EXISTENCE RESULT FOR A CLASS OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS

LIBO WANG ${ }^{1}$, MINGHE PEI ${ }^{1}$ AND WEIGAO GE ${ }^{2}$
${ }^{1}$ Department of Mathematics, Beihua University, Ji'lin 132013, People's Republic of China (wlb_math@yahoo.cn)
${ }^{2}$ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

(Received 19 April 2006)

Abstract The upper and lower solutions method and Leray-Schauder degree theory are employed to establish the existence result for a class of nonlinear third-order two-point boundary-value problems with a sign-type Nagumo condition.

Keywords: sign-type Nagumo condition; upper and lower solutions method;
Leray-Schauder degree theory
2000 Mathematics subject classification: Primary 34B15

1. Introduction

Third-order boundary value problems have been discussed in many papers in recent years (see, for example, $[\mathbf{1}-\mathbf{4}, \mathbf{6}]$). But most of them considered linear boundary conditions. Recently, Grossinho [5] established an existence and location result for the nonlinear differential equation

$$
x^{\prime \prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right)
$$

with two types of boundary conditions:

$$
x(a)=A, \quad \phi\left(x^{\prime}(b), x^{\prime \prime}(b)\right)=0, \quad x^{\prime \prime}(a)=B,
$$

or

$$
x(a)=A, \quad \psi\left(x^{\prime}(a), x^{\prime \prime}(a)\right)=0, \quad x^{\prime \prime}(b)=C .
$$

In this work, we extend the study to a more general case, since we consider the third-order nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right), \quad a<t<b \tag{1.1}
\end{equation*}
$$

with nonlinear boundary conditions

$$
\begin{equation*}
x(a)=A, \quad g\left(x^{\prime}(a)\right)-\left[x^{\prime \prime}(a)\right]^{p}=B, \quad \phi\left(x(b), x^{\prime}(b), x^{\prime \prime}(b)\right)=C \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
x(a)=A, \quad \psi\left(x(a), x^{\prime}(a), x^{\prime \prime}(a)\right)=B, \quad h\left(x^{\prime}(b)\right)+\left[x^{\prime \prime}(b)\right]^{q}=C . \tag{1.3}
\end{equation*}
$$

The function $f(t, x, y, z):[a, b] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous, $g, h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\phi, \psi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are continuous and monotone on the first and third variables, and p and q are odd numbers.

By the use of the upper and lower solutions method and Leray-Schauder degree theory, we show existence results with a sign-type Nagumo condition, which is weaker than the one in [5].

This work is organized as follows. In $\S 2$, some notation and preliminaries are introduced. The existence results are discussed in $\S 3$. As applications of our results, an example is given in the last section.

2. Preliminaries

Definition 2.1. Function $\alpha(t) \in C^{3}[a, b]$ is said to be a lower solution of the boundaryvalue problem (BVP) (1.1), (1.2) if

$$
\begin{equation*}
\alpha^{\prime \prime \prime}(t) \geqslant f\left(t, \alpha(t), \alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right), \quad t \in[a, b], \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(a) \leqslant A, g\left(\alpha^{\prime}(a)\right)-\left[\alpha^{\prime \prime}(a)\right]^{p} \leqslant B, \quad \phi\left(\alpha(b), \alpha^{\prime}(b), \alpha^{\prime \prime}(b)\right) \leqslant C . \tag{2.2}
\end{equation*}
$$

Function $\beta(t) \in C^{3}[a, b]$ is said to be an upper solution of the BVP (1.1), (1.2) if it satisfies the reversed inequalities.

Definition 2.2. Given a subset $D \subset[a, b] \times \mathbb{R}^{3}$, a function $f: D \rightarrow \mathbb{R}$ is said to satisfy the sign-type Nagumo condition $\left(N_{+}^{*}\right)$ in D if there exists $\Phi \in C\left(\mathbb{R}_{0}^{+},(0,+\infty)\right)$ such that

$$
\begin{equation*}
f(t, x, y, z) \operatorname{sgn}(z) \leqslant \Phi(|z|) \quad \text { for all }(t, x, y, z) \in D \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{s}{\Phi(s)} \mathrm{d} s=+\infty \tag{2.4}
\end{equation*}
$$

