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Abstract
Given partially ordered sets (posets) (P,≤P) and (P′,≤P′ ), we say that P′ contains a copy of P if for some
injective function f : P → P′ and for any X, Y ∈ P, X ≤P Y if and only if f (X)≤P′ f (Y). For any posets P and
Q, the poset Ramsey number R(P,Q) is the least positive integer N such that no matter how the elements
of an N-dimensional Boolean lattice are coloured in blue and red, there is either a copy of P with all blue
elements or a copy of Q with all red elements. We focus on a poset Ramsey number R(P,Qn) for a fixed
poset P and an n-dimensional Boolean lattice Qn, as n grows large. We show a sharp jump in behaviour of
this number as a function of n depending on whether or not P contains a copy of either a poset V , that is a
poset on elements A, B, C such that B> C, A> C, and A and B incomparable, or a poset �, its symmetric
counterpart. Specifically, we prove that if P contains a copy ofV or� then R(P,Qn)≥ n+ 1

15
n

log n . Otherwise
R(P,Qn)≤ n+ c(P) for a constant c(P). This gives the first non-marginal improvement of a lower bound
on poset Ramsey numbers and as a consequence gives R(Q2,Qn)= n+ �

(
n

log n

)
.
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1. Introduction
Ramsey-type problems for partially ordered sets, or shortly posets, were considered first in great
generality by Nešetřil and Rödl [24], who determined all posets U such that for any poset P there
is a ground poset W with the property that any colouring of induced copies of U in W with a
fixed number of colours results in a monochromatic induced copy of P. See also a paper by Paoli,
Trotter, andWalker [25] on this topic. IfU is the poset consisting of a single element, we arrive at a
natural special case, where one writesW → P if any two-colouring of the elements ofW contains
a monochromatic induced copy of P. Kierstead and Trotter [18] considered this setting for general
posets with the goal of minimising p(W) for all P with a fixed p(P), where p is a poset parameter
such as size, height, or width.

In this paper, we consider a closely related poset Ramsey problem, where the ground poset
is a Boolean lattice QN , a poset whose elements are all subsets of an N-element set equipped
with set inclusion relation. For posets P and Q, let the Boolean poset Ramsey number or simply
poset Ramsey number R(P,Q) be the least integer N such that in any colouring of elements of the
N-dimensional Boolean lattice QN in blue and red, there is an induced copy of P with all blue
elements or an induced copy of Q with all red elements.

This function was first studied in detail relatively recently by Axenovich and Walzer [1]. In
the diagonal case P =Q=Qn, the bounds 2n+ 1≤ R(Qn,Qn)≤ n2 − n+ 2 are the best currently
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known, see listed chronologically Walzer [29], Axenovich andWalzer [1], Cox and Stolee [10], Lu
and Thompson [20], Bohman and Peng [3]. Falgas-Ravry, Markström, Treglown, and Zhao [12]
showed that R(Q3,Q3)= 7. Since any posets P and Q are induced subposets of Qn for sufficiently
large n, we see that R(P,Q) is well-defined. Boolean poset Ramsey numbers and their rainbow
variants were considered for some special classes of posets by Chen, Chen, Cheng, Li, and Liu [7,
8] as well as by Chang et al. [6]. In the off-diagonal setting R(Qm,Qn) with m fixed and n large,
an exact result is only known if m= 1. It is easy to see that R(Q1,Qn)= n+ 1. For m= 2, it was
shown in [1] that R(Q2,Qn)≤ 2n+ 2. This was improved by Lu and Thompson to R(Q2,Qn)≤
(5/3)n+ 2. Finally, it was further improved by Grósz, Methuku, and Tompkins [15]:

Theorem 1. (Grósz-Methuku-Tompkins [15]) For any ε > 0 there is n0 such that for any integer
n≥ n0, we have n+ 3≤ R(Q2,Qn)≤ n+ (2+ ε)n/ log n.

In this paper, we focus on R(P,Qn) for an arbitrary fixed poset P and large n. Note that R(P,Qn)≥
n for any non-empty poset P as witnessed by a colouring of all elements of Qn−1 in red. We prove
that a central role is played by a small, three-element poset � = (�,<), with elements Z1, Z2,
and Z3, such that Z1 < Z3, Z2 < Z3, and Z1 and Z2 incomparable. A poset V is the symmetric
counterpart of �, having elements Z1, Z2, and Z3, such that Z1 > Z3, Z2 > Z3, and Z1 and Z2 not
comparable. Our main result shows a sharp jump in the behaviour of R(P,Qn) as a function of n
depending whether or not P contains a copy � or V .

Theorem 2. For every poset P there is an n0 ∈N such that for all n> n0 the following holds.

• If P contains a copy of � or V, then R(P,Qn)≥ n+ 1
15

n
log n .

• If P contains neither a copy of � nor a copy of V, then R(P,Qn)≤ n+ f (P), for some
function f .

The first part of Theorem 2 relies on the lower bound on R(�,Qn) that we provide in the next
theorem along with an asymptotically matching upper bound.

Theorem 3. Let ε > 0. There exists an n0 ∈N such that for all n≥ n0,

n+ 1
15

· n
log n

≤ R(�,Qn)≤ n+ (
1+ ε) · n

log n
.

More precisely, it can be seen that the lower bound holds for log n0 ≥ 535, while the upper
bound requires log n0 ≥ 36

ε2
. Note that R(�,Qn)≤ R(Q2,Qn), so Theorem 1 already implies a

bound for R(�,Qn) which is weaker but asymptotically equal to the upper bound of Theorem 3.
Our main tool used to prove both the lower and the improved upper bound on R(�,Qn) is a
structural duality statement, Theorem 12. The upper bound is obtained from that using a count-
ing argument, while for the lower bound we give a probabilistic construction to find a desired
colouring. This is the first of a kind non-marginal improvement of a trivial lower bound for poset
Ramsey numbers. Most other known lower bounds correspond to so-called layered colourings of
Boolean lattices, where any two elements of the same size have the same colour. The only two
previously given non-layered constructions are those from Theorem 1 by Grósz, Methuku, and
Tompkins [15], improving the trivial lower bound R(Q2,Qn)≥ n+ 2 to n+ 3 and by Bohman
and Peng [3] improving the trivial lower bound for the diagonal case R(Qn,Qn)≥ 2n to 2n+ 1.

Theorems 1 and 2 also give a lower bound for R(Q2,Qn) which is asymptotically tight not only
in the first but also in the second summand.

Corollary 4. R(Q2,Qn)= n+ �
(

n
log (n)

)
.

Note that the Ramsey variant we consider is related to extremal problems on posets and their
induced subposets. Carroll and Katona [5] introduced a Turán-type function La#(n, P) as the
largest number of elements inQn that do not induce a copy of the poset P. Most notable is a result

https://doi.org/10.1017/S0963548323000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000032


640 M. Axenovich and C. Winter

by Methuku and Pálvölgyi [22], who showed that La#(n, P)≤ f (P)
( n
	n/2


)
, thus proving a conjec-

ture of Katona, Lu, and Milans [19]. Their statement has been refined for several special cases,
see for example Lu and Milans [19] and Méroueh [21], as well as an earlier result by Boehlein
and Jiang [2]. Further Turán-type results were given by Methuku and Tompkins [23] and Tomon
[28]. Note that the corresponding function La(n, P) for non-induced, so-called weak subposet, P,
was extensively studied, see for example [4, 9, 11, 13, 14, 16, 26, 27]. In addition, saturation-type
extremal problems have been addressed for induced and weak subposets, see a recent paper of
Keszegh, Lemons, Martin, Pálvölgyi, and Patkós [17].

