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Abstract

As an attempt to understand linear isometries between C*-algebras without the surjectivity assumption,
we study linear isometries between matrix algebras. Denote by Mm the algebra o f m x r a complex
matrices. If k > n and <p : Mn -> Mk has the form X n- U[X © / (X)] V or X i-» U[X'®f(X)]V for
some unitary U, V e Mk and contractive linear map/ : Mn -> Mk, then ||</>(X)|| = ||X|| for all X € Mn.
We prove that the converse is true if k < In — 1, and the converse may fail if k > 2n. Related results and
questions involving positive linear maps and the numerical range are discussed.

2000 Mathematics subject classification: primary 15A04, 15A60.
Keywords and phrases: isometry, matrices, linear maps.

1. Introduction

In [6], Kadison characterized surjective linear isometries on C*-algebras. The problem
without surjectivity seems very difficult even in the finite dimensional case. In this
paper, we study linear isometries from Mn to Mk, that is, linear maps 0 : Mn —*• Mk

such that ||0(A)|| = ||A|| for all A e Mn, where Mm is the algebra of m x m complex
matrices and || • || is the spectral norm. Clearly, if such a linear isometry <p exists,
then k > n. If k = n, it follows from the result of Kadison [6] that 0 has the form
X h » UX V or X h-> UX' V, for some unitary U, V e Mn. One can modify the
above maps to norm preserving linear maps 0 : Mn ->• Mk with k > n, namely,
if U, V e Mk are unitary and / : Mn -> A/t_n is a contractive linear map, then
0 : Mn -> Mk defined by

X M> U[X ®f(X)]V or X (-+ U[X'®f(X)]V
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is a linear isometry. It is natural to ask whether the converse of this statement holds.
We have the following result.

THEOREM 1.1. Suppose k < 2n — 1, and <\> : Mn -> Mk is linear such that
\\4>(X)\\ = 11X11 for all X 6 Mn. Then k > n, and there exist U, V e Mk and a
contractive linear map f : Mn —> Mk_n such that </> has the form

(1.1) X h+ U[X@f{X)]V or X \-+ U[X'®f(X)]V.

Moreover, ifk > 2n > 4, then there exists a norm preserving linear map \[r : Mn —*• Mk

that is not of the form (1.1).

Recall that B e M,, is essentially Hermitian if B = aA + bl for some Hermitian
A and a, b e C, equivalently, S is normal and its eigenvalues lie on a straight line. It
turns out that Theorem 1.1 can be deduced from the following result concerning unital
linear maps <p : Mn —*• Mk that preserve the norm of essentially Hermitian matrices.

THEOREM 1.2. Suppose k < 2n — 2, and <f> : Mn —> Mk is a linear map. Then
<f> satisfies <p(ln) = fk and \\<p(X)\\ = ||X|| for all essentially Hermitian matrices
X e Mn if and only ifk>n, and there exist a unitary U e Mk and a unital positive
linear map f : Mn -> Mk-n such that 0 has the form

(1.2) X M.. U[X ®f(X)]U* or X M> U[X' ®f(X)]U*.

Moreover, ifk > 2n — 1 > 3, then there exists a linear map iff : Mn - • Mk which is
not of the form (1.2) but satisfies ir{ln) = h and \\if(X)\\ = \\X\\ for all essentially
Hermitian matrices X e Mn.

We prove some auxiliary results in the next section, and give the proofs of Theo-
rems 1.1 and 1.2 in Section 3. Some related results and questions are discussed in the
last section.

In our discussion, we let {e\, ..., en\ be the standard basis for O , and £y = e,e'
be the standard matrix unit. Denote by 3^fn the real linear space of n x n Hermitian
matrices, and A.|(A) > • • • > Xn(A) the eigenvalues of A e Jf?n; we write A > 0 if
Xn(A) > OandA >0ifA«(A) > 0.

