if it satisfies the following conditions, 

(1) <£>(•, t): R —> R is continuous for almost all t G T, 
(2) <p(c, •): T —> R is measurable for all c £ R. 
One can extend this definition in an obvious way to functions 

ip: Rm X T —* Rn. We remark that Car(T) is a subspace of the vector space 
M(R X r ) . 

If x is an extended real-valued measurable function on T and cp is in Car(T), 
then the function (pox defined by 

(<pox)(t) = <p(x(t), t), 

is also a measurable function on T. This is obviously true when x is a measur­
able function whose range is a finite set. In the general case, x is the limit 
everywhere of a sequence of functions xn of the above type. Hence by con­
tinuity of <p in its first argument, <p o x, as the pointwise limit almost every­
where of the measurable functions <p o xn, is measurable. Thus for each 
<p G C a r ( r ) , the mapping x —» <p o x is a mapping of M{T) into itself. 

It is useful to single out certain subspaces of the vector space Car(T) in 
terms of their mapping properties. 

Definition. Given the number p, 1 ^ p ^ co, a function <p of Carathéodory 
type for T is said to be in the Carathéodory p-class, and we write <p G Carp(T) 
if <p maps L?(T) into L1(3n). That is, <p is in Car2,(2n) if 

*> o x G Ll(T) for all x G LP(T). 

Remark. For the case of a non-atomic c-finite measure space it is known 
[9, p. 27] that <p is in Car p ( r ) , 1 ^ £ < oo, if and only if 

\<p(x, 01 ^ a (0 + ^M27 

for some a G L 1 ( r ) . 

THEOREM 1. LeJ T = (J1, S, /x) 6e a finite or a-finite measure space. Let F be 
a real-valued functional on U°(T) which satisfies: 

(i) F(x + y) = F(x) + F (3/) wftew xy = 0 a.e., 
(ii) F is uniformly continuous on each bounded subset of U°(T), 

(iii) F(xn) —» F(x) whenever {xn}n^i converges boundedly almost everywhere to 
x G L°°(r). 

fSince the submission of this paper, two related papers [4; 7] have appeared. Of the two, 
[4] is more closely related to this work. 
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Then there exists a function <p G Car°°(r) such that 

(2.1) F(x) = I (<pox)dfi= I <p(x(t),t)dn(t). 

Moreover, p can be taken to satisfy 

(2.2) <p(0, •) = Oa.e., 

and is then unique up to sets of the form R X N with N a null set in T. 
Conversely, for every <p G Car°°(r) satisfying (2.2), (2.1) defines afunctional 

satisfying (i), (ii), and (iii). 

Remarks. (1) The final statement of the theorem is valid for any <p Ç Car œ ( r ) 
satisfying 

(2.3) I (<p oO)dfx = 0. 
* /7» 

Moreover, condition (i) on F can be modified in such a way that this result 
applies to all <p £ Car°°(r). Namely, we could replace (i) by 

(i') F(x + y) — F(x) — F(y) = const = CF whenever xy = 0 a.e. 
Note that then the functional Fi(x) = F(x) + CF satisfies (i), (ii), and (iii). 

(2) Unlike the results in [10; 11], the present characterization does not 
require a hypothesis concerning the non-atomic nature or almost non-atomic 
nature of T. The same holds true for Theorem 2 below. 

Proof of Theorem 1. It follows from (i) and (iii) that for each real number h 
the real-valued set function ah defined by ah(S) = F(hxs) is countably 
additive and absolutely continuous relative to fx. Hence by the Radon-
Nikodym theorem there corresponds to each h a function <ph 6 LX{T), unique 
up to a null set, such that 

FQixs) = I <Phdii. 

The functions <ph with h rational will be utilized below in constructing the 
function <p occurring in (2.1). This construction applies the following lemma 
whose proof will be deferred until later. 

LEMMA. Given any rj > 0 there is a measurable set Sr, = \J?=iSv,i such that 
(1) ix{T - Sv) < v, /*(5ff<) < oo, i = 1, 2, . . . , 
(2) on Srj,i there exists for each pair of numbers M, e > 0 a ô = ôi(e, M) > 0 

such that for rational h and h' we have 

h,h' e [ - M , M] and |A - A'| < ô=> sup \<ph(t) - <ph>(t)\ ^ e. 

Now select a sequence y\m —» 0 and define a function <p: R X T —» R as 
follows: 

(2.4) <p(c,t) = 
lim *>»(/) for* 6 S= U 5f l 

J (^ rational) 

lo for t e r - 5. 
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It follows from the lemma that this defines <p unambiguously and that <p(-, /) 
is continuous for each t £ T. Moreover, since T — S is a null set, for each 
c G R the function cp(c, •) is the almost everywhere pointwise limit of a 
sequence of measurable functions <ph and is therefore measurable. Thus ç> is 
of Carathéodory type for T. Further, since for c rational we have 

<p(c, t) = <pc(t) a.e., 

it is clear that cp(c, •) £ Ll(T) for c rational and that <p satisfies (2.2). It 
remains to be shown that (2.1) holds. For this we shall utilize Vitalli's con­
vergence theorem. 

Suppose that x 6 U°(T) is a simple function with rational values, i.e. 

N 

x = X CkXTk* c* rational, {Tk\ disjoint. 

Then, using (i), 
N N n 

R(pc) = H F(ckxTk) = X) Vckdn 

= I (<P ° CC CkXTk)) dix = j (<p ox) dix. 

Thus (2.1) holds in this special case. 
Now each x 6 U°{T) is the limit almost everywhere as well as in norm of 

a sequence xn of simple functions with rational values, 

xn —> x a.e. and in If°(T). 

Since <p £ Car (7"), it follows that 

(2.5) ip o xn —> <p o x a.e. 

In addition, the sequence <p o xn £ Ll{T) is uniformly absolutely continuous, 
i.e. 