The structure of the paper is as follows. In Section 2, we give the formal definitions and nota-
tions, define special posets we call factorial trees and shrubs, and prove some basic properties. In
Section 2.4, we provide an alternative proof of the upper bound in Theorem 1. This makes our
paper self-contained since we need this result for Corollary 4. In Section 3, we provide a struc-
tural duality statement, Theorem 12, which is the key tool for the main proofs. In Section 4, we
use a probabilistic construction to find a colouring with ‘good’ properties. Lastly, in Section 5 we
complete the proofs of Theorems 3 and 2.

2. Preliminaries
2.1. Basic notations and definitions
A poset is a set P equipped with a relation ≤P that is transitive, reflexive, and antisymmetric. For
any non-empty set X , let Q(X ) be the Boolean lattice of dimension |X | on a ground set X , that
is the poset consisting of all subsets of X equipped with the inclusion relation ⊆. We use QN to
denote a Boolean lattice of dimension N, that is a set of all subsets of an N-element set with set
inclusion order. We refer to a poset either as a pair (P,≤P ), or, when it is clear from context,
simply as a set P. The elements of P are often called vertices.

For two posets (P1,≤P1 ) and (P2,≤P2 ), an embedding φ : P1 → P2 of P1 into P2 is an injective
function such that for every X1, X2 ∈ P1, X1 ≤P1 X2 if and only if φ(X1)≤P2 φ(X2). A poset P1 is
an induced subposet of P2 if P1 ⊆ P2 and for every X1, X2 ∈ P1, X1 ≤P1 X2 if and only if X1 ≤P2 X2.
A copy of a poset P1 in P2 is an induced subposet P′ of P2, isomorphic to P1.

Consider an assignment of two colours, blue and red, to the vertices of posets. Such a colouring
c:P → {blue, red} is a blue/red colouring of P. A coloured poset ismonochromatic if all of its vertices
share the same colour. A monochromatic poset whose vertices are blue is called a blue poset.
Similarly defined is a red poset. Using this terminology, the poset Ramsey number of two posets P
and Q is

R(P,Q)=min{N ∈N : every blue/red colouring of QN contains either
a blue copy of P or a red copy of Q}.

Let X and Y be disjoint sets. Then the vertices of the Boolean lattice Q(X ∪Y), that is the
unordered subsets of X ∪Y , can be partitioned with respect to X and Y in the following manner.
Every Z ⊆X ∪Y has an X -part XZ = Z ∩X and a Y-part YZ = Z ∩Y . In this setting, we refer to
Z alternatively as the pair (XZ , YZ). Conversely, for all X ⊆X , Y ⊆Y , the pair (X, Y) has a 1-to-1
correspondence to the vertex X ∪ Y ∈Q(X ∪Y). One can think of such pairs as elements of the
Cartesian product 2X × 2Y which has a canonical bijection to 2X∪Y =Q(X ∪Y). Observe that
for Xi ⊆X , Yi ⊆Y , i ∈ [2], we have (X1, Y1)⊆ (X2, Y2) if and only if X1 ⊆ X2 and Y1 ⊆ Y2.

For any poset, we refer to vertices Z1, Z2 which are incomparable as Z1 � Z2. For a positive
integer n ∈N, we use [n] to denote the set {1, . . . , n}. Given an integer n ∈N and a set X , let

(X
n
)

be the set of all n-element subsets of X . Throughout the paper, ‘log’ always refers to the logarithm
with base 2, while ‘ln’ refers to the natural logarithm. For sets A and B, we write A⊂ B to denote
that A is a proper subset of B. We omit floors and ceilings where appropriate.
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2.2. Structure of posets with forbidden� or V
A poset T is an up-tree if there is a unique minimal vertex in T and for every vertex X ∈ T , the set
{Y ∈ T : Y ≤ X} is a chain, that is its vertices are pairwise comparable. We say that two subposets
of a given poset are independent if they are vertexwise incomparable. Furthermore, a collection of
subposets is independent if they are pairwise independent. We use this notation to describe posets
which don’t contain a copy of � (or V).

Lemma 5. Let P be a poset. There is no copy of � in P if and only if P is an independent collection
of up-trees.

Proof. Observe that a poset P is an independent collection of up-trees if and only if for every
vertex X ∈ P, {Y ∈ P : Y ≤ X} forms a chain.

Suppose that there is a copy of � in P on vertices Zi, i ∈ [3] with Z1 < Z3, Z2 < Z3 and Z1 � Z2.
Then Z1, Z2 witness that {Y ∈ P : Y < Z3} is not a chain, so P is not an independent collection of
up-trees.

Now assume that P is not an independent collection of up-trees. Then there exist some X ∈
P and Z1, Z2 ∈ {Y ∈ P : Y ≤ X} such that Z1 � Z2. Since X is comparable to all vertices in {Y ∈
P : Y ≤ X}, X > Z1, X > Z2. Now X, Z1, Z2 form a copy of �. �

By symmetry an analogous statement holds for posets with forbidden induced copy of V . If we
forbid both V and � simultaneously we obtain the following structure.

Corollary 6. Let P be a poset such that there is neither a copy of V nor of �. Then P is an
independent collection of chains.

2.3. Embeddings of Qn
When considering an embedding φ of a Boolean lattice Qn into a larger Boolean latticeQ(Z), we
can partition Z such that it has the following nice property. This result is due to Axenovich and
Walzer [1], here we state an alternative proof.

Lemma 7. (Axenovich-Walzer [1]). Let n ∈N. Let Z be a set with |Z| > n and let Q=Q(Z). If
there is an embedding φ :Qn →Q, then there exist a subsetX ⊂Z with |X | = n, and an embedding
φ′ :Q(X )→Q with the same image as φ such that φ′(X)∩X = X for all X ⊆X .

Proof. Let the ground set of Qn be X ′. We consider the embedding of singletons of Qn, that
is φ({a}), a ∈X ′. If φ({a})⊆⋃

X′⊆X ′\{a} φ(X′), then φ({a})⊆⋃
X′⊆X ′\{a} φ(X′)⊆ φ(X ′\{a}). But

{a}�X ′\{a} and φ is an embedding, a contradiction. Thus φ({a}) �⊆⋃
X′⊆X ′\{a} φ(X′). For every

a ∈X ′, pick an arbitrary

b(a) ∈ φ({a})\
⋃

X′⊆X ′\{a}
φ(X′).

Note that b(a1) /∈ φ({a2}) for any a1, a2 ∈X ′, a1 �= a2, so all representatives are distinct. Let X =
{b(a) : a ∈X ′}. We see that the map b:X ′ →X is a bijection. For every B⊆X , let AB ⊆X ′ be such
that B= {b(a):a ∈AB}. We define φ′ :Q(X )→Q as follows: φ′(B)= φ(AB), B ∈X . Then φ′ is an
embedding. Observe that forX ⊆X and b ∈X , b ∈ φ′(X) if and only if b ∈ X. Thus φ′(X)∩X = X
for all X ⊆X . This concludes the proof. �

We call an embedding φ ofQ(X ) intoQ(X ∪Y) for disjointX andY ,X -good if φ(X)∩X = X
for allX ∈X . We also call a copyQ ofQ(X ) inQ(X ∪Y)X -good if there is anX -good embedding
ofQ(X ) intoQ(X ∪Y).