2. Auxiliary results

THEOREM 2.1. Suppose <f> : Mn -*• Mk satisfies \\<p(A)\\ < ||A \\ for all essentially
Hermitian A e Mn and U*<p(/,,)V = Ip © D, where U, V € Mk are unitary and
D e Mk_p is a diagonal matrix with diagonal entries in the interval [0, 1). Use the
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first p columns of U (respectively V) to form the matrix U\ (respectively V\). Then
the mapping f : Mn ->• Mp defined by ir(X) = U*(j)(X)V\ satisfies the following
conditions:

(1) P

(2) || f (A) || < || A || for all essentially Hermitian A e Mn.
(3) f(A) > 0 for all A > 0.
(4) f(A*) = f (A)* for all A e Mn.

If in addition, U(A)\\ = \\A\\forallA e Jfn, then

(5) || f (B) || = || B || for all essentially Hermitian B e Mn.
(6) f(A)>0 if and only if A > 0.
(7) For every A e Jfn, A., (A) = A,(i/f(A)) and Xn(A) = k

PROOF. Conditions (1) and (2) follow from the definition.
For (3), suppose A > 0 and f(A) = B + iC, B, C e / f . For any unit vector

x € C , let b = x*Bx and c = x*Cx. We are going to prove that c = 0. It
will then follow that C = 0. To prove our claim, for each positive integer m, let
Am = A - bln + i(mcln). Then

||A - bln\\
2 + m2c2 >\\(A- bln)

2 + m2c2In\\ = \\AmA*J = \\Am\\2

= \x*(B - bln + i(mcln + C))x\2

= \x*Bx -b + i(mc + x*Cx)\2 = \(m

Hence, c = 0 as asserted. So, ^(A) = B. If 5 > 0 is small, then

\\Ip-sB\\ = \\f(In-sA)\\ <\\In~sA\\ < 1.

Therefore, B > 0.
Condition (4) follows readily from (3).
Now, suppose that ||0(A)|| = ||A|| for all A e Jfn. Let B e Mn be essentially

Hermitian, that is, B = aA + bl for some A e J4?n and a, b e C. We are going to
show that ||y<-(fl)ll = ||B||. The claim clearly holds if a = 0. So, without loss of
generality, we assume that a = 1.

First, consider the case when b = 0. Hence, B = A e Jt?n. We may further assume
that ||A|| = A,(A); otherwise, replace A by —A. Then

1 + X,(A) = ||/„ + A|| = ||0(/fl + A)|| = || ( />( /„ + A) V||

- | | ( / p © D ) + U*<t>(A)V\\.
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So there exist unit vectors x and y in C* such that

I + kt(A) = y*[(Ip ® D) + U*<t>{A)V]x

< \y*(Ip ® D)x\ + \y*U*4>(A)Vx\ < 1+A.,(A).

Therefore, y = x = (Ip ® D)x and U*<p(A) Vx = A.,(A)jt. Hence, x = [*„' ], where
*, e C ' a n d ^ ( A ) j c , = Xl(A)xl. As a result, || ^04)11 = ||A||.

For the general case, suppose B = A + (a + ib)ln, where A e Jfn and a, b e 1.
Then

| |^(B) | | 2 = ||Vr(A + a/ , ) + iblpf = \W(A + aln)\\
2 + \b\2

= \\A + alj2 + \b\2 = \\(A+ aln) + ibln\\
2 = \\B\\2.

This proves (5).
For (6), let A e Mn such that V(A) > 0. Let A = B + iC where B, C e J(fn.

Then by (4), we have \f/(B - iC) = f{A*) = f{A)* = f(A). Hence, \j/(C) = 0
implies C = 0, that is, A e 3>fn. For every t > 11^(^)11, we have t > \\tIp-f(A)\\ =
\\tln -A\\. Therefore, A > 0.

For (7), let A e Jfn and / € K. By (6), we have

t > A.,(A) ^=> r/n - A > 0 <=> //p - xlf(A) > 0 <^=> t > A,(^(A)).

Therefore, A.,(A) = A.,(^(A)). Similarly, A,n(A) = Xp(f (A)). D

REMARK 2.2. Note that one cannot weaken the hypothesis in Theorem 2.1 to
11004)11 < 11̂  || for all Hermitian A e Mn. For example, suppose <f> : M2 ->• M3 is
given by

if A = , . . .
, c a I

Then^(/ 2 ) = /3 and | |^(A)|| = | |A||forallA e J 2 . However, if A =
then 4>(A) = A 0 [(1 + 0 /2] £ ^ 3 and

\\4>(2A + 2i72)|| = ||(2A + 2i72) ® [1 + 3i]|| = TTo > v ^ = ||2A + 2i72||.