If (2.3) is replaced by

$$
\begin{equation*}
f(t, x, y, z) \operatorname{sgn}(z) \geqslant-\Phi(|z|) \quad \text { for all }(t, x, y, z) \in D \tag{2.5}
\end{equation*}
$$

we say that f satisfies the sign-type Nagumo condition (N_{-}^{*}).
Lemma 2.3. Let $\alpha_{i}, \beta_{i} \in C[a, b]$ satisfy

$$
\alpha_{i}(t) \leqslant \beta_{i}(t), \quad i=0,1, t \in[a, b],
$$

and consider the set

$$
E=\left\{(t, x, y, z) \in[a, b] \times \mathbb{R}^{3}: \alpha_{0}(t) \leqslant x \leqslant \beta_{0}(t), \alpha_{1}(t) \leqslant y \leqslant \beta_{1}(t)\right\} .
$$

Let $f:[a, b] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function that satisfies the sign-type Nagumo condition $\left(N_{+}^{*}\right)$ in E. Then for every $\rho>0$ there exists $K>0$ (depending on $\alpha_{1}(t)$, $\beta_{1}(t), \Phi$ and $\left.\rho\right)$ such that, for every solution $x(t)$ of (1.1) verifying

$$
\begin{equation*}
\left|x^{\prime \prime}(a)\right| \leqslant \rho \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0}(t) \leqslant x(t) \leqslant \beta_{0}(t), \quad \alpha_{1}(t) \leqslant x^{\prime}(t) \leqslant \beta_{1}(t) \quad \text { for all } t \in[a, b], \tag{2.7}
\end{equation*}
$$

we have

$$
\left\|x^{\prime \prime}\right\|_{\infty}<K
$$

Proof. This result can be easily proved by using the analogous technique of Lemma 2 from [5].

Remark 2.4. The above result still holds if we replace condition (N_{+}^{*}) by (N_{-}^{*}) and assumption (2.6) by $\left|x^{\prime \prime}(b)\right| \leqslant \rho$.

Lemma 2.5. The boundary-value problem

$$
\begin{align*}
& x^{\prime \prime \prime}=x^{\prime} \Phi\left(\left|x^{\prime \prime}\right|\right), \tag{2.8}\\
& x(a)=0, \tag{2.9}\\
& x^{\prime}(a)=\left[x^{\prime \prime}(a)\right]^{p}, \quad x^{\prime}(b)=0
\end{align*}
$$

has only the trivial solution, where $\Phi \in C\left(\mathbb{R}_{0}^{+},(0,+\infty)\right)$.
Proof. Assume, by contradiction, that $x_{0}(t)$ be a non-trivial solution of BVP (2.8), (2.9). Then there exists $t \in[a, b]$ such that $x_{0}^{\prime}(t)>0$ or $x_{0}^{\prime}(t)<0$. Suppose the first case holds. Define

$$
\max _{t \in[a, b]} x_{0}^{\prime}(t)=x_{0}^{\prime}\left(t_{1}\right)>0
$$

If $t_{1} \in(a, b)$, then $x_{0}^{\prime \prime}\left(t_{1}\right)=0$ and $x_{0}^{\prime \prime \prime}\left(t_{1}\right) \leqslant 0$. From (2.8) we have the following contradiction:

$$
0 \geqslant x_{0}^{\prime \prime \prime}\left(t_{1}\right)=x_{0}^{\prime}\left(t_{1}\right) \Phi\left(\left|x_{0}^{\prime \prime}\left(t_{1}\right)\right|\right)>0
$$

If $t_{1}=a$, then $x_{0}^{\prime}(a)>0$ and $x_{0}^{\prime \prime}(a) \leqslant 0$, which contradicts (2.9).
If $t_{1}=b$, from (2.9) we can get the contradiction.
Thus, BVP (2.8), (2.9) has only the trivial solution.