(2.6) I \<p o xn\ dix —» 0 as jn(i?) —> 0, uniformly in w. 

Otherwise there would exist for some e > 0 a sequence of sets Rm C T with 
lx(Rm) < 3 _ m and a corresponding sequence cpo xnm such that 

J \(p OXnm\ dfX > €. 
Rm 

It follows that each Rm possesses a subset i£m' satisfying 

i (p o x„ J d/* > e/2. 

Now the functions ym = xWmxiEm/ form a bounded set in L°°(T) since the xn 
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form such a set, and hence ym —» 0 boundedly almost everywhere. Moreover, 
ym being a rational-valued simple function implies that 

F(ym) = I (<p oym) dfj, = I (<p o x j dfi. 

However, by the construction of Rm' this implies that the F(ym) do not con­
verge to zero, contradicting property (iii). 

Furthermore, the sequence cp o xn has the property that for each e > 0 there 
exists a set R€ such that n(R€) < co and 

(2.7) I \(p o xn\ dfx < e for all n. 

Otherwise, for some e > 0 there would exist an expanding sequence of sets 
Rm with fx(Rm) < oo and U L A = T and a corresponding sequence <p o xnm 

such that jT-Rm \<P ° xnm\ dfi > e. Thus for some Rm" C T — Rmi 

J (<P o #nw) d/x 
A m " 

> e/2. 

The functions ym = xnmxnm" satisfy ym —> 0 boundedly almost everywhere, 
while the formula 

F(ym) = I (*> o ym) dfi = J feo *nw) d/* 

implies that the F(ym) do not converge to zero, contradicting (iii). 
Since the sequence <p o xn in Lr{T) satisfies (2.5)-(2.7), it follows by Vitalli's 

convergence theorem (see [5, p. 150]) that ipox belongs to Ll(T) and that 
<p o xn —» <p o x in Ll(T), whereby 

-F(aO = lim F(xn) = lim I (<p o xn) d\x = I ( ^ o x ) d/z. 
W->oo W->oo « ^ r J T 

Thus <p 6 Car°°(r) and (2.1) holds. The uniqueness of <p follows from the fact 
that by (2.2), 

F(cxs) = I Xs<p(c,t) dp = I (pcdji. 
+> T ** S 

Considering only rational c, we see that this condition determines <p{c^) up 
to a null set, and hence determines <p G Car(T) up to sets of the form R X N 
as claimed. This completes the proof of the first half. 

For the converse let ç be a function in Car°°(r) which satisfies condi­
tion (2.2). Then the functional F defined by (2.1) obviously satisfies (i). We 
proceed to show that (ii) holds. Otherwise there would exist numbers A, a > 0 
such that corresponding to each positive integer n there is a pair of functions 
xn, yn G Lœ(T) satisfying 

/2 8 ) I W U IWL £A, \\xn- yn\\œ < 1/n, 
\\(poxn - <poyn\\i > a. 
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Consider first the case in which IJL(T) is finite and set Si = T. Select a sub­
sequence of xn, yn as follows. By the absolute continuity of the indefinite 
integral of <p o Xi — <p o yi there exists an ei > 0 such that 

js \<p o Xi — <p o yi\ d/j, < a/3 whenever /*(S) < 2ei. 

Obviously, ei < ^fx(T). Since <p(-, /) is continuous for almost all t 6 7\ it is 
uniformly continuous on the set [ — ̂ 4, ^4] C ^ for such t. Thus for each e, 

T = U V | c i f c 2 e [ - i 4 , i l ] | f | c i - c 2 | ^ - = » k ( c i , /) - *>(c2,OI ^ ef U i V , 

where M (iV) = 0. Hence by selecting n2 sufficiently large one can find a measur­
able set T2 satisfying 

| (<p o xn2) (t) - 0 o yn2) (t) | g îf~7f) f o r * ^ r2> 

and fi(T — T2) < ei. By (2.8), this implies that with S2 = T — T2, 

\<p oxn2 — <p oyn2\ dfi > 2a/3, v(S2) < ei. 
' £2 

Again, since the indefinite integral of <p o xn2 — <p o j W 2 is absolutely continuous, 
there exists an e2 > 0 such that 

x 

X \<p oxn2 — <p oyn2\ dfx < a/3 wherever /x(5) < 2e2. 
' s 

Obviously, 2e2 < ifJ<(S2). Again by the uniform continuity of ç>(-, i) on 
[ — A, A] for almost all t, there exists an n% sufficiently large and a correspond­
ing set Tz such that 

| (<p o xm) (t) - (<p o ym) (t) | < g-TjÂ for t G T3, 

and n(T — Tz) < e2. By (2.8), this implies that with Sz = T — T3, 

k oxm — <p oym\ dix > 2a/3, /x(53) < €2. 
r £ 3 

Proceeding with this construction we obtain a subsequence xwfc, ywifc and a 
corresponding sequence of sets Sk satisfying 

J \<p oxnk — <p o ynk\ dfx > 2a/3, I |p o xnk — <p o yBifc| d\x < a /3 , 
Sfc «^ Sk+l 

and M ( ^ ) < ^_i < n(Sk-.i)/2. Now define Rk = Sk — \JT=k+iSi- The sets 
i ^ are disjoint. Moreover, 

s 
•J Sa 

M( U S) < 2/*(5*+i) < 2e* 
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so that, recalling how the e;- are defined, one has 

J \ip oxnk — <p o ynk\ did > a / 3 . 
Rk 

Define 
OO CO 

By construction, x, y G Lœ(T), so that ^ 0 ^ , ^ 0 3 / Ç ^(T), and 

|<p o x - <p o;y| a> = k o x M - <p oynfc| d/x > a /3 , £ = 1 , 2 , 

Since the Rk are disjoint, this is a contradiction. 
Consider now the case fx(T) = 00 and assume that (2.8) holds. One con­

structs sequences of functions {xn]c}, {ynk} and a sequence of disjoint sets {Rk} 
such that 

(2.9) fi(Rk) < 00, \<p oxnk — <p o ynk\ du > a/2. 

