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Neonatal sepsis is an important cause of morbidity and mortality as a result of multiple organ
system failure, particularly in neonates requiring total parenteral nutrition. Suitable therapies and
support are needed both to prevent sepsis and to prevent multiple organ failure. After bacterial
infection, pro-inflammatory cytokines trigger the antimicrobial activity of macrophages and
neutrophils, resulting in production of reactive species such as H,O,, NO, superoxide and
peroxynitrite. However, excess production can lead to host tissue damage. Incubation of either
hepatocytes or heart mitochondria from neonatal rats with these reactive species, or with
cytokines, leads to impairment of mitochondrial oxidative function, and in an animal model of
neonatal sepsis similar results to the in vitro findings have been demonstrated. Recent in vivo
studies, using indirect calorimetry of suckling rat pups, show that during endotoxaemia there is a
profound hypometabolism, associated with hypothermia. Having determined that cellular
oxidative function may be impaired during sepsis, it is of great importance to try to identify
therapeutic measures. Much interest has been shown in glutamine, which may become essential
during sepsis. It has been shown that hepatic glutamine is rapidly depleted during endotoxaemia.
When hepatocytes from endotoxaemic rats were incubated with glutamine, there was a restoration
of mitochondrial structure and metabolism. In vivo, intraperitoneal injection of glutamine into
endotoxic suckling rats partially reversed hypometabolism, markedly reduced the incidence of
hypothermia and improved clinical status. These results suggest that glutamine has a beneficial
effect during sepsis in neonates.
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Sepsis remains a major cause of morbidity and mortality
in adults (Friedman et al. 1998), children (Anderson
& Blumer, 1997) and neonates (Ford & Rowe, 1998).
Increased risk factors for sepsis in the neonatal period
include prematurity (Stoll et al. 1998), low birth weight
(Fanaroff et al. 1998), surgery (Ford & Rowe, 1998),
requirement for mechanical ventilation (Mehr ef al. 2002),
the use of parenteral nutrition (Okada et al. 2000) and the
presence of abnormal gastrointestinal flora (Pierro et al.
1996, 1998). Much of the mortality associated with neonatal
sepsis is a result of multiple organ system failure (hepatic—
renal—cardiac—pulmonary—microvascular; Smith ef al. 1991;

Morecroft et al. 1994; Avanoglu et al. 1997), as it is in
adults (Deitch, 1992). Suitable therapies and support for
these patients are needed both to prevent sepsis and to
prevent multiple organ failure where sepsis does occur.

Whole-body metabolism in sepsis

There are many metabolic and pathophysiological altera-
tions associated with sepsis (Vlessis et al. 1995); however,
the existing knowledge on the metabolic response to sepsis
in infants is limited. Adults respond to sepsis, surgery and
trauma with a hypometabolic ‘ebb’ phase followed by a
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prolonged hypermetabolic response (Cuthbertson, 1945;
Monk et al. 1996; Plank ef al. 1998). Although infants
undergoing surgery have an increased energy expenditure,
which is associated with increased heart rate and respi-
ratory rate, this increase is short lived and energy
expenditure returns to pre-operative levels after 12-24h
(Jones et al. 1993, 1994, 1995). Whether critically-ill
infants and children are hypermetabolic is less certain.
Children with head trauma have been shown to be hyper-
metabolic, with energy expenditure higher than predicted
(Phillips et al. 1987; Tilden et al. 1989), but other workers
have shown that energy expenditure of critically-ill infants
and children may be close to, or even lower than, the
predicted BMR (Chwals ef al. 1988; Briassoulis et al.
2000; White et al. 2000), or similar to a control group
(Jaksic et al. 2001). However, another recent study has
suggested that >50 % of critically-ill children are hyper-
metabolic (Coss-Bu et al. 2001). Most of these studies
were conducted in heterogenous patient groups, so the aim
was to establish whether patients with systemic inflam-
matory response syndrome, sepsis or septic shock had any
alteration in energy expenditure compared with weight-
matched controls (Turi et al. 2001). As shown in Fig. 1,
there was no significant alteration in energy expenditure in
these patient groups, nor was there any significant day-to-
day variation in energy expenditure, any difference in RQ
or any correlation between paediatric risk of mortality
score and energy expenditure. In a neonatal animal model
of sepsis, however, it was shown that hypometabolism does
occur soon after sepsis (Garrett-Cox et al. 2003; Fig. 2).
Hence, it is possible that there is hypometabolism early in
human neonatal sepsis, which had consequently not been
observed in the clinical studies mentioned earlier.

