
 

DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 1405 

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2020 
https://doi.org/10.1017/dsd.2020.323 

AUTOMATED PRODUCT FUNCTIONALITY AND DESIGN 
OPTIMIZATION INSTANCING A PRODUCT-SERVICE SYSTEM 

P. Wolniak , B. Sauthoff, D. Kloock-Schreiber and R. Lachmayer 

Leibniz Universität Hannover, Germany 

 wolniak@ipeg.uni-hannover.de 

 

Abstract 

When using product-service systems as a business model, new product development challenges 

and opportunities arise. Due to the possibility of customizing the product fleet depending on the 

user-scenarios, more product variants are possible and often necessary. Therefore, this paper 

presents an approach for the automated functionality and design optimization for user scenario 

specific use cases. The approach combines an optimization framework with a functional 

simulation model and a generative design approach CAD model. This results in a robust and 

simultaneously flexible design environment. 

Keywords: design optimisation, generative design approach, knowledge-based engineering (KBE), 
product-service systems (PSS) 

1. Introduction 

The development in a product-service system (PSS) differs significantly from the typical business-to-

customer or business-to-business model. Due to the shift of delivering the value proposition rather than 

the product, the requirements for the own products are not as strictly dedicated by the customer as in the 

general product development. This gives the developer a higher degree of freedom in the development of 

the product for meeting the requirements of the value proposition. However, it also imposes a more 

dynamical and flexible necessary reaction to e.g. market situation changes or new customer needs. 

The distinction between the general product development process and the product development 

embedded in a PSS development is necessary for the consideration of the influence of the later phases of 

the product lifecycle as well as the internal dependencies between product and service parts (Meier et al., 

2010; Schreiber et al., 2018). In general, PSS can be classified in the categories product-oriented, use-

oriented and result-oriented (Tukker, 2004). While the product ownership changes from the producing 

company to the customer after the manufacturing and the following sale of the product, the ownership of 

the product stays with the manufacturing company within a use- or result-oriented PSS. Since the 

delivery of a value proposition (regardless whether it is achieved by product or service parts) is the main 

business goal of a PSS, not only the manufacturing but also the maintenance or further supply of 

consumable goods is of great importance (Thomas et al., 2008). Therefore, the requirements defined by 

the customer are shifting from the product to requirements specific for the value proposition itself. 

This shift towards delivering solely the value proposition in a specified quality and cost gives the PSS 

company further freedom of designing the product and especially the structure of the entire fleet of 

products according to the service qualities. Hence, an even larger variety of product variants is 

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

1406   DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 

possible and may even be necessary to fulfill the business case. For this reason, a detailed 

investigation of the user scenarios and the subsequent possible alterations of the product on a cost-to-

quality basis becomes mandatory. 

Therefore, the scope of this paper is to propose an approach that allows computer-aided qualification 

of a high number of automatically generated variants within customer-specific scenarios. Finally, this 

qualification leads to an optimal functional fulfillment while enhancing the product fleet and lowering 

the cost for the PSS company itself. 

The described approach is presented on the example of a PSS with the business case of a self-

developed coffee machine for the automated delivery of coffee for high throughput. The described 

optimization approach supports the PSS company in the late conceptual phase of this coffee machine 

development for a user scenario-specific design and dimensioning of the product fleet according to the 

business case and the customers. 

2. State of the art on automated design 

To perform a computational synthesis of any kind a certain form of knowledge implementation is 

necessary. In a broader context, Alan Turing already distinguished between bottom-up and top-down 

approaches of computational knowledge implementation (Copeland, 2000). Characteristic for bottom-up 

approaches is a great amount of data used to perform training cycles in which the computational system 

patterns through dependencies and interrelationships and “learns” from scratch. Those approaches use 

e.g. neural networks, pattern recognition or classification, which are mathematical representations of 

complex functions. The training itself is an optimization of hyperparameters, leading to a certain level of 

goodness-of-fit of this function (Du and Swamy, 2019).. These approaches show progress in many fields 

of engineering and development within specific tasks. The use inside the conceptual phase of a 

functional assembly of a product development, on the other hand, is not yet included. 