The procedure is again inductive. Let R± be a set of finite measure such that 

J \(p o Xi — <p o yi\ d^ > a / 2 . 
Ri 

This is possible by (2.8). Then, by the result in the preceding paragraph, 
for n2 sufficiently large, 

J \<p oxn2 - <p o yn2\ dix < a / 2 . 
VRl 

Hence there exists a set R2 C T — Rx such that n(R2) < °° and 

J \<p oxn2 — <p o yn2\ dfx > a / 2 . 
R2 

Again since ii(Ri^J R2) < 00, we have by our earlier result that for nz 
sufficiently large, 

J \<P o xn3 - <p o ynz\ dix < a / 2 . 
RA) Ri 'Rl\J R2 

Hence there exists a set R% C T — (Ri U R2) such that n(Rz) < 00 and 

J \<p o xm - <p o ;yW3| a
7/* > a/2. 

Proceeding in this fashion one arrives at sequences of functions {xnk}, {ynk} 
and of disjoint sets {Rk} for which (2.9) holds. Now define 

00 00 

* = 1 & = 1 
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By construction, 

\<p o x — <p o y\ dfji > a/2, k = 1 , 2 , . . . , 
f' Rk 

contradicting the fact that cp o x, <p o y Ç Ll(T). 
There remains the proof of (iii). Let xn be a sequence such that 

(2.10) xn—>x a.e., \\xn\\œJ \\x\\œ S A. 

Since <p G Car(T), it follows that 

(2.11) <p o xn —> ç? o x a.e., 

while by (ii), 

(2.12) \\<p o xn\\i, \\<p o x||i S M = ikf (i4). 

It will be shown that (iii) holds by proving that 

ç o xn —> <p o x in L1 norm. 

The argument again utilizes Vitalli's convergence theorem. First, we show that 
for every sequence {xn} satisfying (2.10), the functions <p o xn have uniformly 
absolutely continuous indefinite integrals, i.e. 

(2.13) I \<p o xn\ du —> 0 as JJL(U) —» 0, uniformly in n. 
J u 

For otherwise there would exist for certain numbers A, a > 0 a sequence {xn} 
satisfying (2.10) and a corresponding sequence of measurable sets Sn such that 

/*(5„) —» 0, I \ç> o xn\ dix > 2a. 
J Sn 

It then follows that there exists for each Sn a measurable subset Sn' such that 

n(Sn')-*Q, I ((poxn)dfjL\ > a. 
\ •* Sn' I 

By extracting a subsequence if necessary, we may assume without loss of 
generality that all the integrals in the above formula have the same sign, 
say positive. That is, 
(2.14) /i(5„') -> 0, f (<p o x^ dfx > a. 

Now by a construction analogous to that used in the proof of (ii) we can 
extract a subsequence {xnk\ such that the corresponding sets Snk

r satisfy 

(2.15) M G W X **/2 < M ( S „ / ) / 4 , 

where ek > 0 is selected so that 

V>(U) < CJC => I Wo xnk\ dfx < a/2. 
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Namely, with n\ = 1 and with ni < . . . < nk already chosen, select nk+i > nk 

to be the smallest integer such that 

M O W ) < ek/2. 
It then follows that 

(2.16) f (<p oxnk) dfx > a/2, where Rk = Snk' - U S»/, 
*J Rk i=k4-l 

Ml U Sn/) < €*. 

'Rk 3=k+l 

since (2.15) implies that 

Consider now the function 

y — 2^t xnkXRk-

By (2.16) one has <p o y £ Ll(T), a conclusion which contradicts the fact that 
<p G CarOT(r). 

Next, we show that the functions <p o xn are uniformly equicontinuous, 
i.e. given an e > 0 there is a measurable set Se satisfying 

(2.17) M(<S€) < oo, I \(p oxn\ dfx < e uniformly in n. 

For otherwise there would exist for certain numbers A, e > 0 a sequence 
satisfying (2.10) which fails to satisfy (2.17) for any set 5 of finite measure. 
We could then extract a subsequence {xnk} and a disjoint sequence of sets Rk 

such that 

n(Rk) < oo, (<p o xnk) dfil > e/4, * = 1, 2, 
I *JRk I 

Namely, let n\ be chosen so that ||xwl||i ^ e. There then exists a measurable 
set Ui such that 

J (<p oxni) dp 
'Ul 

and hence a set Ri C U\ such that 

> e/2, 

/*CRi) < oo, I l ((p oxni) dfi > e/4. 

In general, with n\ < . . . < nk already chosen, select nk+i > nk to be the 
smallest integer such that 

J» k 

\<P oxnk+1\ dfi ^ e, where Sk = U -Ry. 
There then exists a measurable set Uk+i <ZT — Sk such that 

I (<p oxnk+1) dix 
^Uk+l 

e/2, 
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and hence a set RK+I C Uk+i such that 

n(Rk+i) < oo, (<p o 
%nk+i 

)dfx\ > e/4. 
I *SRk+l I 

By extracting a further subsequence if necessary we may assume without loss 
of generality that all the integrals in the above formula have the same sign, 
say positive. Thus, 
(2.18) iJL(Rk) < oo, j 0 o xnk) dix > e/4, £ = 1 , 2 , . . . . 

Consider now the function 
oo 

y = YJ XnkXRk-

By (2.18) and the disjointness of the sets Rkl we see that <p o y (? Ll{T)y 

which contradicts the fact that <p Ç Car°°(r). 
However, (2.11), (2.13), and (2.17) imply the L^convergence of {<p o xn) to 

<p o x, which ensures (iii). 