Lemma 7 claims in particular that for any copy of Qn in a larger Boolean lattice Q, there is a
subset X of the ground set of Q with |X | = n such that there is an X -good copy ofQ(X ) in Q.
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2.4. Red copy of Qn vs. blue chain
The main goal of this subsection is to present an alternative proof for the upper bound of
Theorem 1 and thus of Corollary 4. Grósz, Methuku, and Tompkins [15] stated the following
lemma using a different formulation. While they used algorithmic tools in their proof, we prove
the statement recursively. Recall that for a given partition X ∪Y of the ground set of a Boolean
lattice we denote a vertex X ∪ Y ∈Q(X ∪Y), where X ⊆X , Y ⊆Y , as (X, Y).
Lemma 8. LetX , Y be disjoint sets with |X | = n and |Y| = k, for some n, k ∈N. Let Q=Q(X ∪Y)
be a blue/red coloured Boolean lattice. Fix some linear ordering π = (y1, . . . , yk) of Y and define
Y(0), . . . , Y(k) by Y(0)=∅ and Y(i)= {y1, . . . , yi} for i ∈ [k]. Then there exists at least one of the
following in Q:

(1) a red X -good copy ofQ(X ), or
(2) a blue chain of length k+ 1 of the form (X0, Y(0)), . . . , (Xk, Y(k)) where X0 ⊆ X1 ⊆ . . . ⊆

Xk ⊆X .

Proof. Suppose that there is no blue chain as described in (b). For every X ⊆X , we recursively
define a label �X ∈ {0, . . . , k} such that φ :Q(X )→Q, φ(X)= (X, Y(�X)), is an embedding with
monochromatic red image. We require �X to fulfil three properties:

(1) For any X′ ⊆ X, �X′ ≤ �X .
(2) There is a blue chain of length �X contained in the Boolean lattice with ground set X ∪

Y(�X), which we denote by QX .
(3) (X, Y(�X)) is red.

First, consider the vertex ∅. Let �∅ be the minimum �, 0≤ � ≤ k, such that (∅, Y(�)) is
red. If such an � does not exist, then (∅, Y(0)), . . . , (∅, Y(k)) form a blue chain, a contradic-
tion. It is clear to see that Properties (1) and (3) hold. If �∅ = 0, (2) is trivially true. If �∅ ≥ 1,
(∅, Y(0)), . . . , (∅, Y(�∅ − 1)) form a blue chain of length �∅ and (2) holds as well.

Consider an arbitrary X ⊆X and suppose that for all X′ ⊂ X we already defined �X′ with
Properties (1)−(3). Let �′

X =max{U⊂X} �U . Then let �X be the minimum�, �′
X ≤ � ≤ k such that

(X, Y(�)) is coloured in red. If there is no such �, then
(
X, Y

(
�′
X
))

, . . . , (X, Y(k)) is a blue chain
of length k− �′

X + 1. By definition of �′
X there is some U ⊂ X with �U = �′

X . In particular, (2)
holds for U, so there is a blue chain of length �′

X in QU . Note that (U, Y(�U))⊂
(
X, Y

(
�′
X
))
, so

we obtain a blue chain of length k+ 1. This is a contradiction, thus �X is well-defined and fulfils
Property (3).

If �X = �′
X , consider the aforementioned blue chain of length �′

X inQU , and otherwise consider
this chain together with

(
X, Y

(
�′
X
))

, . . . , (X, Y(�X − 1)). In both cases, we obtain a blue chain of
length �X , which proves (2). For X′ ⊂ X ⊆X , �X′ ≤ �′

X ≤ �X , thus (1) holds.
We define φ :Q(X )→Q, φ(X)= (X, Y(�X)). Note that φ(X)∩X = X for every X ⊆X and

Property (3) implies that φ(X) is red. Let X1, X2 ⊆X . If φ(X1)⊆ φ(X2), it is immediate that
X1 ⊆ X2. Conversely, if X1 ⊆ X2, then by Property (1) we have �X1 ≤ �X2 . Thus

(
X1, Y

(
�X1

))⊆(
X2, Y

(
�X2

))
. As a consequence, φ is an X -good embedding ofQ(X ). �

This Lemma implies the following corollary which is already given in an alternative form by
Axenovich and Walzer, see Lemma 4 of [1].

Corollary 9. Let X ,Y be disjoint sets with |X | = n and |Y| = k. Let P be a subposet of a Boolean
lattice Q=Q(X ∪Y) such that there is no chain of length k+ 1 in P . Then there exists a copy of Qn
in Q which contains no vertex of P .
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Proof. Fix an arbitrary linear ordering of Y . Furthermore, let c :Q→ {blue, red} be the colouring
such that

c(X)=
{
blue, if X ∈P ,
red, otherwise.

There is no blue chain of length k+ 1 in c, so by Lemma 8 there is a monochromatic red copy of
Qn in Q. This copy does not contain any vertex of P . �

With the help of Lemma 8, we can now prove an upper bound for R(Q2,Qn). The concluding
arguments are due to Grósz, Methuku, and Tompkins [15].

Proof of Corollary 4. The lower bound follows from Theorem 2. For the upper bound, let k ∈N
with k= (2+ε)n

log (n) . Let X and Y be disjoint sets with |X | = n and |Y| = k. Consider a blue/red
colouring of Q=Q(X ∪Y) with no monochromatic red copy of Qn. Let π = (

yπ
1 , . . . , y

π
k
)
be

a linear ordering of Y . By Lemma 8, there exists a blue chain of length k+ 1 of the form(
Xπ
0 ,∅

)
,
(
Xπ
1 ,
{
yπ
1
})

,
(
Xπ
2 ,
{
yπ
1 , y

π
2
})

, . . . ,
(
Xπ
k ,Y

)
where Xπ

i ⊆X .
Note that there are k! distinct orderings of Y . For each linear ordering π of Y we consider Xπ

0
and Xπ

k , that is the minimal and maximal vertex of the aforementioned chain restricted to X . By
the choice of k, we obtain k! > 22n. In particular by pigeonhole principle, there are distinct π1, π2
with Xπ1

0 = Xπ2
0 and Xπ1

k = Xπ2
k . Since π1, π2 are distinct, there exists an index 1≤ i≤ k− 1 with{

yπ1
1 , . . . , yπ1

i
} �= {

yπ2
1 , . . . , yπ2

i
}
. Then the four vertices(

Xπ1
0 ,∅

)
,
(
Xπ1
i ,
{
yπ1
1 , . . . , yπ1

i
})

,
(
Xπ2
i ,
{
yπ2
1 , . . . , yπ2

i
})

,
(
Xπ1
k ,Y

)
form a blue copy of Q2. �

2.5. Factorial trees and shrubs
Besides the Boolean lattice, there is another poset which plays a major role in this paper, which we
call the factorial tree.

Consider the set of ordered subsets of a fixed non-empty set Y , that also could be thought of as
a set of strings with non-repeated letters over the alphabet Y . Note that we also allow the empty
set as such an ordered subset. Occasionally, if it is clear from the context, we refer to the empty
ordered set (∅,≤ ) simply as∅. For an ordered subset S of Y , we refer to its underlying unordered
set as S. Let |S| = |S| be the size of S. We also say that S is an ordering of S.

Let S be an ordered subset of Y . A prefix of S is an ordered subset T of Y consisting of the first
|T| elements of S in the ordering induced by S. If T is a prefix of S, we write T ≤O S. Note that
the empty ordered set is a prefix of every ordered set. If T �= S, we say that a prefix T of S is strict,
denoted by T <O S. Observe that the prefix relation≤O is transitive, reflexive, and antisymmetric.
Let O(Y) be the poset of all ordered subsets of Y equipped with ≤O . We say that this poset is the
factorial tree on ground set Y .