In fact, none of the conditions (2)-(7) holds.
Note also that the only place where we use the condition ||0(A)|| < ||A|| for

all essentially Hermitian A e Mn is in showing that i/(A) € Jf^ for all A € Jf?n.
Hence, the proof of Theorem 2.1 also gives the equivalence of (a)-(c) in the following
theorem.
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THEOREM 2.3. Suppose k < In — 2, and </> : 34?n —> ^ is a linear map satisfying
<p{In) = lk. The following conditions are equivalent.

(a) \\<P(X)\\ = \\X\\forallX ejfn.
(b) A e Jf?n is positive semidefinite if and only if<p{A) is positive semidefinite.
(c) For every A e Jfn, A.,(A) = ki((p(A)) and Xn(A) = Xk(<j>(A)).
(d) We have k > n, and there exist a unitary U € Mk and a unital positive linear

map f : Ji?n -> J^-n such that (p has the form

X \-> U[X ®f(X)]U* or X i-> U[X'®f(X)]U*.

PROOF. By the discussion before the theorem, we see that (a), (b), (c) are equivalent.
It is clear that (d) implies all the conditions (a)-(c). In the following, we assume that
one, and hence all, of the conditions (a)-(c) holds, and prove condition (d) by induction
on n > 2. By (a), we have k > n.

Suppose n = k. If X\ e 3^n is a rank one orthogonal projection, then there exist
rank one orthogonal projections X2, • • •, Xn such that Ylj=\ %t = h- By condition (c),
4>{Xj) is positive semi-definite with largest eigenvalue equal to one fory = 1 , . . . , w.
Moreover,

£ (f^ ) = tr/n = n.

Thus, <p(Xj) has eigenvalues 1, 0, . . . , 0, that is, <p(Xj) is a rank one orthogonal
projection, fory = 1, . . . , n. Hence, (p maps rank one orthogonal projections to rank
one orthogonal projections. By [3, Theorem 3], we conclude that there exists a unitary
S 6 Mn such that 0 has the form

(2.1) X i-> 5X5* or X H* 5X'5*.

Thus, condition (d) holds if n = it. Note that if n — 2, then n < k < 2n — 2 implies
that n = k = 2. So, condition (d) holds. Now, suppose n > 3 and n < k < 2n — 2,
and the result is true for linear maps from J^r to Jf?s for any r < n and s < 2r — 2.
We shall establish the following.

CLAIM. There exist unitary matrices V e Mn and U e Mk such that the mapping

(2.2) A H> U<p(VAV*)U*

has the form

(2.3) X h /

where f : J4?n -> Jfk-n is a unital positive linear map, and g : Jf?n -> 3^n is unital,
linear, and maps rank one orthogonal projections to rank one orthogonal projections.
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Once the claim is proved, we can apply [3, Theorem 3] to g and conclude that g
has the form (2.1) for some unitary S e Mn. Consequently, the original map 0 will
satisfy condition (d). •

Note that we only need to show that there exist unitary matrices U and V such that
the mapping in (2.2) is a direct sum of two linear maps in the form (2.3). It will then
follow (say, from (b)) that / is a unital positive linear map as asserted.

We establish several assertions to prove our claim.

ASSERTION 1. For each j 6 { 1 , . . . , n], <p(Ejj) has largest and smallest eigenval-

ues equal to 1 and 0, respectively. Moreover, if v & <Ck is a unit vector such that

v*<p(Ejj)v = 1, then v*<p(X)v = 0for any X e Jf?n with (j ,j) entry equal to 0.

PROOF. The first statement follows from (c). To prove the second statement, we
may assume that 7 = 1. Suppose v e C is a unit vector such that v*<p(Eu)v = 1. If
Y = [0] ® y, with K, e J^n_x, then for any t e [ - 1 , 1],

v*[<j>(Eu) + t<P(Y)]v < \\EU + tY\\ = 1.