Proof of the Lemma. In the following we restrict the symbols h and r to denote 
rational numbers. Consider first the case of a finite measure space. To begin 
with we show that, for each M > 0 and each positive integer n, the contracting 
sequence of measurable sets AjM'n = {t\ \<pn(t) — <Ph'(t)\ > \/n for some 
h, V 6 [-M, M] with \h — h'\ < l/j},j = 1, 2, . . . , converges to a null set. 
Otherwise for some fixed c > 0, 

M G 4 / ^ ) ^ C , j = 1, 2, . . . . 
Now 

4 / ' * C U U 3A, r= U 5ft°'\ 
A€[-ilf,ikf] r£[-l/j,l/j] h£[-M,M] 

where 
5». r = {/| [<ph(t) - vn+r(t)] > 1/n], Bh

U) = U BhtT. 
re[-l/j,l/j] 

Enumerating the rationals in [-M, M] and [ — 1/j, 1/j] as Aif A2, . . . and 
ri, r2, . . . , respectively, define the sets Chk

U) and Chk,rl as follows: 

r 0 ) — R
 0 ) 

^hk — -°hk ~~ 

Jc-1 

U 2J*/*, 

Z - l 

£ = 1 , 2 , . . . , 

^hk.ri = = -&hk,ri U -B»t,r,-i / = 1 , 2 , . . . . 

For each j define the functions xù and j ; - by 

(2.19) x, = £ A* 

oo a 

(2-20) yi = D £ (A, + r,)^,, ,-
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By construction, Xj and yj are in Lœ(T) and satisfy 

(2.2i) I W U I b i l U ^ ^ + i , 
(2.22) \\xj~yj\LS 1/j. 

Moreover, for N, N' ->oo, 

N 

Z) hxchku)->xJ boundedly a.e., 
k=i k 

and 
N N' 

X) S (** + fi) Xchk,ri —> 3>j boundedly a.e. 

Hence by (i) and (iii) and the definition of <ph, we have: 

CO CO 

F(Xj) - F(yt) = Z F(hkXchkw) - £ E TO* + r,)xc*è.r |) 

= Ë <PhkXChkM - S Vhk^rlXChktrl \dll > 'A U £* 0 ) ) è -C, 
« / ^ *=1 L * * z=l ft ' k l J W \ h£[-M,M] / W 

i = 1 , 2 , . . . , 
contradicting (ii). 

It follows from the above that with M given there exists for each rj > 0 
a set S /* satisfying 

(2.23) for each € > 0 there exists a Ô = 5(e, Af) > 0 such that/*, &' <E [ - M , Af] 
and |& - V\ < Ô => | *>»(*) - *v(OI ^ € for t <E S„M, 

(2.24) M ( r - sv
M) < v. 

For by the preceding paragraph one can select for each integer n an index j n such 
that 

n(Ajn
M>n) <v/2

n, « « 1 , 2 , . . . . 

Then the set Sv
M

t defined by 

(2.25) SV
M = r - U ^ n

M " \ 

satisfies (2.23) and (2.24). 
In addition, the set 5 , defined by 

(2.26) Sn= niSn/2
MM 

M=l 

is readily seen to satisfy (2.23) and (2.24) for all M. Thus the lemma is proved 
in case T is a finite measure space (with Sv,i = Sn for i = 1, 2, . . .) . 

Now suppose that M ( ^ ) = °°- By hypothesis, 

CO 

r = u r, wither*) <oo. 
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Using the result established in the preceding paragraphs, we construct sets 
SVti C Tu i = 1, 2, . . . , by defining 

Sv,i = Sr}/2i (relative to the measure space Tt). 

It is then clear that the set Sv C T which is defined by 

oo 

Sn = U Sv,t 
i=l 

satisfies all the requirements stated in the lemma. 

COROLLARY 1. With T non-atomic let F be a real-valued junctional on a sub-
space V of M(T) such that V D U°(T). Suppose that F satisfies the following 
conditions: 

(i) Fix + y) = F(x) + F(y) when xy = 0 a.e., 
(ii) F is uniformly continuous on each bounded subset of Lœ(T), 

(hi)' F(xn) —> F(x) whenever {xn}n-^i G V converges a.e, to x G Lœ(T). 
Then there exists a function p in Car(T) such that 

(2.27) F{x) = I (cp ox)dfi for x G V 

and F: V —> R is bounded. In fact, 

(2.28) <p(V) = 1^ C Ll(T) is bounded. 

Moreover, <p can be taken to satisfy (2.2) and is then unique in the same sense as in 
Theorem 1. 

Conversely, for every cp G Cs.vœ(T) which satisfies conditions (2.2) and (2.28) 
[the latter for V = Lœ(T)], the functional defined by (2.27) satisfies (i), (ii), 
and (iii) with V = M(T). 

Proof. Observe that the functional Fi = F\U°(T) satisfies (i), (ii), and (iii) 
of Theorem 1, and hence is given by 

(2.29) Fx(x) = f (<p ox) du for x G If°(T), 

for some <p G Car°°(r). 
We show first that <p(L°°(T)) C Ll(T) is bounded. Since every x G M(T) is 

the limit almost everywhere of a sequence xn G U°(T), it will then follow by 
Fatou's lemma that \<p o x\ being the almost everywhere limit of {\<p o xn\] is 
in Ll(T) and is norm bounded by the same constant as {|<poxw|}. Thus 
cp(M(T)) C.Ll(T) is also a bounded set. Suppose that <p(If°(T)) were un­
bounded. Then there exists a sequence xn G Lœ(T) such that 

(2.30) ||$>otfn||i = £w->co. 

It follows that there exists a subset An (Z T such that 

(2.31) \F(xnXAn)\ = (<pOXn)dfJL 
1 ^ i n 

^ c„/2 —> oo . 
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Consider first the case ii(T) < °° • Then since T is non-atomic, there exists 
for each sufficiently large n a subset An' of An such that 

(2.32) \F(xnXAn>)\ ^ 1, n(An) S 2/cn. 