In a factorial tree O(Y) for every vertex S ∈O(Y), the set of prefixes {T ∈O(Y) : T ≤O S}
induces a chain. Furthermore, the vertex ∅ is the unique minimal vertex of Y , thus O(Y) is an
up-tree.

Let X and Y be disjoint sets. Let Q=Q(X ∪Y) andO(Y) be the factorial tree with ground set
Y . An embedding τ of O(Y) into Q is Y-good if for every S ∈O(Y), τ (S)∩Y = S. We say that a
subposet P of Q is a Y-good copy ofO(Y) if there exists a Y-good embedding τ :O(Y)→Q with
image P . We refer to such a copy also as a Y-shrub.

Besides that, we also consider a related subposet with slightly weaker conditions. A weak Y-
shrub is a subposet P of Q such that there is a function τ :O(Y)→Q with image P such that for
every S ∈O(Y), τ (S)∩Y = S and for every S, T ∈O(Y) with S<O T, τ (S)⊂ τ (T). In particular,
a weak Y-shrub might not correspond to an injective embedding ofO(Y).
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Clearly a Y-shrub is also a weak Y-shrub. Surprisingly, the converse statement is also true for
subposets of a Boolean lattices which do not contain a copy of �.

Proposition 10. Let X and Y be disjoint sets, let Q=Q(X ∪Y). Let P be a weak Y-shrub in Q
such that P contains no copy of �. Then P is a Y-shrub.
Proof. Let τ :O(Y)→Q be a map such that for every S, T ∈O(Y) with S<O T, we have τ (S)⊂
τ (T) and τ (S)∩Y = S, and let P be its image. For all S ∈O(Y), let XS = τ (S)∩X , that is τ (S)=
(XS, S). We shall show that τ is an embedding, thus proving that P is a Y-shrub. For that we need
to prove that the condition τ (S)⊆ τ (T) implies that S≤O T for any ordered subsets S and T of Y .

Let τ (S)⊆ τ (T), that is (XS, S)⊆ (XT , T). In particular, S⊆ T and so |S| ≤ |T|. Let R be the
largest common prefix of S and T. Such a prefix exists since ∅ is a prefix of every ordered set. If
|R| = |S|, then S= R≤O T and we are done. So we can assume that |S| ≥ |R| + 1.

If |T| ≤ |R| + 1, then |R| + 1≤ |S| ≤ |T| ≤ |R| + 1. This implies |S| = |T| and since S⊆ T, we
have S= T. Let {y} = S\R= T\R. Then both S, T have R as prefix of size |S| − 1= |T| − 1 and y
as final vertex. Thus S= T and we are done as well.

From now on, we assume that |S| ≥ |R| + 1 and |T| > |R| + 1. Consider prefixes S′ ≤O S and
T′ ≤O T of size |R| + 1. Then R is a prefix of both S′ and T′. Let yS such that S′\R= {yS} and let
yT with T′\R= {yT}.

If yS = yT , we obtain S′ = T′, which implies that R is not the largest common prefix of S and T,
a contradiction.

If yS �= yT , the unordered sets S′ and T′ are not comparable. In particular, (XT′ , T′) and
(XS′ , S′) are incomparable. Because S′ ≤O S, T′ <O T and by our initial assumption, we know
that (XS′ , S′)⊆ (XS, S)⊆ (XT , T) and (XT′ , T′)⊆ (XT , T). Since |S′| = |T′| = |R| + 1< |T|, we
obtain that both (XS′ , S′) and (XT′ , T′) are proper subsets of (XT , T). Then the three vertices
(XT , T), (XT′ , T′) and (XS′ , S′) form a copy of � in Q, so we reach a contradiction. �

2.6. Construction of an almost optimal shrub
Let Y be a k-element set. Note that a Y-shrub has k! maximal vertices corresponding to all per-
mutations of Y . These maximal vertices form an antichain, that is are pairwise incomparable.
Sperner’s theorem implies that a ground set of any Y-shrub must have size at least q, where( q
	q/2


)≥ k!, so q≥ k( log k+ log e)+ o(k). Next, we shall construct a Y-shrub which is almost
optimal in the sense that Y has ground set of size almost matching the lower bound above.

Proposition 11. Let Y be a k-element set. Let A be a set disjoint from Y such that |A| ≥ k ·
min{log k+ log log k, 11}. Then there is a Y-shrub inQ(A∪Y).
Proof. Let Y = {y0, . . . , yk−1} and let Q=Q(A∪Y). We use addition of indices modulo k. Let
A0, . . . ,Ak−1 be pairwise disjoint subsets of A such that |Ai| = � for the smallest integer � satis-
fying

(
�

	�/2

)≥ k. Since � ≤ log k+ log log k for k≥ 256 and � ≤ 11 for k≤ 256, such subsets Ai’s

can be chosen. In each Q(Ai), i ∈ {0, . . . , k− 1}, the elements of size 	�/2
 form an antichain of
size k. Let {Aj

i:j ∈ {0, . . . , k− 1}} be this antichain enumerated arbitrarily.
Consider the factorial treeO(Y). We shall construct an embedding τ ofO(Y) intoQ as follows.

Let τ (∅)=∅. Consider any non-empty ordered subset of Y , say (yi1 , yi2 , . . . , yij), 1≤ j≤ k. If
j= 1, let τ ((yi1 ))=Ai1 ∪ {yi1}. If j> 1, let

τ
((
yi1 , . . . , yij

))=Ai1 ∪Ai2
i1+1 · · · ∪Aij

i1+j−1 ∪ {yi1 , . . . , yij}.
For example for k= 4, τ ((y0, y1, y2))=A0 ∪A1

1 ∪A2
2 ∪ {y0, y1, y2}, τ ((y2, y3, y1))=A2 ∪A3

3 ∪
A1
0 ∪ {y1, y2, y3}, and τ ((y3, y1))=A3 ∪A1

0 ∪ {y1, y3}.
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Figure 1. A diagram illustrating how the Aji’s are being assigned to the elements of the {y0, y1, y2, y3}-shrub constructed in
Proposition 11.

Figure 2. Segment of a shrub highlighted in Figure 1. Here the union signs are omitted because of the spacing, for example
A2A13A

0
0y2y1y0 corresponds to the shrub vertex A2 ∪ A13 ∪ A00 ∪ {y2, y1, y0}.