The top-down approaches are characterized as approaches where the knowledge about the dependencies 

and interrelationships is used at the top, thus being independent of the low-level details of the 

implementing mechanism. The idea behind these approaches is within the support for the solution space 

exploration, by implementing and using formal and informal knowledge. These approaches can be 

summed up as expert systems or knowledge-based engineering (KBE) approaches (Milton, 2007). 

For the modeling of the solution space in these KBE approaches, the depiction of domain knowledge 

in the form of a declarative representation plays a vital role (Gembarski et al., 2016; Mescheder and 

Sallach, 2012) (Figure 1). 

 
Figure 1. Solution space modeling and exploration (Gembarski et al., 2016) 

Using this domain knowledge, problem-specific tasks can be implemented and solved. For a complete 

solution space exploration, inference knowledge and process knowledge is necessary. While the 

inference knowledge is the implementation of a single reasoning step depicted from the domain 

knowledge, the process knowledge puts these reasoning results in the context of the development task. 

For the implementation of these types of knowledge several methods exist (Schreiber et al., 1993). 

Dependencies Features
Parameter-

tables

Templates Design rules
Desgin

grammar

Process Knowledge

Rule-based 

Reasoning

Model-based 

Reasoning

Case-based 

Reasoning

Domain Knowledge

Solution space 

modeling

Solution space 

exploration

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 1407 

A common way of implementing knowledge into geometric models is the parametric modeling. 

Ranging from the definition of implicit conditions through logical dependencies (combining 

standardized design elements with changing sizes) to more complicated constraint problems. Many 

parametric CAD-systems have modules for the application of so-called “design rules”, which are used 

for the modeling of extensive relational networks of the components inside a CAD-system itself. 

On this basis, the reasoning inside these KBE-systems can be implemented in a rule-based, model-

based or case-based form. In a rule-based reasoning context, explicitly formulated rules are used to 

implement inference knowledge (Sabin and Weigel, 1998). With an increasing number of rules, the 

adaptation of the rule network becomes more complicated, as the implementation of a new rule 

includes a necessary consistency test. A pure rule-based system additionally lacks a comprehensive 

representation of the solution space, as every rule and therefore the majority of combinations have to 

be implemented in advance. 

The model-based reasoning combines the implementation of models of knowledge, instancing e.g. 

analytical or numerical analysis features. The main difference is the implicit modeling of rules, which 

are represented through the model dependencies itself, adjusting the possible solution in every step 

depending on the boundary conditions as well as the admitted outcome. Representations of this form 

are logic-, constraint- and resource-based approaches (Sabin and Weigel, 1998; La Rocca and van 

Tooren, 2010; Hvam et al., 2008). 

Case-based reasoning depends on a high storage of already known and determined solutions, 

categorized depending on its necessary information. By calculating the similarity of the new and the 

already known solutions, a measure of the usefulness of the stored solution can be given (Sabin and 

Weigel, 1998). Still, the solution space is limited, since the only outcome is the combination of 

already known solutions. 

To overcome the disadvantages of the pure parametric modeling and the knowledge-based 

implementation, the so-called generative design approach (GDA) as presented by Sauthoff et al. 

(2016) yields a promising modeling strategy. This approach is based on the combination of a 

parametric geometry model and the generative aspect of automatically exchanging parts of the model, 

while still maintaining a continuously coherent model. The advantage of this approach in contrast to 

the pure generative approach is the parametric usability of the model after its creation in combination 

with the interoperability inside an optimization (Sauthoff et al., 2016; Li and Lachmayer, 2018). A 

further description of the functionality of the GDA is presented in section 3.3. 