However, since xnXAn' ~^ 0 a.e., (2.32) contradicts (ni)'. 
Now suppose that T= UtOT=i Tt, ix(Tt) < oo. The preceding argument 

shows that for each m there is a constant Nm such that 
m 

\\<P o x\\i ^ Nm for x such that supp x C U Tt. 

By extracting a subsequence we can assume that in (2.20), cm > 3Nm. Con­
sequently, there exist sets Am C T — Uf=i Ti such that 

\\<p o xmXATO||i > 2Nn, m = 1, 2, 

It then follows that for some subset Am
f C Ami 

(2.33) \F(xmXAm')\ = (<poxm)dfj. 
• • ' A m ' 

Now 
^mXAm'->0 a.e., 

>iVw 

and hence (2.33) contradicts (iii)'. 
For the converse, suppose that <p G Car°°(r) satisfies (2.2) and (2.28). 

By the argument given earlier, it follows that <p(M(T)) C Ll(T) is bounded, 
so that .Fis defined on M(T). Property (i) is obvious and (ii) is a consequence 
of the theorem. It only needs to be shown that (in)' holds. Suppose that 
xn 6 V, x Ç n°(T) and xn —» x a.e. Then it can be shown just as in the proof 
of the theorem that 

<p o xn-^> <p o x in L1 norm 

and therefore 

F(%n) = j(<P° %n) dv —>/(*> o x) dp = F(x). 

Remark. It is easy to show by examples that on atomic measure spaces, (i), 
(ii), and (iii)' do not imply (2.28). On the other hand, the above proof shows 
that for all T, if <p G Car œ ( r ) and <p satisfies (2.2) and (2.28), then F satisfies 
(i), (ii), and (hi)'. 

THEOREM 2. With T as in Theorem 1, let F be a real-valued functional on 
LV(T), 1 g p < oo, which satisfies the following conditions: 

(i) F(x + y) = F(x) + F(y) when xy = 0 a.e., 
(iip) F is continuous on LV{T), 

(iiip) F is uniformly continuous relative to the Lœ norm on each bounded subset 
of Lœ(T) which is supported by a set of finite measure. 

Then there exists a function <p 6 Ca,vp(T) such that 

(2.34) F(x) = f (cp o x) dp for x G LV{T). 
•ST 
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Moreover, ç can be taken to satisfy 

(2.2) <p(0, - ) = 0 a.e. 

and is then unique up to sets of the form R X N with N a null set in T. 
Conversely, for every <p G Ca.rp(T) satisfying (2.2), the formula (2.34) defines 

a functional satisfying (i), (ii^), and (iup). 

Remarks. (1) Observe that when F is a linear functional, (iip) signifies 
uniform continuity on bounded subsets of LP(T) and hence implies (iiip). In 
addition, for such cases the function <p necessarily has the form <p(x, t) = xu(t) 
for some locally summable function u. Thus the present result includes the 
Riesz representation theorem, modulo a proof that u G Lq(T) is necessary 
and sufficient in order that the above <p be in Cs,rp(T). 

(2) Combining Theorem 2 with results in [9], it follows even for the case of 
non-linear F that F is locally bounded on LP(T). However, F is generally not 
uniformly continuous on bounded subsets of LP(T). (See the remark following 
Corollary 2.) 

(3) This result provides a significant strengthening of a result stated in [6] 
(see Corollary 2). 

Proof of Theorem 2. By hypothesis, T = U ^ i Tt where the Tt are disjoint 
subsets of finite measure. Thus Z,œ(7\) can be identified in the obvious way 
with a subspace of Lœ(T), i = 1, 2, . . . . Define 

Ft= F\Lm(Tt), i = 1,2, . . . . 

Then (i), (ii^), and (mp) imply that each of the functionals Ft satisfies the 
hypotheses of Theorem 1, the validity of (iii) being a consequence of (iip) and 
the dominated convergence theorem. Hence there exist functions çt G Car (7\) , 
unique up to null sets, which satisfy (2.2) on Tt and 

* = 1 ,2 , . . (2.35) Fi(x) = J fat ox) dix for x G Lœ(7\) , 

Now define <p: R X T —» R by means of 

(2.36) vihrWt = <pt(h,.), h 6 R, i = 1, 2, . . . . 

It is clear that <p 6 Car(T) and that <p satisfies (2.2). It remains to show that 
(2.34) holds for x G LV(T). Now for each simple functions the set A = supp(x) 
has finite measure. Hence by the reasoning above, 

F(x) = I {$ ox) dix, where ^ G Car°°(^). 

Now by uniqueness of the Radon-Nikodym derivative of the set function 
a(S) = F(axs) we have, on the sets (U?=i Tt) C\ A, and hence on A, that 
<p o x\A = \f/ o x a.e. Thus 

F(x) = I (<p o x) dix = I (cpox) dix. 
JA JT 

Therefore (2.34) has been established for simple functions. 
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To show that (2.34) holds for all x € LP(T), we again utilize the Vitalli 
convergence theorem. Notice that each x Ç LP(T) is the limit almost every­
where as well as in norm of a sequence xn of simple functions, 

(2.37) xn -> x a.e. and in L*{T). 

Since (p Ç Car(T), it follows that 

(2.38) <p o xn —* <p o x a.e. 

In addition, the indefinite integrals of the sequence (p o xn Ç Ll(T) are uni­
formly absolutely continuous, i.e. 

(2.39) I \<p o xn\ dix —> 0 as /*(£/) —> 0, uniformly in n. 
J u 

Otherwise there would exist for some a > 0, a sequence of sets Um C T with 
v(Um) < 3~w, and a corresponding sequence <p o xnm such that 

J |<? oxn 
Um 

d/j, > a. 

It follows that each Um (even if Um is an atom) would possess a subset Um' 
satisfying 

J (<P oxnm) dix\ 
Um' « 

Now by (2.37) and the Vitalli convergence theorem [5, p. 150] applied to the 
xn, the functions xn form a bounded set in LV(T) and 

> a/2. 

lim 
M(17)->0 J |xn|

p#7i = 0 

uniformly in n. Hence the functions ym = xnmxum' l*e m a bounded subset of 
LV(T) and satisfy ym —> 0 in LP(T). Moreover, since ;ym is a simple function, 

P(ym) = I (*> oy n ) dfx = I (ç> o ^ J dfi. 