In adults fat becomes a preferred fuel for oxidation (Samra
et al. 1996) that together with increased gluconeogenesis
(Wolfe, 1997) can contribute to the hyperglycaemia observed
in sepsis (Mizock, 2001). However, fat mobilisation greatly
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Fig. 1. Resting energy expenditure in critically-ill infants and con-
trols. Indirect calorimetry was performed on infants and children with
systemic inflammatory response syndrome (SIRS; n 8), sepsis (n 10),
septic shock (n 5) and controls (n 23). Results are expressed as me-
dian, range (represented by vertical bars) and interquartile range (O).
There were no significant differences between the groups. (See Turi
et al. 2001.)
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exceeds utilisation under these conditions, resulting in
considerable cycling (Nordenstrom et al. 1983; Wolfe &
Martini, 2000). This outcome could be a result of inhibition
of lipoprotein lipase (Robin ez al. 1981; Lanza-Jacoby ef al.
1997; Picard et al. 2001), an increase in VLDL production
(Wolfe et al. 1985), decreased LDL clearance (Liao et al.
1996) or decreased oxidation of non-esterified fatty acids
(Memon et al. 1998). Very little information is available on
the ability of infants and children to oxidise fat during sepsis
or critical illness, although some authors have suggested that
hypermetabolic critically-ill infants preferentially oxidise fat
(Coss-Bu et al. 2001). Recently, an investigation of whether
infants and children with sepsis are able to oxidise exogenous
fat, using an Intralipid® (Fresenius Kabi Ltd, Runcorn,
Cheshire, UK) utilisation test, was conducted (Pierro et al.
1989). It was found that most infants and children with sepsis
were able to oxidise exogenous fat efficiently, but a few
subjects did not appear able to oxidise exogenous Intralipid®
(E Caresta, A Pierro, A Petros, M Peters and S Eaton, unpub-
lished results). Further work is necessary to define substrate
utilisation more closely in sepsis in the paediatric population.

Free radical production during parenteral nutrition and
sepsis

An increased production of free radicals is thought to occur
during parenteral nutrition of infants, specifically linked to
the infused lipids (Wispe ef al. 1985; Pitkanen et al. 1991;
Andersson et al. 1992; Pitkanen, 1992) and it has been
shown that this effect is exacerbated during critical illness
(Basu et al. 1999b). Infused lipids are composed of a high
proportion of polyunsaturated fatty acids, which renders
them particularly susceptible to peroxidation and free radical
production. It has been hypothesised that, although lipid
peroxidation can occur before infusion, much of the peroxi-
dation occurs in the circulation and that it would be
decreased if the lipid was efficiently oxidised. It has been
shown in infants on parenteral nutrition that at the same rates
of lipid infusion free radical production could be decreased
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Fig. 2. Hypometabolism in endotoxic neonatal rats. Oxygen

consumption (Vo,) of rat pups injected with saline (9g NaCl/l; O) or
saline plus endotoxin (M). Values are means with their standard errors
represented by vertical bars. (Data from Garrett-Cox et al. 2003.)
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by decreasing the amount of carbohydrate given, thereby
promoting fat oxidation and preventing peroxidation (Basu
et al. 1999a). It has also been hypothesised that infusion of a
mixture of medium- and long-chain triacylglycerols, which
as they contain fewer polyunsaturated acyl groups are less
susceptible to peroxidation, would decrease lipid peroxi-
dation in vivo. However, the opposite was found to be true;
i.e. although the medium- and long-chain triacylglycerol
mixture was efficiently oxidised (Donnell et al. 2002), free
radical production was greater with the medium- and long-
chain triacylglycerol mix than with long-chain triacyl-
glycerols alone (Basu et al. 2000). Whether this difference is
the result of rapid oxidation of medium-chain triacyl-
glycerols leading to long-chain triacylglycerols remaining in
the circulation for longer (and thus being more available for
peroxidation), or other specific effects, warrants further
investigation.