Thus, v*(j){Y)v = 0. If Z = e\z* + ze\ for some unit vector z € span{e2, • • •, en),
then there exists a unitary matrix U = [1] © U\ with U\ e Mk_i such that UZU* =
En + E2\. Therefore, for every t e [—1, 1],

+ t4>(Z)]v < | |E,, + tZ\\ = || U(EU + tZ)U*\\

Again, we have v*<f)(Z)v = 0. Consequently, if X is any (real) linear combination of
two matrices Y and Z of the above form, we have v*<p(X)v = 0. •

ASSERTION 2. There exists a rank one orthogonal projection X such that <p(X) is
unitarily similar to [1] © Oq © Dx, where q + 1 < k and D\ is a diagonal matrix with
diagonal entries in the interval (0, 1).

PROOF. By Assertion 1, each (p{Ejj) has largest and smallest eigenvalues equal
to 1 and 0, respectively. Since n < k < 2n — 2 and

(2.4) k = \xlk

7 = 1

we see that there exist at least two matrices 4>(Ejj) with exactly one eigenvalue equal
to 1. If one of these matrices, say, <p(Ejj), is not an orthogonal projection in J ^ , then
Ejj is a desired matrix X.
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Suppose each matrix </>(£/,) with one eigenvalue equal to 1 is an orthogonal
projection, and <p(Eu) is one of them. Since n < k, by (2.4) again there exists <p(Epp)
with at least two eigenvalues equal to 1. Without loss of generality, we may assume
that p ~ 2. By Assertion 1, there exists a unitary U G Mk such that

4>(En) = f/(£n © Ok.n) U* and <p(E22) = U([0] © lr © C2) U*

so that r > 1 and || C2|| < 1. For simplicity, assume that U = Ik; otherwise, replace
<t> by the mapping X h+ U*4>(X) U. So,

(2.5) 0 ( £ n ) = En © Ok_n and ^(£22) = [0] © Ir © C2.

Let y, = 0 ( E n + E22), Y2 = <p(En + £21), and

Y = (K, + y2)/2 = </)(£„ + E22 + En + £2I)/2.

Since | |0(Z)|| = ||Z||, we have 1 = | | r | | = ||K,|| = ||r2||. Applying Assertion 1 to
the matrices <p(Eu) and y2, and also to <p(E22) and y2, we see that

(2.6)

for some «i e C and u2 e C*"'"r. If v e Ck is a unit vector so that u* yw = 1, then

2 = 2v*Yv = v*YiV + v*Y2v < \\Yi\\ + \\Y2\\ = 2 ,

and hence v*Y\V = 1 = u*y2u. Since y, = / I + r © C2 with \\(C2) < 1 by (2.5), we
see that v G spanfe!, . . . , e\+r] c C*. Thus, if P is obtained from Ik by taking its first
1 + r columns, then 1 = || y2|| = v* Y2v < || P* y2P|| < || K2||. It follows that

0 u*

Ml Or

thus, M) is a unit vector. Since y2 in the form (2.6) has norm 1, we see that u2 = 0 and
there exists a unitary matrix W = [1] © Wx © h-\-r such that WY2W* — (^ 0 ) © Z2.
Hence, W( Yx + Y2) W* — ([ J) © Zo, and Zo is nonzero positive semidefinite such
that

-Oil i :
0 1
1 1

©Z o = ||0(£22 + £12 + £2i)ll = II £22 + £12 + £2. II < 2.

Thus, Y is unitarily similar to the direct sum of a rank one orthogonal projection and
a non-trivial D with 0 < A.,(D) < 1. So, X = (£ , , + £22 + £12 + £2i)/2 is a desired
rank one orthogonal projection. •
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ASSERTION 3. There exist unitary U e M* and V e Mn such that the mapping 0
defined by

(2.7) X H> U<p(VXV*)U*

satisfies

(2.8) 4>(Y)=Y®f(Y) for all Y=[a]®Yu or

(2.9) 4>( Y) = Y' © / ( Y ) for all Y=[a]®Yu

where f : Ji?n —>• ^ _ , , is a unital positive linear map satisfying 0 < | ] / (£n) | | < 1.