However, by the construction of Um', this formula implies that the F(ym) do 
not converge to zero, contradicting (%). 

Finally, the sequence ç o xn has the property that for each e > 0 there 
exists a set Ue such that ii(U*) < oo and 

(2.40) f |<£> o xw| dfj, < € for all w. 

Otherwise for some e > 0 there exists an expanding sequence of sets Um with 
p(Um) < oo, Um=i Um = T, and a corresponding sequence y o xnm such that 

J \cp oxnm\ d\i > e. 
T-Um 
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Thus (even if T — Um is an atom) for some Um" C T — Um, 

(<p oxnm) dpi > e/2. l r Um" ' 

By (2.37) and the Vitalli convergence theorem, the indefinite integrals of the 
functions xn are equicontinuous with respect to p, so that the functions 
y m = XnmXum" satisfy ym —> 0 in LP(T). However, the formula 

F(ym) = \ (<poym)dn= \ (<p o xnm) dp 
"T *JUm" 

implies that the F(ym) do not converge to zero, contradicting (iip). 
Since the sequence <p o xn satisfies (2.36)-(2.40), it follows by the Vitalli 

convergence theorem that <p o x is in Ll{T) and that <p o xn —•» ç o x in Ll(T), 
whereby 

7^(x) = lim F(xn) = lim I (ç? o xn) dp = I ( ^ o x ) dp. 

Thus (2.34) holds for all x G LV{T). The uniqueness of <p assuming that (2.2) 
holds, is immediate, since Theorem 1 then asserts the uniqueness of 
<p\Tui = 1 , 2 , . . . . 

For the converse we proceed as follows. Suppose that <p is a function in 
Ca,rp(T) which satisfies (2.2). Then (i) obviously holds. Moreover, for any S 
such that p(S) < GO , the restriction <p\S is in Car^(5). This implies in particular 
that <p\S is in Car00(5) and satisfies (2.2). Thus the validity of (iiiP) follows 
from Theorem 1. On the other hand, (ii^) is a consequence of a theorem of 
Nemitskiï [9, p. 32] which asserts that every <p G Carp(T) yields a continuous 
transformation from LV(T) to Ll(T) by x —> <p o x. Indeed, the continuity of 
the function x —» J T(<P o x) dp is a direct consequence of the continuity of 
the above transformation. 

COROLLARY 2. With T as above, there exists for every real-valued functional F 
on LV{T), 1 S P < co , which satisfies the following conditions: 

(i) F(x + y) = F{x) + F(y) when xy = 0 a.e., 
(Up) F is uniformly continuous on each bounded subset of LP(T), 

a function <p Ç Carp(T) such that 

F(x) = I fa ox) dp for x Ç LV(T). 

Moreover', <p can be taken to satisfy (2.2), and is then unique up to sets of the form 
RX N with N C T a null set. 

Remark. The converse to this corollary is false except for a purely atomic 
space T consisting of a finite number of atoms. That is, <p being in Ca.rp(T) 
and satisfying (2.2) does not in other cases ensure that (ii/) holds. To see 
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this, let T = \J7=i Tit where 0 < n{Tt) < oo and Tt are disjoint. Then the 
function 

oo 

f(h,t)= E ft(h)hp
XTi(t) 

is in Ca.rp(T) provided that each/*: R —> R is continuous and satisfies \ft\ ^ 1. 
However, it is easy to prevent uniform continuity on certain bounded sets in 
LV(T) by selecting the/* to have appropriate zeros. 

3. In this section we analyze transformations from LP(T) to C(S). 

THEOREM 3. With T as in Theorem 1 let A be a transformation on U°(T) 
with values in C(S), where S is a compact Hausdorff space. Suppose that A 
satisfies the conditions 

(iA) A(x + y) = A{x) + A(y) when xy = 0 a.e., 
(iiA) A is uniformly continuous on each bounded subset of U°(T), 

(iiiA) A(xn) —> A(x) whenever {xn}n^i converges boundedly a.e. to x Ç Lœ(T). 
Then there exists a transformation <£: 5 —> Car°°(r) such that 

(3.1) A(pc)(s) = I ($(s) ox)dp= I &(s)x(t),t)dn(t). 

The transformation $ can be taken to satisfy 
(a) $(5) o 0 = 0 a.e. for all s 6 S, 

in which case $(s) is unique, for each s, up to sets of the form R X N with N a 
null set T. Moreover, <ï> has the following additional properties: 

(b) the mapping 5 H $ ( 5 ) o x is weakly continuous for each x Ç U°{T), 
(c) the mapping X H $ ( 5 ) O X Ç Ll(T) is uniformly continuous on each 

bounded subset of Lœ(T), uniformly in s, 
(d) if boundedly a.e., then 

(1) limM(tf)_>o JE($(s) O xn) dfi = 0 uniformly in s and n, 
(2) for any expanding sequence Ej such that \JEj = T, 

lim I ($($) o xn) dfx = 0 uniformly in s and n. 

Conversely, every transformation $: S —» Car°°(r) satisfying (a), (b), (c), 
awd (d) determines by means of (3.1) a transformation A: Lœ(T) —» C(S) 
satisfying (iA), (iiA), (iiiA). 