3. Research approach 

3.1. Process description 

Product development of physical assets, as known from the literature, has a distinct separation of 

processual phases. What many of the proposed processes, originating mainly in Europe, have in 

common is a serial sequence of these phases, namely a creative principle solution finding, a 

conceptual phase, a detailing phase and later on the elaboration and documentation (Pahl et al., 2007; 

Hubka, 1976; Koller, 1994). Another common point is the often highly iterative process of analyzing 

the so far determined product attributes and synthesizing the properties of a certain domain area. For a 

possible reduction of these often cumbersome iterations, a further computer-assisted or even 

automated development is used. Regarding this, every phase of the development process has its 

benefits and disadvantages for an automation. 

The computational implementation of the creative phase of a solution finding is challenging, mainly 

because of the high amount of laborious analysis cycles. Furthermore, the synthesis, as well as the 

evaluation are complicated and interconnected processes leading to an enormous modeling effort. In 

contrast, with the support of CAD and CAE tools, the detailing phase is a computationally highly 

evolved application (Bryant Arnold et al., 2008). Largely detailed models are used for the verification 

of the conceptually implemented solutions. Configuration tools, as well as knowledge-based systems, 

are highly effective and commonly used approaches within this phase of the development process. 

However, changes on necessary alterations beyond a configuration process lead again to high 

modelling efforts, making this development phase unsuitable for automated conceptual changes. 

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

1408   DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 

Accordingly, the advanced concept phase yields an optimal application for an automated optimization 

process involving customer- and market-specific usage scenarios. Further, the opportunity of a 

substantial response to changing market situations or customer-specific needs is given, exceeding the 

possibilities of commonly used configuration tools in the detailed phase of development. 

On this basis, the use of the presented approach is intended when a first set of solution principles is 

determined, remaining with further conceptual decisions like the actual optimal dimensions of the 

components or possible positioning inside an assembly. 

As a result of the state of the art on automated design, the process presented in Figure 2 is proposed. Here 

the GDA is used as a basis for the geometric variant qualification due to the aforementioned disadvantages 

of existing approaches in the area of knowledge implementation. For a comprehensive concept evaluation 

the change in dimensional sizes has to be linked with the resulting functional effects. Therefore, a second 

functional model is used. To interlink these models and ensure a correct parameter transfer an 

optimization framework is used as the leading instance. The optimization algorithm inside the framework 

changes the parameters inside the restricted design space. The sequence of parameter change, as well as 

the model update, is determined in the optimization algorithm. While the algorithm itself simply 

determines the values of the design parameters, these values are passed on to the respective functional 

analysis and geometric model by a subsequent script with the implemented model logic. Every further 

synthesizing and simulation step is within those models and thus completely separated from the 

optimization process, with the advantage of a simpler and more transparent modeling. 

 
Figure 2. Process description 

The process of parameter transfer is determined by the order of the model execution. First, every 

geometrical parameter is transferred to the geometric model. Here, the overall size, as well as 

positioning restrictions and the component prioritizations determine whether the parameter values 

given from the optimization algorithm lead to a solvable constraint problem and therefore to a feasible 

geometric solution. Using a simple death penalty constraint in the optimization algorithm, every 

unfeasible solution is excluded from further analysis. If a geometrically feasible solution is determined 

from the geometric model, the optimization algorithm transfers the parameter values to the functional 

analysis model, where the values of the actual objective functions are determined. 

3.2. Optimization process 

While the optimization of dimensions or performance of the components leads to a pure 

parameterization problem, another goal of this paper is to show the possibility of additional exchange 

of certain component types, extending the accessible solution space. Therefore, a differentiation has to 

be made between components that can be changed continuously in their size or form and components 

which are changed in discrete steps. While this is a highly individual distinction, general assumptions 

are possible. Self-developed as well as easily and with low-cost manufacturable components can 

mostly be seen as continuously dimensionable components. The cost of change is rather low or 

because of an in-house manufacturing possibility not of high significance. In the presented example of 

the coffee machine this refers to the tanks, the outer framework and several inner components like the 

motor shaft for the dosing unit. 

Optimization 

Algorithm

Functional 

Analysis Model
Geometric Model

[set parameter values]

[get property values]

[transfer feasibility]

[set parameter values]

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 1409 

Highly standardized or widely used components from the shelf are seen as discretely changeable 

components. Thereby, a first case base has to be created with the necessary parameters firmly defined 

and hence not changeable by the optimization algorithm. In this example, this refers to components 

like pumps, motors, electronics, and standardized pipe diameters. 