PROOF. By Assertion 2, we may replace <p by a mapping of the form (2.7) and
assume that <p(Eu) = [1] © Oq ® D\, where q + 1 < k and Dj is a diagonal
matrix with diagonal entries in the interval (0, 1). Let Y = [0] © K, e J ^ , where
y, 6 c ^ - i , || Kill = 1. By Assertion 1, the (1, 1) entry of <p(Y) is 0. Since
| | 0 (£ n + y)I) = | |£,, + K|| = 1, the first row and column of </>(K) are all zero.
Therefore,

0 \
* with f(Y1)eJd'q.

Since 1 = ||^(>0ll. there exists a unit vector v such that 1 = \v*(j)(Y)v\ = \\4>(Y)\\.

Clearly, the first entry of v must be zero. Suppose v = \ >•< \ with vx e C and

v2 € C*"'-". Since 0 ( £ n ) = [1] © O, © D, and

J 2 ± v*<j>{Y)v\ = \v*4>(Eu ± Y)v\ < \\EU ± Y\\ = 1,

we see that v2 = 0 and |u*i//-(Ki)ui| = 1 = || Kill. Hence, the mapping from Mn_i to

Af, denned by K, h^ ^ ( K , ) is unital and satisfies ||^(K,)II = II fill for all Yx e / , . , .

Since <y < /: — 2 < 2n — 4, we can apply induction assumption to \js and conclude

that \j/ on ^ _ i has the standard form:

fi ^ £T[fi ®/ ( f i ) ] ( / or K, H^ W[Y[®f{Y,)]U

for some unitary U e Mq. Now, the mapping 0 defined by

X ^ ([1] © U © /t_,_,)^(X)([l] © IT © /*_,_,)

satisfies (2.8) or (2.9). •
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[9] Isometries between matrix algebras 9

PROOF OF THE CLAIM. By Assertion 3, we can modify 4> to <p that satisfies (2.8)
or (2.9), where/ is a unital linear map satisfying 0 < | | / ( £ n ) | | < 1. We may further
assume that <j> satisfies (2.8); otherwise, replace </> by the mapping A i-> 4>{A'). For
simplicity, we assume that <j> = 4>.

To prove the claim, we note that every matrix in Jff, is a linear combination of rank
one orthogonal projections. Therefore, we only need to show that if X e Jfn is a rank
one orthogonal projection, then

(2.10) 4>(X) = g(X)®f(X),

where g(X) is a rank one n x n orthogonal projection.
If X = Eu or X has the form [0] © Xi, then we are done because <p = <t>

satisfies (2.8). Now, suppose X is not of these forms. Then X = uu*, where
u = ae\ + bv e C" is a unit vector such that v € e\ and a, b are nonzero complex
numbers satisfying \a\2 + \b\2 = 1. Replacing K by £tu for a suitable complex unit
£i, we may assume that a > 0; then replacing v by %2v for a suitable complex unit £2>
we may assume that b > 0 as well. So, (a, b) = (cos 0, sin 9) for some 9 e (0, n/2).
Suppose V 6 Mn is a unitary matrix with e\ and v as the first two columns. Then V
has the form [1] © Vj and satisfies

V*XV -cos29En + c o s 0 s i n 0 ( £ 1 2 + £2i) + sin26»£22-

Consider the mapping <pv defined by A H> (V* © h-n)<P(VA V*)(V © /*_„). Note
that the mapping <pv inherits all the properties we have established in Assertions 1-3,
(2.8) for 4>. Moreover, if we can show that <pv sends the matrix

cos20£n + cos 9 sin 9(El2 + £2i) + sin2#£2 2

to a matrix of the form Zx © Z2 so that Z\ e Mn is a rank one orthogonal projection,
then 4>(X) = (V® Ik_n)<j>v(V*XV)(V* © /*_„) = VZ, V* © Z2, where VZ, V* is
a rank one orthogonal projection as desired. So, we focus on <pv. For simplicity, we
write <pv as <j> in the rest of our proof. For^ e { 1 , . . . , n), let (p(Ejj) = ESj © Cj.
Then C, = / ( £ , , ) satisfies 0 < ||Ci|| < 1 and

(2.11) C + --- + C = /*_„.