3. Main results

Theorem 3.1. Assume that
(i) there exist lower and upper solutions of BVP (1.1), (1.2), $\alpha(t), \beta(t)$, such that

$$
\alpha^{\prime}(t) \leqslant \beta^{\prime}(t), \quad t \in[a, b],
$$

(ii) $f(t, x, y, z)$ is continuous on $[a, b] \times \mathbb{R}^{3}$ and decreasing on x,
(iii) $f(t, x, y, z)$ satisfies the sign-type Nagumo condition (N_{+}^{*}) in

$$
D_{*}=\left\{(t, x, y, z) \in[a, b] \times \mathbb{R}^{3}: \alpha(t) \leqslant x \leqslant \beta(t), \alpha^{\prime}(t) \leqslant y \leqslant \beta^{\prime}(t)\right\},
$$

(iv) $g(y)$ is continuous on $\mathbb{R}, \phi(x, y, z)$ is continuous on \mathbb{R}^{3}, decreasing on x and increasing on z.
Then $B V P$ (1.1), (1.2) has at least one solution $x(t) \in C^{3}[a, b]$ such that

$$
\alpha(t) \leqslant x(t) \leqslant \beta(t), \quad \alpha^{\prime}(t) \leqslant x^{\prime}(t) \leqslant \beta^{\prime}(t), \quad t \in[a, b] .
$$

Proof. For $i=0,1$, define

$$
w_{i}\left(t, x_{i}\right)= \begin{cases}\beta^{(i)}(t), & x_{i}>\beta^{(i)}(t), \\ x_{i}, & \alpha^{(i)}(t) \leqslant x_{i} \leqslant \beta^{(i)}(t), \\ \alpha^{(i)}(t), & x_{i}<\alpha^{(i)}(t)\end{cases}
$$

For $\lambda \in[0,1]$, we consider the auxiliary equation

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=\lambda f\left(t, w_{0}(t, x(t)), w_{1}\left(t, x^{\prime}(t)\right), x^{\prime \prime}(t)\right)+\left[x^{\prime}(t)-\lambda w_{1}\left(t, x^{\prime}(t)\right)\right] \Phi\left(\left|x^{\prime \prime}(t)\right|\right), \tag{3.1}
\end{equation*}
$$

where Φ is decided by the sign-type Nagumo condition $\left(N_{+}^{*}\right)$, with the boundary condition

$$
\begin{align*}
x(a) & =\lambda A, \tag{3.2}\\
x^{\prime}(a) & =\lambda\left[B-g\left(w_{1}\left(a, x^{\prime}(a)\right)\right)+w_{1}\left(a, x^{\prime}(a)\right)\right]+\left[x^{\prime \prime}(a)\right]^{p}, \tag{3.3}\\
x^{\prime}(b) & =\lambda\left[C-\phi\left(w_{0}(b, x(b)), w_{1}\left(b, x^{\prime}(b)\right), x^{\prime \prime}(b)\right)+w_{1}\left(b, x^{\prime}(b)\right)\right] . \tag{3.4}
\end{align*}
$$

Then we can select $M_{1}>0$ such that for every $t \in[a, b]$,

$$
\begin{gather*}
-M_{1}<\alpha^{\prime}(t) \leqslant \beta^{\prime}(t)<M_{1}, \tag{3.5}\\
f\left(t, \alpha(t), \alpha^{\prime}(t), 0\right)-\left[M_{1}+\alpha^{\prime}(t)\right] \Phi(0)<0, \tag{3.6}\\
f\left(t, \beta(t), \beta^{\prime}(t), 0\right)+\left[M_{1}-\beta^{\prime}(t)\right] \Phi(0)>0, \tag{3.7}\\
B-g\left(\alpha^{\prime}(a)\right)+\alpha^{\prime}(a)>-M_{1}, \quad\left|C-\phi\left(\alpha(b), \alpha^{\prime}(b), 0\right)+\alpha^{\prime}(b)\right|<M_{1}, \tag{3.8}\\
B-g\left(\beta^{\prime}(a)\right)+\beta^{\prime}(a)<M_{1}, \quad\left|C-\phi\left(\beta(b), \beta^{\prime}(b), 0\right)+\beta^{\prime}(b)\right|<M_{1} . \tag{3.9}
\end{gather*}
$$