Note that the image of O(Y) under τ is an up-tree, T , whose minimum vertex is ∅, see
Figures 1 and 2. We see that each maximum vertex of T is joined to ∅ by a unique chain,
a maximal chain. Furthermore, non-zero vertices that belong to distinct maximal chains are
incomparable. Observe that τ is a Y-good embedding of O(Y) into Q. Indeed, for any ordered
sequence of distinct vertices

(
yi1 , . . . , yij

)
, we have τ

((
yi1 , . . . , yij

))∩Y = {yi1 , . . . , yij}. In addi-
tion

(
yi1 , . . . , yiq

)
<O

(
yi1 , . . . , yip

)
if and only if τ

((
yi1 , . . . , yiq

))
and τ

((
yi1 , . . . , yip

))
are in the

same maximal chain of T in the corresponding order. �

3. Duality theorem
In this section, we show a duality statement which is the key argument for the proof of Theorem 3.
Recall the following definitions. We call an embedding φ of Q(X ) into Q(X ∪Y) for disjoint X
and Y ,X -good if φ(X)∩X = X for all X ⊆X . We also call a copy ofQ(X ) inQ(X ∪Y)X -good if
there is an X -good embedding ofQ(X ) intoQ(X ∪Y). An embedding τ ofO(Y) intoQ(X ∪Y)
is Y-good if τ (S)∩Y = S for all S ∈O(Y). We say that a copy of O(Y) is a Y-shrub if there exists
a Y-good embedding ofO(Y) intoQ(X ∪Y).
Theorem 12. (Duality Theorem) For two disjoint sets X and Y , let Q=Q(X ∪Y) be a blue/red
coloured Boolean lattice which contains no blue copy of �. Then there is exactly one of the following
in Q:

• a red X -good copy ofQ(X ), or
• a blue Y-good copy ofO(Y), that is a blue Y-shrub.
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Informally speaking, this duality statement claims that for any bipartitionX ∪Y of the ground
set of a Boolean lattice there exists either a red copy of Q(X ) that is restricted to X or a blue
copy of the factorial tree O(Y) restricted to Y . This result can be seen as a strengthening of
Lemma 8 in the special case when we forbid a blue copy of �. The Duality Theorem implies a
criterion for blue/red coloured Boolean lattices Q to have neither a blue copy of � nor a red copy
of Qn.

Corollary 13. Let n, k ∈N and N = n+ k. Let Q=Q([N]) be a blue/red coloured Boolean lattice
with no blue copy of �. There is no red copy of Qn in Q if and only if for every Y ∈ ([N]

k
)
there exists

a blue Y-shrub in Q.

Proof. Lemma 7 provides that there is a red copy of Qn in Q if and only if there exists a partition
[N]=X ∪Y of the ground set of Q with |X | = n and |Y| = k as well as an X -good embedding φ

of Q(X ) into Q with a monochromatic red image.
If there is a red copy of Qn in Q, then for X ,Y from Lemma 7 there is also an X -good copy of

Q(X ). Thus by Theorem 12 there is no blue Y-shrub.
On the other hand, if there is no red copy of Qn in Q, there is no red X -good copy ofQ(X ) for

anyX ∈ ([N]
n
)
. Then for an arbitrary n-element subsetX of [N], letY = [N] \X . Now Theorem 12

implies that there exists a blue Y-shrub. In particular, there is a blue Y-shrub for any k-element
subset Y of [N]. �

Throughout the section, let X and Y be fixed disjoint sets. Let Q=Q(X ∪Y) be a Boolean
lattice on ground set X ∪Y . We fix an arbitrary blue/red colouring of Q with no blue copy of �.
We always let n, k ∈N such that |X | = n, |Y| = k and letN = n+ k. For X ⊆X , Y ⊆Y , we usually
denote the vertex X ∪ Y by (X, Y).

In order to characterise colourings of Q which do not contain an embedding φ ofQ(X ) into Q
such that for everyX ∈Q(X ), φ(X) is red and φ(X)∩X = X, we introduce the following notation.

For X ⊆X and Y ⊆Y , we say that the vertex (X, Y) ∈Q is embeddable if there is an embedding
φ:Q(X )∩ {X′ ⊆X : X′ ⊇ X} →Qwith a monochromatic red image, such that φ(X′)∩X = X′ for
all X′ and φ(X)⊇ (X, Y). We say that φ witnesses that (X, Y) is embeddable.

This definition immediately implies:

Observation 14. (∅,∅) is not embeddable if and only if there is no embedding φ :Q(X )→Q such
that for every X′ ⊆X , φ(X′) red and φ(X′)∩X = X′. �

The key ingredient for the proof of the Duality Theorem, Theorem 12, is the following
characterisation of embeddable vertices.

Lemma 15. Let X ⊆X , Y ⊆Y . Let Q=Q(X ∪Y) be a blue/red coloured Boolean lattice with no
blue copy of �. Then (X, Y) is embeddable if and only if either

(i) (X, Y) is blue and there is a Y ′ ⊆Y with Y ′ ⊃ Y such that (X, Y ′) is embeddable, or
(ii) (X, Y) is red and for all X′ ⊆X with X′ ⊃ X, (X′, Y) is embeddable.

Note that if X ⊆X and (X,Y) is blue, then (X,Y) is not embeddable.

Proof. First suppose that (X, Y) is embeddable. Let φ be an embedding ofQ(X )∩ {X′ ⊆X : X′ ⊇
X} into Q witnessing that (X, Y) is embeddable.

If (X, Y) is blue, then φ(X)⊃ (X, Y) because φ has a monochromatic red image. Thus there
exists Y ′ ⊆Y with Y ′ ⊃ Y such that φ(X)= (X, Y ′). But then φ also witnesses that (X, Y ′) is
embeddable, so Condition (i) is fulfilled.

If (X, Y) is red, pick some arbitrary X∗ ⊆X such that X∗ ⊃ X. Then the function φ∗ :Q(X )∩
{X′ ⊆X : X′ ⊇ X∗} →Q, φ∗(X′)= φ(X′) is a restriction of φ and therefore an embedding with
a monochromatic red image such that φ∗(X′)∩X = X′ for all X′ and φ∗(X∗)⊇ (X∗, Y). Thus
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for every X∗ ⊆X with X∗ ⊃ X, the vertex (X∗, Y) is embeddable, that is Condition (ii) is
fulfilled.

Now, suppose that Condition (i) or Condition (ii) hold. If (i) holds, then (X, Y) is blue and
there is some Y ′ ⊃ Y such that (X, Y ′) is embeddable. Then the embedding witnessing that also
verifies that (X, Y) is embeddable.

For the rest of the proof we assume that (ii) holds, that is that (X, Y) is red and for any X′ ⊆X
withX′ ⊃ X the vertex (X′, Y) is embeddable.We define the required embedding φ :Q(X )∩ {X′ ⊆
X : X′ ⊇ X} →Q for every X′ with X ⊆ X′ ⊆X depending on the number of minimal X∗’s, X ⊆
X∗ ⊆ X′ such that (X∗, Y) is blue as follows. Let X′ with X ⊆ X′ ⊆X be arbitrary.

(1) If for all X∗ with X ⊆ X∗ ⊆ X′, the vertex (X∗, Y) is red, let φ(X′)= (X′, Y). Note that this
case includes X′ = X.

(2) If there is a unique minimal X∗ such that X ⊆ X∗ ⊆ X′ and (X∗, Y) is blue, then (X∗, Y) is
embeddable by Condition (ii). Let φX∗ be an embedding witnessing that. Then set φ(X′)=
φX∗(X′).

(3) Otherwise, let φ(X′)= (X′,Y).

Cases (1)-(3) determine a partition of the set {X′ ⊆X : X′ ⊇ X} into three pairwise disjoint
parts. LetMj, j ∈ [3], be the set of those vertices X′ for which φ was assigned in Case (j). Note that
M1 ∪M2 ∪M3 = {X′ ⊆X : X′ ⊇ X}.
Claim 1. The function φ witnesses that (X, Y) is embeddable.