We consider two cases.
Case 1. Suppose X\(C\ + C2) < 1, that is, 0 ( £ n + £22) only has two eigenvalues
equal to 1. If v e C* satisfies v*(<p(Eu + £22))i> = 1, then only the first two entries
of v can be nonzero. Now,

2 = || (e, + e2){ex + ej)*|| = ||0((e, + e2){ex + e2Y)

e2e*)\\ = 2.
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So, there is a unit vector v e C such that

[10]

e2e*2))v = 1 = v* e2e\))v.

Thus, the leading 2 x 2 principal submatrix of <p(e\e2 + e2e\) has norm one. By

Assertion 1, the (1 , 1) and (2, 2) entries of <$>{e\e2 + e2e\) are zero. Hence, there is a

complex unit fj, such that <l>(e\e*2 + e2e*) = (iie\e\ + jie2e*) ® D. Therefore,

Since

= 1,

we see that D has the form On_2© D. Hence, <p((cos fle, +sin 0e2)(cos 9ex +sin ^e2)*)
has the desired form (2.10).
Case 2. Suppose k\(C\ + C2) = 1. We shall prove that there exists a sequence of unit
vectors {vr} in the linear span of {e2, ..., en) c C such that iv -> e2, and for each r,
</>(£ii + vrv*r) has only two eigenvalues equal to 1. By the result in Case 1,

has the desired form (2.10). By continuity, we see that

-f

has the desired form (2.10) as well.
To construct our sequence {vr}, note that by (2.11) and the fact that 0 < || C\ \\ < 1,

we have

(/*_„ - C,)-I /2(C2 + • • • + CX/*-,, - C,)"1/2 = lk_n.

Since k — n < n — 2, comparing traces, we see that there exists j > 3 such that

(/*_„-c,rI / 2c7-(/ t_B-c1)-I / 2

is a strict contraction, equivalently, X\(C\ + C,) < 1. Without loss of generality, we
may assume that; = 3. Let <j>(E23 + £32) = (E23 + El2) ® C23. For t € [0,7r/2], let

Then

F(t) = v(t)v(t)* with u(/) = cos?e2 + sinre3 € C .

4- F(t)) - [£,i + F(t)]@[Q + cos2 rC2 +s in 2 fC3 +cos r sin rC23].
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If <p(Eu + F(t)) has more than two eigenvalues equal 1, then

(2.12) 0 = det(/t_n - (C, + cos2 tC2 + sin2 tC3 + cos t sin rC23))

= det(cos21[{\ + tan2 ?)(/*_„ - d ) - C2 - tan2 rC3 - tan tC23\)

= cos2(k-n) t det((/t_n - C, - C2) - tan rC23 + tan2 r(/ t_B - C, - C3)).

Since 0 ( £ n + £33) has only two eigenvalues equal to 1, det(/t_n — C\ — C3) ^ 0. It
follows that (2.12) only has finitely many roots in the interval [0, n/2\. Thus, we can
find a sequence {tr} —> 0 such that {vr} = {v(tr)} —> e2, and for each r, E\\ + vrv*
has only two eigenvalues equal to 1 as desired. •

3. Proof of the main theorems

PROOF OF THEOREM 1.2. The ' i f part of the theorem is clear. Suppose k <2n — 2,
4>Un) = / t and | |0(X) | | = || X || for all essentially Hermitian X. By Theorem 2.1,0(X)
is Hermitian whenever X is Hermitian. Now, the result follows from Theorem 2.3.

For the last statement, suppose n > 2 and k > 2n — 1. Let

0

Define 0 : Mn -> M^ by

for any

'An An , with A22 6 Mn_i.
n-22j

Since WW* = l2n-\, by the interlacing inequalities for eigenvalues of Hermitian
matrices [4, Theorem 4.3.6], if A e Jfn and B = W[A @A']W*, then A.,(B) = X, (A)
andA2n_!(5) = kn(A). Consequently, | |0(X)|| = ||X|| for all essentially Hermitian
X eMn.

