
Proceedings of the Edinburgh Mathematical Society (2009) 52, 787–796 c©
DOI:10.1017/S0013091506000496 Printed in the United Kingdom

EXISTENCE RESULT FOR A CLASS OF NONLINEAR
THIRD-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS

LIBO WANG1, MINGHE PEI1 AND WEIGAO GE2

1Department of Mathematics, Beihua University,
Ji’lin 132013, People’s Republic of China (wlb math@yahoo.cn)
2Department of Mathematics, Beijing Institute of Technology,

Beijing 100081, People’s Republic of China

(Received 19 April 2006)

Abstract The upper and lower solutions method and Leray–Schauder degree theory are employed to
establish the existence result for a class of nonlinear third-order two-point boundary-value problems with
a sign-type Nagumo condition.

Keywords: sign-type Nagumo condition; upper and lower solutions method;
Leray–Schauder degree theory

2000 Mathematics subject classification: Primary 34B15

1. Introduction

Third-order boundary value problems have been discussed in many papers in recent years
(see, for example, [1–4, 6]). But most of them considered linear boundary conditions.
Recently, Grossinho [5] established an existence and location result for the nonlinear
differential equation

x′′′ = f(t, x, x′, x′′),

with two types of boundary conditions:

x(a) = A, φ(x′(b), x′′(b)) = 0, x′′(a) = B,

or

x(a) = A, ψ(x′(a), x′′(a)) = 0, x′′(b) = C.

In this work, we extend the study to a more general case, since we consider the third-order
nonlinear differential equation

x′′′ = f(t, x, x′, x′′), a < t < b, (1.1)

with nonlinear boundary conditions

x(a) = A, g(x′(a)) − [x′′(a)]p = B, φ(x(b), x′(b), x′′(b)) = C, (1.2)
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or

x(a) = A, ψ(x(a), x′(a), x′′(a)) = B, h(x′(b)) + [x′′(b)]q = C. (1.3)

The function f(t, x, y, z) : [a, b] × R
3 → R is continuous, g, h : R → R is continuous,

φ, ψ : R
3 → R are continuous and monotone on the first and third variables, and p and

q are odd numbers.
By the use of the upper and lower solutions method and Leray–Schauder degree theory,

we show existence results with a sign-type Nagumo condition, which is weaker than the
one in [5].

This work is organized as follows. In § 2, some notation and preliminaries are intro-
duced. The existence results are discussed in § 3. As applications of our results, an exam-
ple is given in the last section.

2. Preliminaries

Definition 2.1. Function α(t) ∈ C3[a, b] is said to be a lower solution of the boundary-
value problem (BVP) (1.1), (1.2) if

α′′′(t) � f(t, α(t), α′(t), α′′(t)), t ∈ [a, b], (2.1)

and

α(a) � A, g(α′(a)) − [α′′(a)]p � B, φ(α(b), α′(b), α′′(b)) � C. (2.2)

Function β(t) ∈ C3[a, b] is said to be an upper solution of the BVP (1.1), (1.2) if it
satisfies the reversed inequalities.

Definition 2.2. Given a subset D ⊂ [a, b]×R
3, a function f : D → R is said to satisfy

the sign-type Nagumo condition (N∗
+) in D if there exists Φ ∈ C(R+

0 , (0, +∞)) such that

f(t, x, y, z) sgn(z) � Φ(|z|) for all (t, x, y, z) ∈ D (2.3)

and ∫ +∞

0

s

Φ(s)
ds = +∞. (2.4)

If (2.3) is replaced by

f(t, x, y, z) sgn(z) � −Φ(|z|) for all (t, x, y, z) ∈ D, (2.5)

we say that f satisfies the sign-type Nagumo condition (N∗
−).