• Clearly, for every X′ ⊆X with X′ ⊇ X, φ(X′)∩X = X′.
• (X, Y) is red, so X ∈M1. Thus φ(X)= (X, Y).
• The argument verifying that φ(X′) is red for every X′ ⊆X with X′ ⊇ X depends on i
such that X′ ∈Mi. If X′ ∈M1, it is immediate that φ(X′) is red. If X′ ∈M2, φX∗ has a
monochromatic red image, thus φ(X′)= φX∗(X′) is also red. Now consider the case that
X′ ∈M3, that is there are X1, X2 ⊆X with X1 �= X2 and X ⊆ Xi ⊆ X′, i ∈ [2], such that
(Xi, Y) are blue and Xi are both minimal with this property. The latter condition implies
thatX1 andX2 are incomparable, in particular (X1, Y) and (X2, Y) are incomparable as well.
Moreover, observe that Xi �= X′, i ∈ [2], because X′ is by definition comparable to both X1
and X2. Now assume for a contradiction that φ(X′)= (X′,Y) is blue. Recall that (X1, Y)
and (X2, Y) are blue. We know that Xi ⊂ X′ and Y ⊆Y , thus (Xi, Y)⊂ (X′,Y). As a conse-
quence, (X1, Y), (X2, Y), and (X′,Y) induce a blue copy of� inQ, which is a contradiction.
Thus φ has a monochromatic red image.

• It remains to show that φ is an embedding. Let X1, X2 ⊆X be arbitrary with X ⊆ Xi ⊆ X′,
i ∈ [2]. We shall show that X1 ⊆ X2 if and only if φ(X1)⊆ φ(X2). One direction is easy
to prove: If φ(X1)⊆ φ(X2), then X1 = φ(X1)∩X ⊆ φ(X2)∩X = X2. Now suppose that
X1 ⊆ X2. Let Y1, Y2 ⊆Y such that φ(X1)= (X1, Y1) and φ(X2)= (X2, Y2). Then we shall
show that Y1 ⊆ Y2. Note that Y ⊆ Yi ⊆Y for i ∈ [2]. Assume that at least one of X1 or
X2 is in M1 ∪M3. If X1 ∈M1, then Y1 = Y and we are done as Y ⊆ Y2. Furthermore, if
X2 ∈M3, then Y2 =Y and we are done as well since Y1 ⊆Y . If X1 ∈M3, then X1 ⊆ X2
implies that X2 is also in M3. Conversely, if X2 ∈M1, the fact that X2 ⊇ X1 yields that
X1 ∈M1 and we are done as before.

As a final step, suppose that X1, X2 ∈M2. This implies that for each i ∈ [2], there is a
unique minimal vertex X∗

i such that X ⊆ X∗
i ⊆ Xi and (X∗

i , Y) is blue. Applying the ini-
tial assumption, X∗

1 ⊆ X1 ⊆ X2. By minimality of X∗
2 , we obtain that X∗

2 ⊆ X∗
1 . Now this

provides that X∗
2 ⊆ X∗

1 ⊆ X1. Using the minimality of X∗
1 , we see that X

∗
1 ⊆ X∗

2 , so X
∗
1 = X∗

2 .
Recall that (X∗

1 , Y)= (X∗
2 , Y) is embeddable since X1, X2 ∈M2. Consider the function

https://doi.org/10.1017/S0963548323000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000032


648 M. Axenovich and C. Winter

φX∗
1
= φX∗

2
witnessing that. Because φX∗

1
is an embedding and X∗

1 ⊆ X1 ⊆ X2, we obtain
φX∗

1
(X1)⊆ φX∗

1
(X2). Combining the given conditions,

φ(X1)= φX∗
1
(X1)⊆ φX∗

1
(X2)= φX∗

2
(X2)= φ(X2),

that implies that Y1 ⊆ Y2.

This concludes the proof of the Claim and the Lemma.

Corollary 16. Let X ⊆X and S ∈O(Y) such that (X, S) is not embeddable. Then there exists some
X′ ⊆X , X′ ⊇ X, such that (X′, S) is blue and not embeddable.

Proof. If (X, S) is blue, we are done. Otherwise Lemma 15 yields an X1 ⊆X , X1 ⊃ X such that
(X1, S) is not embeddable. By repeating this argument, we find an X′ ⊆X , X′ ⊇ X, with (X′, S) is
blue and not embeddable. �

Next we show a connection between embeddable vertices and the existence of a weak Y-shrub.
Recall that a weak Y-shrub is a subposet P of Q such that there is a function τ :O(Y)→Q with
image P such that for every S ∈O(Y), τ (S)∩Y = S, and for every S, T ∈O(Y) with S<O T,
τ (S)⊂ τ (T).

Lemma 17. If (∅,∅) is not embeddable, then there is a monochromatic blue weak Y-shrub.
Proof. We construct τ :O(Y)→Q iteratively and increasingly with respect to the order ofO(Y).
Suppose that (∅,∅) is not embeddable. By Corollary 16 there is some X∅ ⊆X such that (X∅,∅)
is blue and not embeddable. Let τ (∅)= (X∅,∅). From here, we continue iteratively. Suppose that
for S ∈O(Y), S �=Y , we have defined XS ⊆X such that

(1) XS ⊇ XT for every T ≤O S and
(2) τ (S)= (XS, S) is blue and not embeddable.

Consider an arbitrary S′ ∈O(Y) such that S<O S′ and |S′| = |S| + 1. By Lemma 15 applied
for XS and S, we obtain that (XS, S′) is not embeddable. Then Corollary 16 yields that there is
some XS′ ⊆X ,XS′ ⊇ XS, such that (XS′ , S′) is blue and not embeddable. Observe that for T ∈O(Y)
with T ≤O S′, either T = S′ and so XT = XS′ , or T ≤O S and so by (1) XT ⊆ XS ⊆ XS′ . Let τ (S′)=
(XS′ , S′).

Using this procedure, we define τ for all S ∈O(Y). Let P be the subposet of Q induced by the
image of τ . We shall show that P is a weak Y-shrub witnessed by the function τ . By (2), for every
S ∈O(Y), τ (S) is blue and τ (S)∩Y = S.

Let S, T ∈O(Y) with S<O T. Let XS, XT ⊆X such that τ (S)= (XS, S) and τ (T)= (XT , T).
Clearly, S⊂ T. Moreover, item (1) implies that XS ⊆ XT . Consequently, τ (S)⊂ τ (T). �

Combining the previously presented Lemmas, we can now prove the Duality Theorem.

Proof of Theorem 12. Let X and Y be disjoint sets. Let Q=Q(X ∪Y) be a blue/red coloured
Boolean lattice which contains no blue copy of �.

First suppose that there is no red X -good copy of Q(X ). By Observation 14, (∅,∅) is not
embeddable and Lemma 17 provides that there is a blue weak Y-shrub inQ. Using Proposition 10
we obtain a blue Y-shrub in Q. This shows that there is either a red X -good copy of Q(X ) or a
blue Y-shrub.

Next we show that both events could not happen simultaneously. Let n= |X |, k= |Y| andN =
n+ k. Assume that there exist both an X -good embedding φ :Q(X )→Q with monochromatic
red image as well as a Y-good embedding τ :O(Y)→Q with a monochromatic blue image.

We apply an iterative argument in order to find a contradiction. LetY0 =∅ and let S0 = (Y0,≤)
be the empty ordered set. Now let X1 ⊆X such that τ (S0)= (X1, S0) and let Y1 ∈Y such that
φ(X1)= (X1, Y1). Since φ(X1) is red but τ (S0) is blue, we know that φ(X1) �= τ (S0) and thus Y1 �=
S0 =∅, so |Y1| ≥ 1.
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Now say that we already defined X1, . . . , Xi, Y0, . . . , Yi, S0, . . . , Si−1 for some i ∈ [k] such that

• Si−1 ∈O and Si−1 = Yi−1,
• τ (Si−1)= (Xi, Si−1),
• φ(Xi)= (Xi, Yi), and
• Yi−1 ⊂ Yi ⊆Y and |Yi| ≥ i.