If 0 has the standard form (1.2), then there exist a contractive linear m a p / : M,, ->
M*_n and a unitary matrix U e Mk such that U<t>(A) = (At © / (A)) £/, where Af = A
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or A'. Partition {/into U = (Uy)lJ=l, where U2i e M*_i, then we have

[12]

( Uu U]2\

•J2\ U22J

( Au

A21/V2
A\2/y/2

\ 0

A12/V2

A 22

0
0

A2 1/V2
0

A22

0 (tr

0
0
0

Alri)

(A' 0 \ / ! / „ {/12\

vo /wj^i tv*
Let A = E\\ and consider the first row on both sides. We have ({/n 0) = [U\\ Ui2).
Hence, U\\ = e'$ for some real number 6 and Ui2, U2i are both zero. Consider the
first row on both sides in the general case, we have

e'e(Au A12/V2 A2I/V2 0) = (A\2 0)U22,

for all A e Mn, which is impossible. Hence, <p is not of the standard form (1.2). El

PROOF OF THEOREM 1.1. Suppose & < 2n — 1, and ||0(X)|| = ||X||forallX e Mn.
Clearly, we have k > n. If k = n then (1.1) follows from Kadison's result [6]. So
we may assume that n < k < 2n — 1. By the result in [1], it is impossible that <j>(U)
is unitary for every unitary U € Mn. Thus, there exists a unitary X e Mn such that
<p(X) is not unitary. By replacing <p with the map A i-> <j>{XA), if necessary, we
may assume that X — I. Therefore, 0 satisfies all conditions in Theorem 2.1 with
1 < p < 2« — 2. Let U, V e Mk, and ^ be as given by Theorem 2.1. Then \jr satisfies
the conditions for Theorem 1.2 (with 0, k replaced by \[r, p). So, there exists a unitary
W\ e Mp and a unital positive linear m a p / : Mn —> Mp_n such that \js has the form

where Af = A or A'. Let W = Wt © /*_,,. Then the mapping 4>0 : Mn -> Mk defined
by A i-+ Vf* [/*</>(A) V* W has the form

If A € Mn is unitary, then ||0O(A)|| = ||A|| implies that

(3-D 0o(A) = A t © f / ( A ) * V
V * g(A)J

Since this is true for n2 linearly independent unitary matrices A, it follows that (3.1)
holds for any A € Mn. Consequently, the original map 0 has the form (1.1) as asserted.
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For the last statement, suppose n > 2 and k >2n. Let

13

w =

o 1/V2 0
0 /„_, 0 0
0 0 0 /„_,

0 -1/V2 0

and P =

Define 0 : Mn -» Mk by

<P(A) = P(W® Ik-2.)[A © A' © Ok.2n](W © /*_,„)*

An
A2i/V2
A'n/V2

0
0

A12/V2
A22

0
0
0

A21/V2
0

A22

0
0

0
A21/V2

-A\2/y/2

0
0

0
0
0
0
0

for any

= (AU A1 2\
V A 2 . A 2 2 ;

with A22 6 Mn_i.

Note that <£(A)0(A)* = S © Ot_2n+), where B e J^n-i is a leading principal
submatrix of W(AA* © (AA*)')W*. By the interlacing inequalities for eigenvalues
of Hermitian matrices [4, Theorem 4.3.6], we have ||0(A)|| = ||A||. By an argument
similar to the one in the proof of Theorem 1.2, we can show that <p is not of the
form (1.1). •

4. Related results and questions

Motivated by Theorem 1.1 and the example constructed in its proof, we have the
following.

PROPOSITION 4.1. Suppose P and Q are n(p + q) x m matrices such that

I - PP* >0, / - QQ* >0,

and rank(/ - P P*) + rank(7 - Q Q*) < p + q. Let WuWze Mk be unitary, and let
f : Mn -> Mk-m be a contractive linear map. If<p : Mn -» Mk is defined by

<P(X) = W,{P*[(X <g>

then \\4>(X)\\ = \\X\\ for all X € Mn.