In the following, we shall complete the proof in four steps.
Step 1. Every solution $x(t)$ of BVP (3.1)-(3.4) satisfies

$$
\begin{equation*}
\left|x^{\prime}(t)\right|<M_{1}, \quad t \in[a, b], \tag{3.10}
\end{equation*}
$$

independently of λ.
We suppose that the estimate is not true. Then there exists some $t \in[a, b]$ such that $x^{\prime}(t) \geqslant M_{1}$ or $x^{\prime}(t) \leqslant-M_{1}$. Suppose the first case holds. Define

$$
\max _{t \in[a, b]} x^{\prime}(t):=x^{\prime}\left(t_{0}\right)\left(\geqslant M_{1}>0\right) .
$$

If $t_{0} \in(a, b)$, then $x^{\prime \prime}\left(t_{0}\right)=0$ and $x^{\prime \prime \prime}\left(t_{0}\right) \leqslant 0$. For $\lambda \in(0,1]$, by condition (ii) and (3.7), we have the following contradiction

$$
\begin{aligned}
0 & \geqslant x^{\prime \prime \prime}\left(t_{0}\right) \\
& =\lambda f\left(t_{0}, w_{0}\left(t_{0}, x\left(t_{0}\right)\right), w_{1}\left(t_{0}, x^{\prime}\left(t_{0}\right)\right), x^{\prime \prime} t_{0}\right)+\left[x^{\prime}\left(t_{0}\right)-\lambda w_{1}\left(t_{0}, x^{\prime}\left(t_{0}\right)\right)\right] \Phi\left(\left|x^{\prime \prime}\left(t_{0}\right)\right|\right) \\
& =\lambda f\left(t_{0}, w_{0}\left(t_{0}, x\left(t_{0}\right)\right), w_{1}\left(t_{0}, x^{\prime}\left(t_{0}\right)\right), 0\right)+\left[x^{\prime}\left(t_{0}\right)-\lambda \beta^{\prime}\left(t_{0}\right)\right] \Phi(0) \\
& \geqslant \lambda\left\{f\left(t_{0}, \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right), 0\right)+\left[M_{1}-\beta^{\prime}\left(t_{0}\right)\right] \Phi(0)\right\} \\
& >0
\end{aligned}
$$

and, for $\lambda=0$, we have

$$
0 \geqslant x^{\prime \prime \prime}\left(t_{0}\right)=x^{\prime}\left(t_{0}\right) \Phi(0) \geqslant M_{1} \Phi(0)>0
$$

If $t_{0}=a$, then

$$
\max _{t \in[a, b]} x^{\prime}(t)=x^{\prime}(a)\left(\geqslant M_{1}>0\right)
$$

and $x^{\prime \prime}(a) \leqslant 0$. For $\lambda=0$, by (3.3) we have the following contradiction:

$$
0<M_{1} \leqslant x^{\prime}(a)=\left[x^{\prime \prime}(a)\right]^{p} \leqslant 0
$$

For $\lambda \in(0,1]$, by (3.3) and (3.9) we can obtain the following contradiction:

$$
\begin{aligned}
M_{1} & \leqslant x^{\prime}(a) \\
& =\lambda\left[B-g\left(w_{1}\left(a, x^{\prime}(a)\right)\right)+w_{1}\left(a, x^{\prime}(a)\right)\right]+\left[x^{\prime \prime}(a)\right]^{p} \\
& \leqslant \lambda\left[B-g\left(\beta^{\prime}(a)\right)+\beta^{\prime}(a)\right]<M_{1} .
\end{aligned}
$$

If $t_{0}=b$, then

$$
\max _{t \in[a, b]} x^{\prime}(t)=x^{\prime}(b)\left(\geqslant M_{1}>0\right)
$$

and $x^{\prime \prime}(b) \geqslant 0$. For $\lambda=0$, by (3.4) we have the following contradiction:

$$
0<M_{1} \leqslant x^{\prime}(b)=0
$$

For $\lambda \in(0,1]$, by $(3.4),(3.9)$ and condition (iv) we can obtain the following contradiction:

$$
\begin{aligned}
M_{1} & \leqslant x^{\prime}(b) \\
& =\lambda\left[C-\phi\left(w_{0}(b, x(b)), w_{1}\left(b, x^{\prime}(b)\right), x^{\prime \prime}(b)\right)+w_{1}\left(b, x^{\prime}(b)\right)\right] \\
& \leqslant \lambda\left[C-\phi\left(\beta(b), \beta^{\prime}(b), 0\right)+\beta^{\prime}(b)\right]<M_{1}
\end{aligned}
$$