Fix any ordering Si of Yi such that Si−1 <O Si. Such Si exists because Si−1 = Yi−1 ⊂ Yi.
Then let Xi+1 be such that τ (Si)= (Xi+1, Si). Since Si−1 <O Si and τ is an embed-

ding, (Xi, Si−1)= τ (Si−1)⊆ τ (Si)= (Xi+1, Si), therefore Xi ⊆ Xi+1. Note that φ(Xi)= (Xi, Si) is
coloured red but τ (Si)= (Xi+1, Si) is blue. Therefore Xi �= Xi+1, consequently Xi ⊂ Xi+1 and in
particular φ(Xi)⊂ φ(Xi+1) because φ is an embedding.

Next let Yi+1 ⊆Y such that φ(Xi+1)= (Xi+1, Yi+1). Then Yi+1 ⊇ Yi and furthermore, because
(Xi+1, Yi) is blue but φ(Xi+1) is red, Yi+1 �= Yi. Consequently Yi+1 ⊃ Yi, and in particular |Yi+1| ≥
|Yi| + 1≥ i+ 1.

Iteratively, we obtain Yk+1 ⊆Y with |Yi| ≥ k+ 1, a contradiction to |Y| = k. �

4. Random colouring with many blue shrubs
We shall provide a colouring that will give us a lower bound on R(�,Qn). Note that we do not
provide an explicit construction but only prove the existence of such a colouring.

Theorem 18. Let N ∈N be sufficiently large and k= 10
216

N
ln (N) . Consider the Boolean lattice Q=

Q([N]). Then for sufficiently large N, there exists a blue/red colouring of Q which contains no blue
copy of � and such that for each Y ∈ ([N]

k
)
, there is a blue Y-shrub in Q.

Proof of Theorem 18. Let α = 21.6 and β = 0.134. Let N ∈N and k= 1
α

N
ln (N) , let Q=Q([N]).

The idea of the proof is to construct a Y-shrub, denoted PY , for every Y ∈ ([N]
k
)
, with an addi-

tional property so that the selected shrubs are independent. Since each shrub does not contain a
copy of �, it follows that the independent union of all the PY ’s also does not contain a copy of �.
We obtain these shrubs by randomly choosing a Y-framework for every Y ∈ ([N]

k
)
and then con-

structing a Y-shrub based on each of them. Afterwards we define a colouring where every vertex
in each constructed shrub is coloured blue and the remaining vertices red.

A Y-framework of Y ∈ ([N]
k
)
is a 4-tuple (Y ,AY , ZY , XY ) such that

• Y , AY ZY are pairwise disjoint and Y ∪AY ∪ ZY = [N],
• |AY | = 3

2k ln k− k,
• XY ⊆ ZY .

A Y-framework is random if

• AY ∈ ( [N]\Y
3
2 k ln k−k

)
is chosen uniformly at random, and

• each element of ZY = [N]\(Y ∪AY ) is included in XY independently at random with
probability 1

2 .

Now draw a random Y-framework for every Y ∈ ([N]
k
)
. Observe that by choice of k, k ln k= N

α
·

ln (N)−ln (α)−ln ln (N)
ln (N) , so 20N

21α ≤ k ln k≤ N
α
. Since |ZY | =N − 3

2k ln k, we have
(
1− 3

2α
)
N ≤ |ZY | ≤(

1− 10
7α
)
N.
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Claim 2. W.h.p. for every Y1,Y2 ∈ ([N]
k
)
with Y1 �=Y2, |XY1 ∩ ZY2 | ≥ βN.

Consider some arbitrary Y1,Y2 ∈ ([N]
k
)
, Y1 �=Y2. Observe that

(
1− 3

α

)
N ≤ |ZY1 ∩ ZY2 | ≤

|ZY | ≤ (1− 10
7α
)
N. In a random Y-framework, each element of ZY1 ∩ ZY2 is contained in XY1 ∩

ZY2 independently with probability 1
2 . Consequently, |XY1 ∩ ZY1 | ∼ Bin

(|ZY1 ∩ ZY2 |, 12
)
and

E
(|XY1 ∩ ZY1 |

)= 1
2 |ZY1 ∩ ZY2 |. We have 1− 3

α
≥ 2β . In addition,

(
1
2− 3

2α −β
)2

1− 10
7α

> 2
α
, thus there

exist some ε > 0 such that
(
1
2− 3

2α −β
)2

1− 10
7α

≥ ε + 2
α
. Applying Chernoff’s inequality gives

P
(|XY1 ∩ ZY2 | ≤ βN

) = P

(
|XY1 ∩ ZY2 | ≤

|ZY1 ∩ ZY2 |
2

−
( |ZY1 ∩ ZY2 |

2
− βN

))

≤ exp

⎛
⎜⎝−

( |ZY1∩ZY2 |
2 − βN

)2
|ZY1 ∩ ZY2 |

⎞
⎟⎠

≤ exp

(
−
(( 1

2 − 3
2α
)− β

)2
(1− 10

7α )
·N
)

≤ exp
(

−
(
2
α

+ ε

)
·N
)
.

Let E1 be the event that for some distinct Y1,Y2 ∈ ([N]
k
)
, |XY1 ∩ ZY2 | ≤ βN. Then

P(E1) =
(
N
k

)((
N
k

)
− 1

)
P(|XY1 ∩ ZY2 | ≤ βN)

≤ N2k exp
(

−
(
2
α

+ ε

)
·N
)

≤ exp
(
2N ln (N)
α ln (N)

−
(
2
α

+ ε

)
·N
)

= exp (−εN)→ 0, as N → ∞.

This proves Claim 1.

Claim 3. W.h.p. for every Y1,Y2 ∈ ([N]
k
)
with Y1 �=Y2, XY1 ∩ ZY2 �⊆ XY2 .

We can suppose that the collection of random frameworks fulfils the property of Claim 1. Let
Y1,Y2 ∈ ([N]

k
)
be such that Y1 �=Y2. Note that each element of XY1 ∩ ZY2 is contained in XY2 with

probability 1
2 . Thus,

P
(
XY1 ∩ ZY2 ⊆ XY2

)=
(
1
2

)|XY1∩ZY2 | ≤ 2−βN .

Let E2 be the event that there exist Y1,Y2 ∈ ([N]
k
)
with Y1 �=Y2 such that XY1 ∩ ZY2 �⊆ XY2 . Since

2
α

< ln (2)β , we have

P(E2)≤N2kP
(
XY1 ∩ ZY2 ⊆ XY2

)≤N2k · 2−βN = exp
(
2
α
N − ln (2)βN

)
→ 0, as N → ∞.

This proves Claim 2.

In particular, there exists a collection of Y-frameworks (Y ,AY , ZY , XY ), Y ∈ ([N]
k
)
, such that

for every Y1,Y2 ∈ ([N]
k
)
with Y1 �=Y2, XY1 ∩ ZY2 �⊆ XY2 .
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Note that |AY | = 3
2k ln k− k≥ k( log k+ log log k). Let P ′

Y be a Y-shrub in Q(AY ∪Y) as
guaranteed by Lemma 11. Note that PY ’s are not necessarily independent. Let PY be obtained
from P ′

Y by replacing each vertexW of P ′
Y withW ∪ XY . Then PY is a Y-shrub in Q.