While the optimization algorithm alters the actual geometrical values of the continuously changeable 

components, the discrete changeable components can be exchanged by assigning a parameter range to 

every individual component, standardized from zero to one. If the optimization algorithm determines a 

value in this parameter range, the component is automatically exchanged. 

3.3. Geometric model 

As described in section 2, the GDA is used to build-up a flexible model that is able to adjust to the changing 

parameter values, as well as to a possible exchange of parts or even a completely different positioning of 

several parts. Figure 3 gives an overview of the coffee machine model as designed in the GDA. 

 
Figure 3. Design sections for the coffee machine 

The overall structure of the product is built using design sections as a placeholder for any component and 

its actual design. The relative position of every design section is determined by the so-called design 

skeleton, while every design section is made from several virtual planes, restricting the space within. The 

design skeleton is modeled in a CAD assembly file with the virtual planes as references for the design 

elements, which then can be imported into the assembly file at the respective place and with the 

respective association to other parts. The right-hand side of Figure 3 depicts the design elements, in this 

example the water container, placeable in the design sections. Every design element is represented by a 

single CAD part file, containing the necessary design properties as well as knowledge through 

implementable design rules. As can be seen in the design element numbered as 1, the parameters for a 

cylindrical water tank (𝑅 and ℎ), as well as the positioning in relation to the pipe interface is 

implemented in the design element itself, lowering the number of dependencies in the geometric model. 

For a first assumption of the geometrical possibilities of the overall product, a spare geometry in the 

form of a simple rectangle can be used. For this, the volume of the design element has to be calculated 

and accordingly the size of the spare element is adjusted. Using rectangles for every design element 

simplifies the initial modeling and gives a first assumption of the volume occupied by every 

component. On this basis, boundaries for the overall size of the product can be checked. 

For a robust and valid model build-up, regardless of the parameter combination at hand, a relative 

parameterization of the design skeleton is used. As can be seen in the lower part of Figure 4, the 

distances 𝑙1 − 𝑙3 and the overall length 𝑙 are given. The actual parametric change of these distances 

is performed by adding a parameter like 𝑝1 and inserting an equation as a design rule. By 

normalizing and restricting the parameter range of 𝑝1, collisions or intersections of design sections 

can be avoided. 

The functional interfaces, as a means of exchanging connected geometries, are also controlled by 

relative parameters. The upper part of Figure 4 gives an example of the functional interface for the 

opening of the funnel element, exchanging the coffee for the dosing unit through this opening. Again, 

the parameter 𝑝2 is used to change the positioning and adjust it to the used design element. By 

connecting and referencing these parameters, a solvable dependency network is built, leading to a 

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

1410   DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 

robust parametric model. Additionally, various skeletons with different component positions can be 

used to enlarge the variety and the solution space. 

 
Figure 4. Relative parameterized interface positions 

3.4. Functional analysis model 

For an effective way of system modeling the separation of domain and process knowledge plays a 

vital role. Therefore, the approach in this article is to model the components of a given product as 

separate objects, inheriting their specific domain knowledge, while combining these objects to form 

the overall system (Wolniak et al., 2018, 2019). Figure 5 gives an overview of the overall functional 

analysis model structure. 

 
Figure 5. Functional analysis model structure 

Thereby, every component of the actual product is represented as one object with its specific inputs 

and outputs, representing the information flow through the system. All these component blocks are 

inserted into the top layer model containing the logical connections between the component blocks. 

On this level, in a first step, the connections and dependencies between the components of the system 

are modeled, which is necessary to ensure a correct representation of the product. The previously 

mentioned exchange of discrete changeable components can be performed on this level. For this, each 

component created in the case base is loaded into the model. The currently active representative block 

is connected to the surrounding activated blocks. When changing the active block the status changes to 

suppressed, while activating the new block. A script, implemented into the optimization routine, 

analyzes the in- and outport identifiers and replaces the connections to the new linked blocks. 