Proof. If 4̂ satisfies (iA), (iiA), and (iii^)» then for each fixed s £ S the 
functional defined by Fs(x) = A (x) (s) satisfies (i), (ii), and (iii) of Theorem 1. 
Hence by Theorem 1 there exists an element <3?(s) Ç Car°°(r) satisfying (a) 
for which the representation 

Fs(x) =A(x)(s) = f ($(5) ox) du 

holds, and $(s) is unique up to sets of the form R X N with N a null set in T. 
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To show that (b), (c), and (d) are satisfied, we proceed as follows. According 
to ( u ) and (iii4), Fs determines for each x É L œ ( r ) a /x-continuous measure 
vx by means of 

(3.2) vx(G) = Fs(xXG) = I (*(*) o x X f i ) 4 

Using (a) we can rewrite this as follows: 

(3.3) vx(G) = I (<£(s) ox)dfx = A(XXG)(S)-
v G 

Thus for any x,y 6 Lœ(T) we have 

(3.4) f [*(*) o x - *(s) oy]dfi = vx{G) - vy{G) 
•SG 

= A(XXG)(S) -A(yXo)(s). 

Now the total variation of the signed measure vx — vy is given by 

(3.5) Var {yx - vy) = f |*($) ox - Q(s) oy\ d» 
*J T 

= sup U(xx<000 - A(yxa)(s)] 

- inf [A(xXG>)(s) -A(yxG>)(s)]. 
G'£2 

However, by (ii^) we see that on each bounded subset B of Lœ(T) there exists 
for each e > 0 a ô, independent of s, such that for x, y G B, \\x — y\\œ < d 
the right side of equation (3.5) is less than e. This yields (c). 

To show that (b) holds, we observe first that, as a consequence of (c), for 
each x £ U°(T) the family 

31 s = {$00 ox\s 6 S] 

is a bounded subset of LX(T) (here the bounded subset of U°(T) is taken as 
Bs = {y £ Lœ(T)\ \\y\\œ S \\x\\J). Moreover, since A mapsLœ(T) into C(5), 
we have for each £ f 2 : 

(3.6) I ($00 oxxj^dix = I xi?($00 ox)dfx = A(XXE)(S) 

is continuous with respect to 5. It then follows by (\A) and (a) that 

(3.7) f *($00 ox) due C(S) 

for every measurable function s whose range is a finite set. Since these functions 
are dense in Lœ(T) = Ll(T)' and 0tx is a bounded subset of LX(T), it follows 
that (3.7) holds for all z 6 Lœ(T), which yields (b). 

To prove (d) we argue by contradiction. If (d) (1) were false, then there 
would exist a sequence xn converging to x boundedly almost everywhere and 
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a sequence of triples (Em, sm, xnm) with n(Em) < l/m such that for some 
fixed a > 0, 

(3.8) f ($(5W) o O * > a, m = 1, 2, , 

By compactness of 5 we may assume without loss of generality that sm —> s0. 
Moreover, by (iii^) we have for each G £ 2 : 

(3.9) vXntSm(G) = ($(*«) oxn)dfx = A(xnXG)(sm)->A(xXG)(sm) 

o x) dfx as ?z —> oo, 

uniformly in m. The continuity of A (X\G) now implies that 

(3.10) lim vXnfSm(G) = A(XXG)(SO) = vXtS0(G). 
m,n-$co 

Therefore it follows by the Vitalli-Hahn-Saks theorem [5, p. 158] that 

(3.11) lim vXntSm(E) = lim I ($(sm) oxn) dix = 0 uniformly in m and n9 

which contradicts (3.8). If (d) (2) were false, then there would exist a sequence 
xn converging boundedly to x almost everywhere and a sequence of triples 
(Em

f, sm, xnm), with {Em'} an expanding family in 2 whose union is T, such 
that for some fixed a > 0, we have: 

(3.12) f (#(sw) o x j 
I *) T—Em' 

dfJL > a, m = 1, 2, 

Again we may assume that sm —> So, so that (3.10) holds. Therefore it follows 
by Nikodym's corollary to the Vitalli-Hahn-Saks theorem [5, p. 160] that 

(3.13) lim I ($(sm) o xnm) dix = 0 uniformly in m and n, 
m->co J T—Em' 

which contradicts (3.12). 
For the converse we observe by Theorem 1 that (iA), (ii^), and £%A C C(s) 

all follow directly from (a), (b), and (c). To prove (iii^) we observe that xn 

converging to x boundedly almost everywhere implies by (d) (2) that for 
each e > 0 there exists a set Ee, with n(Ee) < oo, such that 

J ($(s) o xn) dfx < e uniformly in 5 and n. 
T-E€ 

Now bounded almost everywhere convergence of xn to x implies that on the 
set Ee this convergence is almost uniform. Hence by (d) (1) there exists a 
subset F/CZ E€ such that 

J ($(s) oxn)dfi < € uniformly in n and 5 
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while the convergence of xn to x on Ee — Ft is uniform. Thus by (iA), we have 

(3.14) \A(xn)(s) - A(x)(s)\ = f ($(s) oxn)dix- ( ( $ ( J ) O I ) * 

+ ( $ 0 ) oxn)dfjL - W ) o x ) 4 

+ J ($(s) oxn — $(s) ox) dfx 
•SEe-Fe 

^ 4e + I |$(s) oxn — $(5) o x | dfjL. 
JE€—F€ 

Then by (ii^) we have, for sufficiently large n: 

(3.15) \A(xn)(s) — A(x)(s)\ ^ 5e uniformly in s. 

Since € > 0 was arbitrary, this yields (hi A)-

We now give an analogue for LV(T), 1 rg p < 00. 

THEOREM 4. W 7^ T as in Theorem I, let Abe a transformation on LV(T) with 
values in C(S), where S is a compact Hausdorff space. Suppose that A satisfies 
the conditions 

(iA) A (x + y) = A (x) + A (y) when xy = 0 a.e., 
(HAP) A is continuous on LP(T), 

(UIAP) A is uniformly continuous relative to the Lœ norm on each bounded 
subset of Lœ(T) which is supported by a set of finite measure. 

Then there exists a transformation <ï>: S —* Carp(T) such that 

(3.16) A(x)(s) = J ($(s)ox)dn. 