Thus, $x^{\prime}(t)<M_{1}$ for $t \in[a, b]$. In a similar way, we prove that $x^{\prime}(t)>-M_{1}$ for $t \in[a, b]$. From (3.2) we have

$$
|x(t)|<M_{0}=(b-a) M_{1}+|A|, \quad t \in[a, b] .
$$

Step 2. There exists $M_{2}>0$ such that every solution $x(t)$ of BVP (3.1)-(3.4) satisfies

$$
\left|x^{\prime \prime}(t)\right|<M_{2}, \quad t \in[a, b]
$$

independently of $\lambda \in[0,1]$.
Consider the set

$$
D_{* *}=\left\{(t, x, y, z) \in[a, b] \times \mathbb{R}^{3}:|x| \leqslant M_{0},|y| \leqslant M_{1}\right\}
$$

and the function $F_{\lambda}:[a, b] \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
F_{\lambda}(t, x, y, z)=\lambda f\left(t, w_{0}(t, x), w_{1}(t, y), z\right)+\left[y-\lambda w_{1}(t, y)\right] \Phi(|z|)
$$

In the following, we show that F_{λ} satisfies the sign-type Nagumo condition in $D_{* *}$, independently of $\lambda \in[0,1]$. In fact, since f satisfies the sign-type Nagumo condition in $D_{* *}$, we have

$$
\begin{aligned}
F_{\lambda}(t, x, y, z) \operatorname{sgn}(z) & =\lambda f\left(t, w_{0}(t, x), w_{1}(t, y), z\right) \operatorname{sgn}(z)+\left[y-\lambda w_{1}(t, y)\right] \Phi(|z|) \operatorname{sgn}(z) \\
& \leqslant\left[2 M_{1}+1\right] \Phi(|z|) \\
& :=\Phi^{*}(|z|)
\end{aligned}
$$

Furthermore, we obtain

$$
\int_{0}^{+\infty} \frac{s}{\Phi^{*}(s)} \mathrm{d} s=\int_{0}^{+\infty} \frac{s}{\left(2 M_{1}+1\right) \Phi(s)} \mathrm{d} s=+\infty
$$

Thus, F_{λ} satisfies the sign-type Nagumo condition $\left(N_{+}^{*}\right)$ in $D_{* *}$, independently of $\lambda \in$ $[0,1]$.

Let

$$
\rho:=\left[|B|+G+2 M_{1}\right]^{1 / p},
$$

where

$$
G=\max _{y \in\left[-M_{1}, M_{1}\right]}|g(y)|
$$

From (3.3), every solution $x(t)$ of BVP (3.1)-(3.4) satisfies

$$
\begin{aligned}
\left|x^{\prime \prime}(a)\right| & =\left|x^{\prime}(a)-\lambda\left[B-g\left(w_{1}\left(a, x^{\prime}(a)\right)\right)+w_{1}\left(a, x^{\prime}(a)\right)\right]\right|^{1 / p} \\
& \leqslant\left[|B|+G+2 M_{1}\right]^{1 / p} \\
& =\rho
\end{aligned}
$$

Define

$$
\alpha_{0}(t)=-M_{0}, \quad \beta_{0}(t)=M_{0}, \quad \alpha_{1}(t)=-M_{1}, \quad \beta_{1}(t)=M_{1}, \quad t \in[a, b]
$$

In view of Step 1 and applying Lemma 2.3, there then exists $M_{2}>0$ (independent of λ) such that $\left|x^{\prime \prime}(t)\right|<M_{2}, t \in[a, b]$.