Lemma 2.3. Let αi, βi ∈ C[a, b] satisfy

αi(t) � βi(t), i = 0, 1, t ∈ [a, b],

and consider the set

E = {(t, x, y, z) ∈ [a, b] × R
3 : α0(t) � x � β0(t), α1(t) � y � β1(t)}.
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Let f : [a, b] × R
3 → R be a continuous function that satisfies the sign-type Nagumo

condition (N∗
+) in E. Then for every ρ > 0 there exists K > 0 (depending on α1(t),

β1(t), Φ and ρ) such that, for every solution x(t) of (1.1) verifying

|x′′(a)| � ρ (2.6)

and
α0(t) � x(t) � β0(t), α1(t) � x′(t) � β1(t) for all t ∈ [a, b], (2.7)

we have
‖x′′‖∞ < K.

Proof. This result can be easily proved by using the analogous technique of Lemma 2
from [5]. �

Remark 2.4. The above result still holds if we replace condition (N∗
+) by (N∗

−) and
assumption (2.6) by |x′′(b)| � ρ.

Lemma 2.5. The boundary-value problem

x′′′ = x′Φ(|x′′|), (2.8)

x(a) = 0, x′(a) = [x′′(a)]p, x′(b) = 0 (2.9)

has only the trivial solution, where Φ ∈ C(R+
0 , (0, +∞)).

Proof. Assume, by contradiction, that x0(t) be a non-trivial solution of BVP (2.8),
(2.9). Then there exists t ∈ [a, b] such that x′

0(t) > 0 or x′
0(t) < 0. Suppose the first case

holds. Define
max
t∈[a,b]

x′
0(t) = x′

0(t1) > 0.

If t1 ∈ (a, b), then x′′
0(t1) = 0 and x′′′

0 (t1) � 0. From (2.8) we have the following contra-
diction:

0 � x′′′
0 (t1) = x′

0(t1)Φ(|x′′
0(t1)|) > 0.

If t1 = a, then x′
0(a) > 0 and x′′

0(a) � 0, which contradicts (2.9).
If t1 = b, from (2.9) we can get the contradiction.
Thus, BVP (2.8), (2.9) has only the trivial solution. �

3. Main results

Theorem 3.1. Assume that

(i) there exist lower and upper solutions of BVP (1.1), (1.2), α(t), β(t), such that

α′(t) � β′(t), t ∈ [a, b],

(ii) f(t, x, y, z) is continuous on [a, b] × R
3 and decreasing on x,
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(iii) f(t, x, y, z) satisfies the sign-type Nagumo condition (N∗
+) in

D∗ = {(t, x, y, z) ∈ [a, b] × R
3 : α(t) � x � β(t), α′(t) � y � β′(t)},

(iv) g(y) is continuous on R, φ(x, y, z) is continuous on R
3, decreasing on x and increas-

ing on z.

Then BVP (1.1), (1.2) has at least one solution x(t) ∈ C3[a, b] such that

α(t) � x(t) � β(t), α′(t) � x′(t) � β′(t), t ∈ [a, b].

Proof. For i = 0, 1, define

wi(t, xi) =

⎧⎪⎪⎨
⎪⎪⎩

β(i)(t), xi > β(i)(t),

xi, α(i)(t) � xi � β(i)(t),

α(i)(t), xi < α(i)(t).

For λ ∈ [0, 1], we consider the auxiliary equation

x′′′(t) = λf(t, w0(t, x(t)), w1(t, x′(t)), x′′(t)) + [x′(t) − λw1(t, x′(t))]Φ(|x′′(t)|), (3.1)

where Φ is decided by the sign-type Nagumo condition (N∗
+), with the boundary condition

x(a) = λA, (3.2)

x′(a) = λ[B − g(w1(a, x′(a))) + w1(a, x′(a))] + [x′′(a)]p, (3.3)

x′(b) = λ[C − φ(w0(b, x(b)), w1(b, x′(b)), x′′(b)) + w1(b, x′(b))]. (3.4)