The transformation <£ can be taken to satisfy: 
(a) $ ( 5 ) 0 0 = 0 a.e. for all s G S, 

in which case <£>(s) is unique, for each s, up to sets of the form R X N with N 
a null set in T. Moreover, <ï> has the following additional properties: 

(bP) the mapping s 1—> $(s) ox G Ll(T) is weakly continuous for each 
x G LP(T), 

(cp) the mapping x 1—> $(s) ox G Ll(T) is weakly continuous {using the 
norm topology on LP(T)), uniformly in s, 

(dp) the mapping X H $ ( 5 ) O X is uniformly continuous (relative to the U° 
norm), uniformly in s, on each bounded subset of U°(T) which is sup­
ported by a set of finite measure. 

Conversely, every transformation <&: S —> Ca.vp(T) satisfying (a), (bp), (cv), 
and (dp) determines by means of (3.16) a transformation A: LP(T) —> C(S) 
satisfying (iA), (ii^p), and (iuAp). 

Proof. If A satisfies (iA), (uAp), and (iii^p), then for each fixed s G S the 
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functional denned by Fs(x) = A(x)(s) satisfies (i), (iip), and (hip). Hence by 
Theorem 2 there exists an element $(5) Ç Ca,rp(T) satisfying (a) for which 
the representation 

Fs(x) = A(x)(s) = I ($(5) ox) dfx 

holds, and $(s) is unique up to sets of the form R X N. To show that (bp), 
(q,), and (dp) hold, we proceed as follows. According to (iA) and ( i i^) , Fs 

determines for each x £ LP(T) a /z-continuous measure vx by means of 

(3.17) vx{G) = Fs(xXo) = f (#(s) oxXo)dix. 

Using (a) we can rewrite this as follows 

(3.18) vx{G) = J ($(*) ox)d» = A(xXo)(s). 
J G 

Thus the variation of the signed measure vx is given by 

(3.19) Var (vx) = \ \$(s) o x\ du 

= sup A (XXG)(S) - inî A(XXG')(S). 
G& G'& 

We now show that for each x, the right side of equation (3.19) is bounded. 
Since x is in LV(T), we deduce by equicontinuity of the indefinite integral of 
\x\v that corresponding to each e there is a set E€ Ç 2, n(Et) < 00, such that 
H^Xr-tfJIp < €. We can require without loss of generality that E€ contain at 
most finitely many atoms, Ei, . . . , Ene. Moreover, by absolute continuity of 
the indefinite integral of x there exists a ô such that 

(3.20) ll*X*||* < « whenever M(E) < Ô. 

Now by (iiAp), A is continuous at 0 £ LV(T). Hence on taking e sufficiently 
small we deduce that 

(*) |.4 (#XF) (s)I = 1 uniformly in s, whenever fJ,(F) ^ 5, 
(3.21) 

(**) | 4 ( X % F ) ( ^ ) | ^ 1 uniformly in s, whenever F C T — Ee. 

Now for any G G S we have, by (iA), 

(3.22) | 4 ( * X G ) ( * ) | = U(*x<?ner-*e))(s) + Z) 4(xx<?n^)00 
I i = l 

+ A (xxGr\{E- u ^ . o ) 00 

^ 1 + E |4(*x*)(*)l + M(xx G n ( ^-u^) ) (5) | . 
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A/loreover, by splitting the non-atomic subset Ee — \JlLiEt into parts of 
measure less than ô and applying (3.21) (*), we obtain the estimate 

(3.23) \A(xXan(E(-v1Ll^)(s)\^(Ef ~ ^ ^ + 1 * ^ + 1 . 

Combining (3.22) and (3.23) we deduce that 

(3.24) \A(XXG)(S)I é 2 + ^ + É | \A(xX E i) \L s Mt 

uniformly in s and G. 
Therefore by (3.19) it follows that the set 

(3.25) Bx = {$(s) o XXE\ E £ 2,S e S} 

is a bounded subset of Ll{T). 
Now since A takes LV(T) into C(S) we have for each E £ 2 : 

(3.26) f (*($) oxxtf) <*/* = f x*(*(*) o x ) ^ = i ( x x , ) ( 5 ) 

is continuous with respect to s. It then follows by (i^) that 

(3.27) I z($(<>) o *) d/x is in C(S) 

for every simple function z. Since the simple functions are dense in U°(T) = 
Ll(T)' and Bx is a bounded subset of Ll(T), it follows that (3.27) holds for 
all z 6 Lœ(T), which yields (by). 

To show that (cp) holds, let {xn}n^i denote a sequence converging to x = x0 

in LV(T). Then the indefinite pth. power integrals of the {xn}n^0 are uniformly 
absolutely continuous and equicontinuous with respect to \x. Hence it follows 
by the technique used in deriving (3.24) that 

B{*n) = l ^ ) o ^ | £ 6 S, s G S,n ^ 0 } 

is a bounded subset of Ll{T). 
Now for each £ G 2, xn\E converges to x Ç x s in LV(T) and hence by 

(iiAp) we have 

(3.28) I (#(s) 0 3»x*)<*At = I X*(*(s) oxn)dfx-^ I Xtf($00 ox)dju 
V f « / y t / f 

uniformly in s. 
It then follows by (i^) that 

(3.29) I z($(s) o xn) dix —> I s(<I?(s) o x) dix uniformly in s, 

for every simple function z. Since the simple functions are dense in 
Lœ(T) = U(T)' and £{a;n} is a bounded subset of L 1 ^ ) , it follows that (3.29) 
holds for all z £ Lœ(T), which yields (cP). Finally, the transformation 
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Ai = A\U°(E), for any E such that v(E) < o o , satisfies (iA), (ii^), and 
(uiA) of Theorem 3, the last following from (ii^p) by virtue of the Lebesgue 
dominated convergence theorem. Therefore (dp) is a consequence of Theorem 3. 

The converse is immediate. 

Remark. Theorems 3 and 4 are well known in the linear case [5, p. 490]. 
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