Step 3. For $\lambda=1$, BVP (3.1)-(3.4) has at least one solution $x_{1}(t)$.
Define the operators

$$
L: C^{3}[a, b] \subset C^{2}[a, b] \rightarrow C[a, b] \times \mathbb{R}^{3}
$$

by

$$
L x=\left(x^{\prime \prime \prime}, x(a), x^{\prime}(a), x^{\prime}(b)\right)
$$

and

$$
N_{\lambda}: C^{2}[a, b] \rightarrow C[a, b] \times \mathbb{R}^{3}
$$

by
$N_{\lambda} x=\left(\lambda f\left(t, w_{0}(t, x(t)), w_{1}\left(t, x^{\prime}(t)\right), x^{\prime \prime}(t)\right)+\left[x^{\prime}(t)-\lambda w_{1}\left(t, x^{\prime}(t)\right)\right] \Phi\left(\left|x^{\prime \prime}(t)\right|\right), A_{\lambda}, B_{\lambda}, C_{\lambda}\right)$
with

$$
\begin{aligned}
& A_{\lambda}=\lambda A \\
& B_{\lambda}=\lambda\left[B-g\left(w_{0}(a, x(a)), w_{1}\left(a, x^{\prime}(a)\right)\right)+w_{1}\left(a, x^{\prime}(a)\right)\right]+\left[x^{\prime \prime}(a)\right]^{p}, \\
& C_{\lambda}=\lambda\left[C-\phi\left(w_{0}(b, x(b)), w_{1}\left(b, x^{\prime}(b)\right), x^{\prime \prime}(b)\right)+w_{1}\left(b, x^{\prime}(b)\right)\right]
\end{aligned}
$$

As L^{-1} is compact, we can define the completely continuous operator

$$
T_{\lambda}: C^{2}[a, b] \rightarrow C^{2}[a, b]
$$

by

$$
T_{\lambda}(x)=L^{-1} N_{\lambda}(x)
$$

Consider the set

$$
\Omega=\left\{x \in C^{2}[a, b]:\|x\|_{\infty}<M_{0},\left\|x^{\prime}\right\|_{\infty}<M_{1},\left\|x^{\prime \prime}\right\|_{\infty}<M_{2}\right\} .
$$

By Steps 1 and 2 , the degree $\operatorname{deg}\left(I-T_{\lambda}, \Omega, \theta\right)$ is well defined for every $\lambda \in[0,1]$ and, by homotopy invariance, we get

$$
\operatorname{deg}\left(I-T_{0}, \Omega, 0\right)=\operatorname{deg}\left(I-T_{1}, \Omega, 0\right)
$$

As the equation $x=T_{0}(x)$ has only the trivial solution from Lemma 2.5, by degree theory,

$$
\operatorname{deg}\left(I-T_{1}, \Omega, 0\right)=\operatorname{deg}\left(I-T_{0}, \Omega, 0\right)= \pm 1
$$

Hence, the equation $x=T_{1}(x)$ has at least one solution. That is, the problem

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=f\left(t, w_{0}(t, x(t)), w_{1}\left(t, x^{\prime}(t)\right), x^{\prime \prime}(t)\right)+\left[x^{\prime}(t)-w_{1}\left(t, x^{\prime}(t)\right)\right] \Phi\left(\left|x^{\prime \prime}(t)\right|\right) \tag{3.11}
\end{equation*}
$$

with the boundary condition

$$
\begin{align*}
x(a) & =A \tag{3.12}\\
x^{\prime}(a) & =\left[B-g\left(w_{1}\left(a, x^{\prime}(a)\right)\right)+w_{1}\left(a, x^{\prime}(a)\right)\right]+\left[x^{\prime \prime}(a)\right]^{p} \tag{3.13}\\
x^{\prime}(b) & =\left[C-\phi\left(w_{0}(b, x(b)), w_{1}\left(b, x^{\prime}(b)\right), x^{\prime \prime}(b)\right)+w_{1}\left(b, x^{\prime}(b)\right)\right] \tag{3.14}
\end{align*}
$$

has at least one solution $x_{1}(t)$ in Ω.