Thereby, high model stability, as well as versatility, is guaranteed. 

While this top layer model contains the connections and logical dependencies between the components 

and parameters, it is not the instance for the physical analysis of the system. Therefore, the actual 

physical analysis model of the system has to be built and connected to the top layer model. 

Every component itself has a link to the respective specific physical model, necessary to simulate its 

outcome. As an example, the heating element, according to its design, e.g. as a flow heater or as a 

boiling tank, has a specific heating and flow curve as its outcome. This curve is, later on, necessary to 

top layer model component model

component-specific 

physical model

physical overall 

model

discrete-event 

model

<< forward information>>

11..*
1..*

1

1 1..*

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 1411 

simulate the overall physical behavior of the system. According to the currently selected configuration 

in the top layer model, the necessary information is loaded into the physical overall model (Figure 5). 

Here, every component-specific physical model is combined and embedded in the system simulation. 

As in this case, the goal is to perform a functional analysis and, later on, an optimization of the system, 

the analysis model is a time-dependent discrete-event model. Discrete-event models as presented by 

Zeigler (2000) provide a common basis for system models which are described at an abstraction level 

where the time base is continuous, but during a bounded time-span only a finite number of relevant 

events occur. These events can cause the state of the system to change. In between events, the state of 

the system does not change. 

An example of the implementation of this discrete-event model is shown in Figure 6 realized as a 

Stateflow model in the software Matlab/Simulink. This example shows the states, represented by the 

rounded blocks, the transitions, represented by the arrows and the transition conditions, represented by 

the parenthesized parameters and their distinct values. In this actual example, the transition between 

the states of the filling level of the buffer tank is modeled. 

 
Figure 6. Stateflow example 

The filling level can separated be in four different states: empty (𝑝𝑓𝑡 < 0.01); filled (0.01 < 𝑝𝑓𝑡 <

0.5); overfilled (𝑝𝑓𝑡 > 0.5); old (0.01 < 𝑝𝑓𝑡 < 1 && 𝑡𝑖𝑚𝑒 ≥ 900). The parameter 𝑝𝑓𝑡 represents the 

normalized filling level from zero to one. Every time-step of the execution the transition conditions 

are checked and when fulfilled a transition is triggered. The model allows the system to be in only one 

state at each time-step. Furthermore, the connection order of the states allows a transition only from a 

connected state to another, allowing for a comprehensive constraint problem to be modeled 

graphically. The actual state of the system in this particular Stateflow model can be transferred to the 

overlying system, consisting of several more Stateflow models, triggering new events. Therefore, a 

complex system of conditions is constructible. 

Implementing several instances for every discrete-event necessary for the system simulation into the 

physical simulation model yields the possibility of a holistic time and state-dependent system simulation. 

4. Use case study 

Using the previously described optimization process as well as the modeling techniques, an actual 

optimization of the described product of a coffee machine in a PSS is performed. Figure 7 depicts the 

activities throughout the usage of the coffee machine, leading to the disposal of the coffee. The 

functional analysis model and the geometric model are build-up as described in the previous section. The 

main changed parameters are in regard to the brewing chamber and the buffer tank, as they pose 

parameters with a high sensivity. Discretely changed parameters are the heating elements and the pumps. 

While the functional analysis model performs the analysis as shown in Figure 7, the geometric model 

is adjusted and checks for a solvable constraint problem and a feasible geometric solution. 

Buffer_filled

state_full = 1;

Buffer_empty

state_full = 0;

Buffer_overfilled

state_full = 2;

Buffer_old

state_full = 3;

[p_zwsp>0.01]

[p_zwsp<=0.01]

[p_zwsp<0.5]

[p_zwsp>=0.5]

[time >= 900 && p_zwsp<=0.01]

[p_zwsp<=0.01]

[time >= 900]

3

2

1

1

2

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

1412   DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 

 
Figure 7. Activity diagram of the coffee machine usage 

Two different scenarios are used for the optimization, as shown in Figure 8 (a), with the first one 

representing a hotel in the period of three hours during breakfast and the second one representing an 

office during the same three hours in the morning, when most employees are coming in to work. The 

restriction to three hours of a full day is explained by using representative times of the day with the 

highest utilization of the machine and therefore regarding the worst case for the design. The diagram 

of usage shows the number of cups being ordered at several time peaks of these three hours. 