Then we can select M1 > 0 such that for every t ∈ [a, b],

−M1 < α′(t) � β′(t) < M1, (3.5)

f(t, α(t), α′(t), 0) − [M1 + α′(t)]Φ(0) < 0, (3.6)

f(t, β(t), β′(t), 0) + [M1 − β′(t)]Φ(0) > 0, (3.7)

B − g(α′(a)) + α′(a) > −M1, |C − φ(α(b), α′(b), 0) + α′(b)| < M1, (3.8)

B − g(β′(a)) + β′(a) < M1, |C − φ(β(b), β′(b), 0) + β′(b)| < M1. (3.9)

In the following, we shall complete the proof in four steps.

Step 1. Every solution x(t) of BVP (3.1)–(3.4) satisfies

|x′(t)| < M1, t ∈ [a, b], (3.10)

independently of λ.
We suppose that the estimate is not true. Then there exists some t ∈ [a, b] such that

x′(t) � M1 or x′(t) � −M1. Suppose the first case holds. Define

max
t∈[a,b]

x′(t) := x′(t0) (� M1 > 0).
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If t0 ∈ (a, b), then x′′(t0) = 0 and x′′′(t0) � 0. For λ ∈ (0, 1], by condition (ii) and (3.7),
we have the following contradiction

0 � x′′′(t0)

= λf(t0, w0(t0, x(t0)), w1(t0, x′(t0)), x′′t0) + [x′(t0) − λw1(t0, x′(t0))]Φ(|x′′(t0)|)
= λf(t0, w0(t0, x(t0)), w1(t0, x′(t0)), 0) + [x′(t0) − λβ′(t0)]Φ(0)

� λ{f(t0, β(t0), β′(t0), 0) + [M1 − β′(t0)]Φ(0)}
> 0

and, for λ = 0, we have

0 � x′′′(t0) = x′(t0)Φ(0) � M1Φ(0) > 0.

If t0 = a, then
max
t∈[a,b]

x′(t) = x′(a) (� M1 > 0),

and x′′(a) � 0. For λ = 0, by (3.3) we have the following contradiction:

0 < M1 � x′(a) = [x′′(a)]p � 0.

For λ ∈ (0, 1], by (3.3) and (3.9) we can obtain the following contradiction:

M1 � x′(a)

= λ[B − g(w1(a, x′(a))) + w1(a, x′(a))] + [x′′(a)]p

� λ[B − g(β′(a)) + β′(a)] < M1.

If t0 = b, then
max
t∈[a,b]

x′(t) = x′(b) (� M1 > 0),

and x′′(b) � 0. For λ = 0, by (3.4) we have the following contradiction:

0 < M1 � x′(b) = 0.

For λ ∈ (0, 1], by (3.4), (3.9) and condition (iv) we can obtain the following contradiction:

M1 � x′(b)

= λ[C − φ(w0(b, x(b)), w1(b, x′(b)), x′′(b)) + w1(b, x′(b))]

� λ[C − φ(β(b), β′(b), 0) + β′(b)] < M1.

Thus, x′(t) < M1 for t ∈ [a, b]. In a similar way, we prove that x′(t) > −M1 for t ∈ [a, b].
From (3.2) we have

|x(t)| < M0 = (b − a)M1 + |A|, t ∈ [a, b].
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Step 2. There exists M2 > 0 such that every solution x(t) of BVP (3.1)–(3.4) satisfies

|x′′(t)| < M2, t ∈ [a, b],

independently of λ ∈ [0, 1].
Consider the set

D∗∗ = {(t, x, y, z) ∈ [a, b] × R
3 : |x| � M0, |y| � M1}

and the function Fλ : [a, b] × R
3 → R defined by

Fλ(t, x, y, z) = λf(t, w0(t, x), w1(t, y), z) + [y − λw1(t, y)]Φ(|z|).