Step 4. In fact, the solution $x_{1}(t)$ of the above problem will also be a solution of BVP (1.1), (1.2) since it satisfies

$$
\begin{equation*}
\alpha(t) \leqslant x_{1}(t) \leqslant \beta(t), \quad \alpha^{\prime}(t) \leqslant x_{1}^{\prime}(t) \leqslant \beta^{\prime}(t), \quad t \in[a, b] \tag{3.15}
\end{equation*}
$$

Suppose, by contradiction, that there exists $t \in[a, b]$ such that $x_{1}^{\prime}(t)>\beta^{\prime}(t)$ and define

$$
\max _{t \in[a, b]}\left[x_{1}^{\prime}(t)-\beta^{\prime}(t)\right]:=x_{1}^{\prime}\left(t_{1}\right)-\beta^{\prime}\left(t_{1}\right)>0
$$

If $t_{1} \in(a, b)$, then $x_{1}^{\prime \prime}\left(t_{1}\right)=\beta^{\prime \prime}\left(t_{1}\right)$ and $x_{1}^{\prime \prime \prime}\left(t_{1}\right) \leqslant \beta^{\prime \prime \prime}\left(t_{1}\right)$. By condition (ii), we have the contradiction

$$
\begin{aligned}
0 \geqslant & x_{1}^{\prime \prime \prime}\left(t_{1}\right)-\beta^{\prime \prime \prime}\left(t_{1}\right) \\
\geqslant & f\left(t_{1}, w_{0}\left(t_{1}, x_{1}\left(t_{1}\right)\right), w_{1}\left(t_{1}, x_{1}^{\prime}\left(t_{1}\right)\right), x_{1}^{\prime \prime}\left(t_{1}\right)\right) \\
& \quad+\left[x_{1}^{\prime}\left(t_{1}\right)-w_{1}\left(t_{1}, x_{1}^{\prime}\left(t_{1}\right)\right)\right] \Phi\left(\left|x_{1}^{\prime \prime}\left(t_{1}\right)\right|\right)-f\left(t_{1}, \beta\left(t_{1}\right), \beta^{\prime}\left(t_{1}\right), \beta^{\prime \prime}\left(t_{1}\right)\right) \\
\geqslant & f\left(t_{1}, \beta\left(t_{1}\right), \beta^{\prime}\left(t_{1}\right), \beta^{\prime \prime}\left(t_{1}\right)\right)+\left[x_{1}^{\prime}\left(t_{1}\right)-\beta^{\prime}\left(t_{1}\right)\right] \Phi\left(\left|x_{1}^{\prime \prime}\left(t_{1}\right)\right|\right)-f\left(t_{1}, \beta\left(t_{1}\right), \beta^{\prime}\left(t_{1}\right), \beta^{\prime \prime}\left(t_{1}\right)\right) \\
= & {\left[x_{1}^{\prime}\left(t_{1}\right)-\beta^{\prime}\left(t_{1}\right)\right] \Phi\left(\left|x_{1}^{\prime \prime}\left(t_{1}\right)\right|\right) } \\
> & 0
\end{aligned}
$$

If $t_{1}=a$, we have

$$
\max _{t \in[a, b]}\left[x_{1}^{\prime}(t)-\beta^{\prime}(t)\right]:=x_{1}^{\prime}(a)-\beta^{\prime}(a)>0
$$

and

$$
x_{1}^{\prime \prime}(a)-\beta^{\prime \prime}(a) \leqslant 0 .
$$

By (3.13), Definition 2.1 and condition (iv), we have the contradiction

$$
\begin{aligned}
\beta^{\prime}(a) & <x_{1}^{\prime}(a) \\
& =\left[B-g\left(w_{1}\left(a, x_{1}^{\prime}(a)\right)\right)+w_{1}\left(a, x_{1}^{\prime}(a)\right)\right]+\left[x_{1}^{\prime \prime}(a)\right]^{p} \\
& \leqslant B-g\left(\beta^{\prime}(a)\right)+\beta^{\prime}(a)+\left[\beta^{\prime \prime}(a)\right]^{p} \\
& \leqslant \beta^{\prime}(a) .
\end{aligned}
$$

If $t_{1}=b$, we have

$$
\max _{t \in[a, b]}\left[x_{1}^{\prime}(t)-\beta^{\prime}(t)\right]:=x_{1}^{\prime}(b)-\beta^{\prime}(b)>0
$$

and

$$
x_{1}^{\prime \prime}(b)-\beta^{\prime \prime}(b) \geqslant 0
$$

By (3.14), Definition 2.1 and condition (iv), we have the contradiction

$$
\begin{aligned}
\beta^{\prime}(b) & <x_{1}^{\prime}(b) \\
& =\left[C-\phi\left(w_{0}\left(b, x_{1}(b)\right), w_{1}\left(b, x_{1}^{\prime}(b)\right), x_{1}^{\prime \prime}(b)\right)+w_{1}\left(b, x_{1}^{\prime}(b)\right)\right] \\
& \leqslant C-\phi\left(\beta(b), \beta^{\prime}(b), \beta^{\prime \prime}(b)\right)+\beta^{\prime}(b) \\
& \leqslant \beta^{\prime}(b)
\end{aligned}
$$