Claim 4. Let Y1,Y2 be two distinct k-element subsets of [N]. Then PY1 and PY2 are independent.
Consider arbitrary elements Ui ∈PYi , i ∈ [2]. Recall that XY1 ∩ ZY2 �⊆ XY2 , which implies that

there exists some z ∈ (XY1 ∩ ZY2 )\XY2 . Note that z ∈U1 since XY1 ⊆U1. Moreover z �∈U2 since
z ∈ ZY2 \ XY2 and (ZY2 \ XY2 )∩U2 =∅. In particular, z ∈U1\U2. Similarly, there is an element
w ∈U2\U1. Thus U1 �∼U2.

We consider the following colouring c :Q→ {blue, red}. For X ⊆ [N], let

c(X)=
{
blue, if X ∈⋃Y∈([N]

k )
PY ,

red, otherwise.

Note that for every Y ∈ ([N]
k
)
, PY witnesses that there is a blue Y-shrub in Q. Recall that a

Y-shrub is an up-tree. Applying Claim 3 the blue subposet of Q is a collection of independent
up-trees. Then Lemma 5 provides that the colouring c does not contain a blue copy of �.

5. Proof of Theorems 3 and 2

Proof of Theorem 3.
Upper Bound: Let k= (1+ ε) n

log (n) and consider an arbitrary blue/red coloured Boolean lattice
Q on ground set [n+ k] with no blue copy of �. Pick any Y ∈ ([n+k]

k
)
and assume that there is a

blue Y-shrub in Q. Recall that the maximal elements of the Y-shrub form an antichain of size k!.
Sperner’s theorem provides that the largest antichain in Q has size

( n+k
	 n+k

2 

)
, so k! ≤ ( n+k

	 n+k
2 

)≤ 2n+k.

We also have that k! >
(
k
e

)k = 2k( log k−log e). By the choice of k, we obtain for sufficiently
large n,

k log k≥ (1+ε)n
log n

(
log (n)− log log (n)

)
>
(
1+ ε

2
)
n.

In particular for sufficiently large n, k log k− k log e> n+ k, a contradiction. Thus Q does not
contain a blue Y-shrub for this fixed Y . Then Corollary 13 yields that there is a red copy of Qn
in Q. Consequently, each blue/red coloured Boolean lattice of dimension n+ k contains either a
blue copy of � or a red copy of Qn.

Lower Bound: Let N sufficiently large, let k= 10
216

N
ln (N) and n=N − k. Note that k≤ N

2 , thus
n≤N ≤ 2n. Let Q=Q([N]). By Theorem 18 there exists a colouring of Q with no blue copy of �
such that for every Y ∈ ([N]

k
)
, there is a blue Y-shrub. By Corollary 13, there is no red copy of Qn

in this colouring, thus R(�,Qn)≥N = n+ k. It remains to bound k in terms of n. Indeed,

k= 10
216

· N
ln (N)

≥ 10
216

· n
ln (2n)

= 10
216

· log (e)n
log (2n)

≥ 1
15

· n
log (n)

,

which concludes the proof. �
Proof of Theorem 2. The lower bound on R(P,Qn) for P containing either � or V follows from
Theorem 3.

Consider now a poset P that contains neither a copy of� nor a copy of V . By Corollary 6, P is a
union of independent chains. Assume that P has k independent chains on at most � vertices each.
Let K be an even integer such that

( K
K/2
)≥ k. Let Y be a set of size K and let X be a set, disjoint
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from Y of size n+ �. Consider an arbitrary colouring of Q(X ∪Y). Assume that there is no red
copy of Qn. We shall show that there is a blue copy of P.

Let Y1, . . . , Yk form an antichain in Q(Y), its existence is guaranteed by Sperner’s theorem.
Let Qi be a copy ofQ(X ) obtained as an image of an embedding φi :Q(X )→Q(X ∪ Yi), φi(X)=
X ∪ Yi for any X ⊆X . Consider the blue vertices in Qi. If there is no blue chain on � vertices in
Qi, Corollary 9 implies the existence of a red copy of Qn in Qi, a contradiction. Thus for every
i ∈ [k], there is a blue copy Pi of a chain on � vertices in Qi. Note that for any A ∈Qi, B ∈Qj, i �= j,
A �∼ B, since A∩Y = Yi �∼ Yj = B∩Y . Thus the Pi’s are independent chains on � vertices each.
Their union contains a copy of P. This shows that R(P,Qn)≤ n+K + � = n+ f (P). �

6. Conclusion
In this paper we considered the poset Ramsey number R(P,Qn) for a fixed poset P and large n.
We showed a sharp jump in asymptotic behaviour of this Ramsey number depending on P. For
‘simple’ posets P, those containing neither a copy of � nor a copy of V , the poset Ramsey number
of P versusQn deviates from the trivial lower bound n by at most an additive constant. As pointed
out in the proof of Theorem 2 these ‘simple’ posets are given by the unions of independent chains.
‘Complicated’ posets, those that contain a copy of� orV , behave differently. In this case, R(P,Qn)
is always notably larger than the trivial lower bound n by at least an additive term �(n/ log n).

The best known upper bound for a fixed poset P and large n is given by R(P,Qn)≤ CP · n, for
a constant CP, as was shown by Lu and Thompson [20]. Here CP is close to the two-dimension
of P, that is the dimension of the smallest Boolean lattice containing a copy of P. However, we
believe that the true value of R(P,Qn) is significantly closer to our lower bound, namely that the
difference R(P,Qn)− n is sublinear in terms of n.

Conjecture 19. Let n ∈N and P be a fixed poset independent from n. Then
R(P,Qn)= n+ o(n).

Note that this conjecture is equivalent to verifying in the classical off-diagonal setting of poset
Ramsey numbers whether for all m fixed and n large, it holds that R(Qm,Qn)= n+ o(n). This
is related to a conjecture raised by Lu and Thompson [20] claiming that R(Qm,Qn)= o(n2) for
n≥m with n andm sufficiently large.
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[24] Nešetřil, J. and Rödl, V. (1984) Combinatorial partitions of finite posets and lattices - Ramsey lattices. Algebra Univ.

19(1) 106–119.
[25] Paoli,M., Trotter,W. andWalker, J. (1985) Graphs and orders in Ramsey theory and in dimension theory. InGraphs and

Order, Vol. 147 NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Dordrecht: Reidel,
pp. 351–394.

[26] Patkós, B. (2015) Induced and non-induced forbidden subposet problems. Electron. J. Comb. 22(1) Paper1.30,16.
[27] Sperner, E. (1928) Ein Satz über Untermengen einer endlichen Menge, (in German).Math. Z. 27(1) 544–548.
[28] Tomon, I. (2019) Forbidden induced subposets of given height. J. Comb. Theory A 161 537–562.
[29] Walzer, S. (2015) Ramsey Variant of the 2-Dimension of Posets. In: Master Thesis.

Cite this article: Axenovich M and Winter C (2023). Poset Ramsey numbers: large Boolean lattice versus a fixed poset.
Combinatorics, Probability and Computing 32, 638–653. https://doi.org/10.1017/S0963548323000032

https://doi.org/10.1017/S0963548323000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000032
https://doi.org/10.1017/S0963548323000032

	Introduction
	Preliminaries
	Basic notations and definitions
	Structure of posets with forbidden "026E30F Lambda or V
	Embeddings of Q_n
	Red copy of Q_n vs. blue chain
	Factorial trees and shrubs
	Construction of an almost optimal shrub

	Duality theorem
	Random colouring with many blue shrubs
	Proof of Theorems 3 and 2
	Conclusion