 
Figure 8. Scenarios; (a) Utilization (b) Process of serving 

The functional analysis model stores every new cup order and calculates the actual number of cups 

being in waiting for the disposal. Thereby, the overall waiting time is calculated and acts as the 

objective function for the effectiveness of the service product. Comparing those two scenarios, a 

difference is noticeable not only in the peak times but also in the actual amount of cups ordered. 

Therefore, an influence due to the necessary overall capacity, as well as the timing of the brewing and 

disposal cycles is expected. Due to the higher number of cups ordered in the hotel scenario, the main 

focus lays on a low machine operating time and therefore a low waiting time for the customer. This is 

investigated in a single objective optimization. 

Although, the office scenario also requires a low operating time, the number of ordered cups, as well 

as the waiting time in between, is significantly lower (Figure 8 (b)). A single objective optimization 

for the lowest waiting time would lead to an oversized machine. Therefore, in the office scenario a 

multiobjective optimization is used, taking the contrary objective of water consumption of the 

machine into account, leading to a balance between the serving time and the tank sizes. 

Figure 9 (a) shows the objective function space as scanned by the optimization algorithm for the hotel 

scenario. The number of evaluations is restricted to 300, resulting in an optimization time of 5 hours. 

Throughout the several compared optimization algorithms the Genetic Algorithm showed the best 

performance in this case. Already with this rather small number of evaluations the shape of the objective 

function space shows a definite trend, resulting in a minimum (circled data point), though no guarantee 

of a global optimum is given. For a better visualization, the three dimensional objective function space is 

shown with the buffer tank volume on the x-axis the brewing chamber volume on the y-axis and the 

overall operating time on the z-axis. These volume parameters are calculated retrospectively from the 

(BC full?)Pump water in 

brewing 

chamber (BC)
(yes)

(no)

Brew coffe
(yes)

Pump coffee in 

buffer tank (yes)

Switch off buffer 

tank pump

Start disposing 

coffee

(coffee disposal done?)

(yes)

(no)

(coffee old?)

(Buffer tank empty?)

Flush buffer 

tank

(buffer tank 

empty?)

(no)

(yes)

(no)

(no)

Start cleaning 

cycle (yes)

(yes)

(brewing time over?)

(no) (no) (no)

(cleaning cycle done?)

(BC empty?)

(yes)

(yes)

0

5

10

15

20

25

30

35

40

6:00 6:30 7:00 7:30 8:00 8:30 9:00

C
u
p

s 
se

rv
ed

Time (h)

Process of Serving

Hotel Office

0

5

10

15

20

25

30

35

40

6:00 6:30 7:00 7:30 8:00 8:30 9:00

C
u
p

s 
o

rd
er

ed

Time (h)

Scenarios

Hotel Office

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 1413 

variety of the geometric parameters. The optimum was found with a brewing chamber volume of 1.58 l 

and a buffer tank volume of 4.25 l, resulting in an operating time of 2.33 hours to serve all customers. 

The multiobjective optimization of the office scenario leads to the diagram shown in Figure 9 (b) with 

several optimal solutions, resulting in a pareto-front (circled data points). The optimization algorithm 

used in this case is the Non-dominated Sorting Genetic Algorithm-II, again with a maximum number 

of 300 evaluations. It is apparent, that the pareto-front is not well developed and many evaluations are 

computed in higher objective function values. This can be explained due to the high number of varied 

parameters, leading to the conclusion that a greater number of evaluations is necessary to obtain a 

higher resolution pareto-front. Nonetheless, several optimal solutions are found, ranging from water 

consumption values of about 14 l to 12 l, while having an operating time from 0.75 hours to 1.05 

hours. These values are obtained with tank volumes ranging from 1.1 l to 1.5 l for both tanks. 