(X' <g> Iq)]Q © / (X)}
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PROOF. It is clear that ||</>(X)|| < \\X\\. To prove the reverse inequality, suppose P
has singular value decomposition UD V, where U 6 Mn(J,+q) and V e Mm are unitary,
and the singular values of P lie in the (1, 1), (2, 2 ) , . . . positions of D in descending
order. Let D be obtained from D by setting all the entries in (0, 1) to 0, and let
P = UD V. Apply a similar construction to Q to get Q. Then

(4.1) rank(/ - PP*) + rank(/ - QQ*)

= rank(7 - PP*) + rank(7 - QQ*) < p + q.

If the largest singular value of X is sx = ||X ||, then î is a singular value of (X <g>/p)ffi
(X' <8> / , ) with multiplicity at least p + q. By (4.1) and a result of Thompson [7], the
matrix P*[(X ® Ip) © (X' <g> / ,)] Q has largest singular value equal to s^ also. Thus,
wehave| |X| | = j , = \\P*[(X <g> /„) © (X1 (g) lq)]Q\\ < \\<p(X)\\. D

Using a similar argument as in the proof of Proposition 4.1 and the interlacing
inequalities on Hermitian matrices (see [4, Theorem 4.3.6]), we have the following.

PROPOSITION 4.2. Suppose P is an n(p + q) x m matrix such that P* P = lm,
where 0 < n(p + q) — m < p + q. Let U € Mk be unitary, andf : Mn —»• Mk_m be
a unital positive linear map. If(f> : Mn —>• M* is defined by

<P(X) = U*{P*[(X <8> / , ) © {X1 ® Iq)]P ®f(X)}U,

then \\<p(X)\\ = \\X\\ for all essentially Hermitian X e Mn.

Recall that the numerical range of a matrix A e Mn is the set

W(A) = {x*Ax :x<=Cn, x*x = 1},

which is a useful concept in matrix and operator theory, and has been studied exten-
sively; see [5, Chapter 1]. We have the following proposition.

PROPOSITION 4.3. Let Vm = Mm or Jfm. Suppose 4> : Vn -> Vk is linear. If<p has
the form given in Proposition 4.2, then

(4.2) W((p(X)) = W(X) for all X e Vn.

When k < In - 2, (4.2) holds if and only if<t> has the form (1.2) in Theorem 1.2.

PROOF. Suppose <j> has the form in Proposition 4.2. If X e 3tfn, then X and 4>{X)
have the same largest and smallest eigenvalues; since W(X) is the convex hull of the
largest and smallest eigenvalues of X, it follows that W(<p(X)) = W(X).
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Suppose Vn = Mn and X e Mn is not Hermitian. Then X = H + iG for some
Hermitian H and G. Now, </>(cos r// + sin tG) and cos tH + sin f G have the same
largest and smallest eigenvalues for all t e [0, 2n), we see that the two convex sets
W(X) and W(<p(X)) have the same support lines; see [5, Theorem 1.5.11]. Thus, the
two sets are equal.

Suppose k < In - 2. If Vn = ^ , the result follows readily from Theorem 2.3.
If Vn = Mn, one can use the fact that W(X) c R if and only if X is Hermitian to
conclude that 4>{Jfn) c ^ . Then the result follows from the Hermitian case. •

There are several related problems that deserve further investigation.

(1) If cp '• Mn -> Mk has the form in Proposition 4.1, then ||0(A)|| = ||A|| for all
A e Mn. \t would be nice to know whether the converse is true.
(2) If <p : Mn -+ Mk has the form in Proposition 4.2, then \\4>{A)\\ = \\A\\ for

all essentially Hermitian A e Mn. It would be nice to know whether the converse
is true. Note that by Theorem 2.1 and Theorem 2.3 (b), the problem is equivalent
to studying positive linear maps <f> such that A is positive definite whenever <j){A) is
positive definite.
(3) One can ask whether the converse of the first statement in Proposition 4.3 is true.
(4) One can study the above problems under the additional assumption that 4> is a

decomposable or completely positive linear map.
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