Thus,

$$
x_{1}^{\prime}(t) \leqslant \beta^{\prime}(t), \quad t \in[a, b] .
$$

Using an analogous technique, we obtain that $\alpha^{\prime}(t) \leqslant x_{1}^{\prime}(t)$ for every $t \in[a, b]$. From

$$
\alpha(a) \leqslant A \leqslant \beta(a)
$$

and by integration we have

$$
\alpha(t) \leqslant x_{1}(t) \leqslant \beta(t), \quad t \in[a, b] .
$$

Therefore, $x_{1}(t)$ is in fact a solution of BVP (1.1), (1.2).
In the case of nonlinear boundary conditions (1.3) a similar existence result to Theorem 3.1 can be obtained for problem (1.1), (1.3).

4. Example

Example 4.1. Consider the boundary-value problem

$$
\begin{gather*}
x^{\prime \prime \prime}=-x\left(x^{\prime}\right)^{2}-t^{2}\left(x^{\prime \prime}\right)^{3} \tag{4.1}\\
x(0)=0 \tag{4.2}\\
\left(x^{\prime}(0)\right)^{3}-\left(x^{\prime \prime}(0)\right)^{p}=1, \tag{4.3}\\
-\frac{4}{\pi} \tan ^{-1} x(1)+2 x^{\prime}(1)+\left(x^{\prime \prime}(1)\right)^{3}=1, \tag{4.4}
\end{gather*}
$$

where p is an odd number.
Let

$$
\begin{aligned}
f(t, x, y, z) & =-x y^{2}-t^{2} z^{3} \\
g(y) & =y^{3} \\
\phi(x, y, z) & =-\frac{4}{\pi} \tan ^{-1} x+2 y+z^{3} .
\end{aligned}
$$

Define

$$
\alpha(t)=-t, \quad \beta(t)=t, \quad t \in[0,1],
$$

then $\alpha(t), \beta(t)$ are lower and upper solutions of BVP (4.1)-(4.4). Furthermore, we find that f satisfies the sign-type Nagumo condition $\left(N_{+}^{*}\right)$ in

$$
D=\left\{(t, x, y, z) \in[0,1] \times \mathbb{R}^{3}:-t \leqslant x \leqslant t,-1 \leqslant y \leqslant 1\right\}
$$

with $\Phi(z)=2$. It is easy to prove that all the conditions of Theorem 3.1 are satisfied. Therefore, from Theorem 3.1, there exists a solution $x(t)$ for BVP (4.1)-(4.4) such that

$$
-t \leqslant x(t) \leqslant t, \quad-1 \leqslant x^{\prime}(t) \leqslant 1, \quad t \in[0,1]
$$

It is clear that the results of [5] do not apply to Example 4.1. It shows that the result in this paper is new and valuable.

References

1. R. P. Agarwal, Boundary value problems for higher order differential equations (World Scientific, 1986).
2. A. Cabada, M. R. Grossinho and F. M. Minhós, On the solvability of some discontinuous third-order nonlinear differential equations with two point boundary conditions, J. Math. Analysis Applic. 285 (2003), 174-190.
3. Z. Du, W. Ge and X. Lin, Existence of solutions for a class of third-order nonlinear boundary problems, J. Math. Analysis Applic. 294 (2004), 104-112.
4. M. R. Grossinho and F. M. Minhós, Existence results for some third order separated boundary value problems, Nonlin. Analysis 47 (2001), 2407-2418.
5. M. R. Grossinho, F. M. Minhós and A. I. Santos, Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control, J. Math. Analysis Applic. 309 (2005), 271-283.
6. F. H. WONG, An application of Schauder's fixed point theorem with respect to higher order BVPs, Proc. Am. Math. Soc. 126 (1998), 2389-2397.