 
Figure 9. (a) single objective optimization of the scenario hotel (b) multiobjective optimization 

of the scenario office 

The main focus of this optimization in this first study lays on the rather simple example of changing 

the tank sizes, as they bear a high sensivity for the depicted objective functions. However, the discrete 

changeable components, e.g. in form of the pumps showed good results, as they were exchanged to a 

higher power class while optimally filling the available design section. 

As can be seen, this simple example of varying parameters in regard to the operating time and the 

water consumption already leads to a high difference in the parameter values and therefore in the 

overall machine design. 

5. Conclusion and outlook 

The presented research proposes an approach on the automated optimization of a product in user-

specific scenarios. Using the generative design approach in combination with a functional analysis 

model, the use case of a coffee machine is simulated, while enhancing the possibility of modeling 

all necessary dependencies robustly. Additionally, the flexibility of changing parameters for 

continuously changeable components is given, as well as exchanging entire discretely changeable 

components inside specified design sections. The presented use case of the coffee machine shows 

promising results for the dimensioning and the exchange of certain components. The number of 

design parameters has a high influence on the necessary number of evaluations, as depicted in the 

multiobjective optimization of the office scenario. Here, the conclusion can be drawn that a higher 

number of iterations, and therefore higher amount of time, is necessary for the optimization cycle. 

Still, the described separation of domain and process knowledge, as well as the separation of 

geometrical and functional models, shows a highly flexible and robust overall model. Future work 

lays in the investigation of optimization hyperparameters for a more effective optimization, as well 

as the implementation of further objective functions like the cost. In addition, verification work 

beyond the example of the coffee machine has to be concluded. 

Single Objective Optimization Scenario Hotel Multiobjective Optimization Scenario Office

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.323


 

1414   DESIGN INNOVATION, INFORMATION AND KNOWLEDGE 

Acknowledgment 

This research was conducted in the scope of the research project SmartHybrid – Product Engineering (ID: 

85003608) which is partly funded by the European Regional Development Fund (ERDF) and the State of Lower 

Saxony (Investitions- und Förderbank Niedersachsen NBank). We also like to thank the Institute of Structural 

Analysis from the Leibniz University Hannover for the provision of the optimization framework. 

References 

Bryant Arnold, C.R., Stone, R.B. and McAdams, D.A. (2008), “Memic: An interactive morphological matrix 

tool for automated concept generation”, IIE Annual Conference and Expo, pp. 1196-1201. 

Copeland, J. (2000), “The turing test”, Minds and Machines, Vol. 10 No. 4, pp. 519-539. https://doi.org/10.1023/ 

A:1011285919106 

Du, K.-L. and Swamy, M.N.S. (2019), Neural networks and statistical learning, Second edition, Springer, 

London, United Kingdom. https://doi.org/10.1007/978-1-4471-7452-3 

Gembarski, P.C., Bibani, M. and Lachmayer, R. (2016), “Design catalogues: Knowledge repositories for 

knowledge-based-engineering applications”, Proceedings of International Design Conference, DESIGN, 

Vol. DS 84, pp. 2007-2016. 

Hubka, V. (1976), Theorie der Konstruktionsprozesse, Springer Berlin Heidelberg, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-642-81035-0 

Hvam, L., Mortensen, N.H. and Riis, J. (2008), Product customization, Springer, Berlin, London. 

Koller, R. (1994), Konstruktionslehre für den Maschinenbau, Springer Berlin Heidelberg, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-662-08165-5 

La Rocca, G. and van Tooren, M.J.L. (2010), “Knowledge-based engineering to support aircraft multidisciplinary 

design and optimization”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of 

Aerospace Engineering, Vol. 224 No. 9, pp. 1041-1055. https://doi.org/10.1243/09544100JAERO592 

Li, H. and Lachmayer, R. (2018), “Generative Design Approach for Modeling Creative Designs”, IOP 

Conference Series: Materials Science and Engineering, Vol. 408, pp. 12035. https://doi.org/10.1088/1757-