In the following, we show that Fλ satisfies the sign-type Nagumo condition in D∗∗,
independently of λ ∈ [0, 1]. In fact, since f satisfies the sign-type Nagumo condition in
D∗∗, we have

Fλ(t, x, y, z) sgn(z) = λf(t, w0(t, x), w1(t, y), z) sgn(z) + [y − λw1(t, y)]Φ(|z|) sgn(z)

� [2M1 + 1]Φ(|z|)
:= Φ∗(|z|).

Furthermore, we obtain
∫ +∞

0

s

Φ∗(s)
ds =

∫ +∞

0

s

(2M1 + 1)Φ(s)
ds = +∞.

Thus, Fλ satisfies the sign-type Nagumo condition (N∗
+) in D∗∗, independently of λ ∈

[0, 1].
Let

ρ := [|B| + G + 2M1]1/p,

where
G = max

y∈[−M1,M1]
|g(y)|.

From (3.3), every solution x(t) of BVP (3.1)–(3.4) satisfies

|x′′(a)| = |x′(a) − λ[B − g(w1(a, x′(a))) + w1(a, x′(a))]|1/p

� [|B| + G + 2M1]1/p

= ρ.

Define

α0(t) = −M0, β0(t) = M0, α1(t) = −M1, β1(t) = M1, t ∈ [a, b].

In view of Step 1 and applying Lemma 2.3, there then exists M2 > 0 (independent of λ)
such that |x′′(t)| < M2, t ∈ [a, b].
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Step 3. For λ = 1, BVP (3.1)–(3.4) has at least one solution x1(t).
Define the operators

L : C3[a, b] ⊂ C2[a, b] → C[a, b] × R
3

by
Lx = (x′′′, x(a), x′(a), x′(b))

and
Nλ : C2[a, b] → C[a, b] × R

3

by

Nλx = (λf(t, w0(t, x(t)), w1(t, x′(t)), x′′(t))+ [x′(t)−λw1(t, x′(t))]Φ(|x′′(t)|), Aλ, Bλ, Cλ)

with

Aλ = λA,

Bλ = λ[B − g(w0(a, x(a)), w1(a, x′(a))) + w1(a, x′(a))] + [x′′(a)]p,

Cλ = λ[C − φ(w0(b, x(b)), w1(b, x′(b)), x′′(b)) + w1(b, x′(b))].

As L−1 is compact, we can define the completely continuous operator

Tλ : C2[a, b] → C2[a, b]

by
Tλ(x) = L−1Nλ(x).

Consider the set

Ω = {x ∈ C2[a, b] : ‖x‖∞ < M0, ‖x′‖∞ < M1, ‖x′′‖∞ < M2}.

By Steps 1 and 2, the degree deg(I − Tλ, Ω, θ) is well defined for every λ ∈ [0, 1] and, by
homotopy invariance, we get

deg(I − T0, Ω, 0) = deg(I − T1, Ω, 0).

As the equation x = T0(x) has only the trivial solution from Lemma 2.5, by degree
theory,

deg(I − T1, Ω, 0) = deg(I − T0, Ω, 0) = ±1.

Hence, the equation x = T1(x) has at least one solution. That is, the problem

x′′′(t) = f(t, w0(t, x(t)), w1(t, x′(t)), x′′(t)) + [x′(t) − w1(t, x′(t))]Φ(|x′′(t)|) (3.11)

with the boundary condition

x(a) = A, (3.12)

x′(a) = [B − g(w1(a, x′(a))) + w1(a, x′(a))] + [x′′(a)]p, (3.13)

x′(b) = [C − φ(w0(b, x(b)), w1(b, x′(b)), x′′(b)) + w1(b, x′(b))] (3.14)

has at least one solution x1(t) in Ω.
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Step 4. In fact, the solution x1(t) of the above problem will also be a solution of BVP
(1.1), (1.2) since it satisfies

α(t) � x1(t) � β(t), α′(t) � x′
1(t) � β′(t), t ∈ [a, b]. (3.15)

Suppose, by contradiction, that there exists t ∈ [a, b] such that x′
1(t) > β′(t) and define

max
t∈[a,b]

[x′
1(t) − β′(t)] := x′

1(t1) − β′(t1) > 0.

If t1 ∈ (a, b), then x′′
1(t1) = β′′(t1) and x′′′

1 (t1) � β′′′(t1). By condition (ii), we have the
contradiction

0 � x′′′
1 (t1) − β′′′(t1)

� f(t1, w0(t1, x1(t1)), w1(t1, x′
1(t1)), x

′′
1(t1))

+ [x′
1(t1) − w1(t1, x′

1(t1))]Φ(|x′′
1(t1)|) − f(t1, β(t1), β′(t1), β′′(t1))

� f(t1, β(t1), β′(t1), β′′(t1)) + [x′
1(t1) − β′(t1)]Φ(|x′′

1(t1)|) − f(t1, β(t1), β′(t1), β′′(t1))

= [x′
1(t1) − β′(t1)]Φ(|x′′

1(t1)|)
> 0.

If t1 = a, we have
max
t∈[a,b]

[x′
1(t) − β′(t)] := x′

1(a) − β′(a) > 0

and
x′′

1(a) − β′′(a) � 0.

By (3.13), Definition 2.1 and condition (iv), we have the contradiction

β′(a) < x′
1(a)

= [B − g(w1(a, x′
1(a))) + w1(a, x′

1(a))] + [x′′
1(a)]p

� B − g(β′(a)) + β′(a) + [β′′(a)]p

� β′(a).

If t1 = b, we have
max
t∈[a,b]

[x′
1(t) − β′(t)] := x′

1(b) − β′(b) > 0

and
x′′

1(b) − β′′(b) � 0.

By (3.14), Definition 2.1 and condition (iv), we have the contradiction

β′(b) < x′
1(b)

= [C − φ(w0(b, x1(b)), w1(b, x′
1(b)), x

′′
1(b)) + w1(b, x′

1(b))]

� C − φ(β(b), β′(b), β′′(b)) + β′(b)

� β′(b).
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Thus,
x′

1(t) � β′(t), t ∈ [a, b].

Using an analogous technique, we obtain that α′(t) � x′
1(t) for every t ∈ [a, b]. From

α(a) � A � β(a),

and by integration we have

α(t) � x1(t) � β(t), t ∈ [a, b].

Therefore, x1(t) is in fact a solution of BVP (1.1), (1.2). �
In the case of nonlinear boundary conditions (1.3) a similar existence result to Theo-

rem 3.1 can be obtained for problem (1.1), (1.3).

4. Example

Example 4.1. Consider the boundary-value problem

x′′′ = −x(x′)2 − t2(x′′)3, (4.1)

x(0) = 0, (4.2)

(x′(0))3 − (x′′(0))p = 1, (4.3)

− 4
π

tan−1 x(1) + 2x′(1) + (x′′(1))3 = 1, (4.4)

where p is an odd number.
Let

f(t, x, y, z) = −xy2 − t2z3,

g(y) = y3,

φ(x, y, z) = − 4
π

tan−1 x + 2y + z3.

Define
α(t) = −t, β(t) = t, t ∈ [0, 1],

then α(t), β(t) are lower and upper solutions of BVP (4.1)–(4.4). Furthermore, we find
that f satisfies the sign-type Nagumo condition (N∗

+) in

D = {(t, x, y, z) ∈ [0, 1] × R
3 : −t � x � t, − 1 � y � 1}

with Φ(z) = 2. It is easy to prove that all the conditions of Theorem 3.1 are satisfied.
Therefore, from Theorem 3.1, there exists a solution x(t) for BVP (4.1)–(4.4) such that

−t � x(t) � t, −1 � x′(t) � 1, t ∈ [0, 1].

It is clear that the results of [5] do not apply to Example 4.1. It shows that the result
in this paper is new and valuable.
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