899X/408/1/012035 

Meier, H., Roy, R. and Seliger, G. (2010), “Industrial Product-Service systems-IPS2”, CIRP Annals - 

Manufacturing Technology, Vol. 59  No. 2, pp. 607-627. https://doi.org/10.1016/j.cirp.2010.05.004 

Mescheder, B. and Sallach, C. (2012), Wettbewerbsvorteile durch Wissen: Knowledge Management, CRM und 

Change Management verbinden, Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27896-9 

Milton, N.R. (2007), Knowledge acquisition in practice, Decision engineering, Springer, London. 

Pahl, G. et al. (2007), Engineering design: A systematic approach, 3. ed, Springer, London. https://doi.org/ 

10.1007/978-1-84628-319-2 

Sabin, D. and Weigel, R. (1998), “Product configuration frameworks-a survey”, IEEE Intelligent Systems, Vol. 

13 No. 4, pp. 42-49. https://doi.org/10.1109/5254.708432 

Sauthoff, B., Gembarski, P.C. and Lachmayer, R. (2016), “Maturity-model-based design of structural 

components”, Proceedings of International Design Conference, DESIGN, Vol. DS 84, pp. 503-512. 

Schreiber, D., Gembarski, P.C. and Lachmayer, R. (Eds.) (2018), Developing a Constraint-Based Solution Space 

for Product Service Systems. 

Schreiber, G., Wielinga, B. and Breuker, J. (1993), KADS: A principled approach to knowledge-based system 

development / edited by Guus Schreiber, Bob Wielinga, Joost Breuker, Academic, London. 

Thomas, O., Walter, P. and Loos, P. (2008), “Product-Service Systems: Konstruktion und Anwendung einer 

Entwicklungsmethodik”, Wirtschaftsinformatik, Vol. 50 No. 3, pp. 208-219. https://doi.org/10.1365/s11576-

008-0048-7 

Tukker, A. (2004), “Eight types of product-service system: Eight ways to sustainability? Experiences from suspronet”, 

Business Strategy and the Environment, Vol. 13 No. 4, pp. 246-260. https://doi.org/10.1002/bse.414 

Wolniak, P., Sauthoff, B. and Lachmayer, R. (2018), “Scaling of Structural Components by Knowledge-Based-

Engineering Methods”, The Design Society, Glasgow, UK, May 21-24, 2018, pp. 1757-1768. 

https://doi.org/10.21278/idc.2018.0234 

Wolniak, P. et al. (2019), “Scaling of Technical Systems Using an Object-Based Modelling Approach”, 

Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 

1603-1612. https://doi.org/10.1017/dsi.2019.166 

Zeigler, B.P., Praehofer, H. and Kim, T.G. (2000), Theory of modeling and simulation: Integrating discrete 

event and continuous complex dynamic systems, 2nd ed, Academic, San Diego, Calif., London. 

https://doi.org/10.1017/dsd.2020.323 Published online by Cambridge University Press

https://doi.org/10.1023/A:1011285919106
https://doi.org/10.1023/A:1011285919106
https://doi.org/10.1007/978-1-4471-7452-3
https://doi.org/10.1007/978-3-642-81035-0
https://doi.org/10.1007/978-3-662-08165-5
https://doi.org/10.1243/09544100JAERO592
https://doi.org/10.1088/1757-899X/408/1/012035
https://doi.org/10.1088/1757-899X/408/1/012035
https://doi.org/10.1016/j.cirp.2010.05.004
https://doi.org/10.1007/978-3-642-27896-9
https://doi.org/10.1007/978-1-84628-319-2
https://doi.org/10.1007/978-1-84628-319-2
https://doi.org/10.1109/5254.708432
https://doi.org/10.1365/s11576-008-0048-7
https://doi.org/10.1365/s11576-008-0048-7
https://doi.org/10.1002/bse.414
https://doi.org/10.21278/idc.2018.0234
https://doi.org/10.1017/dsi.2019.166
https://doi.org/10.1017/dsd.2020.323