The early events that follow the host response to bacterial
infection are represented by production of a cascade of pro-
inflammatory cytokines such as interleukins 1 and 6 and
tumour necrosis factor o. These cytokines trigger the anti-
microbial activity of macrophages and neutrophils, resulting
in production of considerable quantities of a battery of
cytotoxic reactive oxygen and nitrogen species such as
H,0,, NO, superoxide and peroxynitrite (Vlessis et al.
1995). The main function of these compounds is, of course,
killing bacteria. However, where there is considerable local
infiltration and activation of macrophages and neutrophils,
excess production of these highly-reactive compounds can
lead to host tissue damage.

These reactive oxygen and nitrogen species are known to
inhibit mitochondrial function and/or cause mitochondrial
damage in adult liver (Karbowski et al. 1997; Riobo et al.
2001), kidney (Davis et al. 2001) and heart (Borutaite &
Brown, 1996; Janero & Hreniuk, 1996; Nulton-Persson &
Szweda, 2001). It has been shown that incubation of either
hepatocytes or heart mitochondria from neonatal rats with
these reactive species, or with cytokines, leads to impairment
of mitochondrial oxidative function (Romeo et al. 1999,
2000; Fukumoto et al. 2002a, 2003a; New et al. 2001).
Similarly, mitochondrial dysfunction resulting from endo-
toxaemia and/or sepsis has been implicated in the
pathogenesis of organ failure in the liver (Kantrow et al.
1997), heart (Gellerich ef al. 1999; Trumbeckaite et al. 2001)
and kidney (Kang et al. 1995; Messner et al. 1999). In a
recent study it was shown that the extent of mitochondrial
impairment was correlated with outcome in human septic
shock (Brealey et al. 2002). However, it is not known
whether this mitochondrial dysfunction occurs in neonatal
sepsis, as mitochondrial metabolism alters greatly during the
transition from newborn to adult (Valcarce et al. 1988;
Girard et al. 1992; Lionetti et al. 1998). In an animal model
of neonatal sepsis results consistent with the in vitro findings
have been demonstrated, i.e. endotoxaemia caused inhibition
of the oxidative function of hepatocytes and cardiac mito-
chondria, although kidney mitochondria appeared to be more
resistant (Fukumoto et al. 2002a, 2003b; Markley et al.
2002). These results are in keeping with the finding of whole-
body hypometabolism in endotoxic rat pups (Garrett-Cox
et al. 2003). Impairment of cardiac carnitine palmitoyl
transferase [ (a rate-controlling enzyme of fatty acid
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oxidation; Eaton et al. 2001; Eaton, 2002) activity was para-
lleled by nitration of tyrosine residues (Fukumoto et al.
2002b), characteristic of protein damage by peroxynitrite
(Beckman & Koppenol, 1996). Tyrosine nitration of other
enzymes has been demonstrated during sepsis (Kooy et al.
1997; Marcondes et al. 2001; Barreiro et al. 2002). The anti-
oxidant glutathione is thought to be particularly important in
the protection of mitochondrial respiratory chain complexes
(Clementi et al. 1998; Bolanos et al. 1996), and recently
it was shown that in adult patients with sepsis complex
I activity is positively correlated with mitochondrial
glutathione content and is lower in non-survivors than
survivors (Brealey et al. 2002).

Possible therapies for mitochondrial damage in neonatal
sepsis

Having determined that cellular oxidative function may be
impaired during sepsis, it is of great importance to try to
identify therapeutic measures. As the inflammatory response
itself serves a function in protection against infection,
therapeutic measures directed against pro-inflammatory
cytokines, such as anti-tumour necrosis factor antibodies, do
not appear to be effective (Arndt & Abraham, 2001),
although more sophisticated approaches to modulation of the
inflammatory—intravascular coagulation—endothelium axis
appear promising in severe sepsis (Bernard et al. 2001;
Grinnell & Joyce, 2001). Similarly, although high doses of
antioxidants may prevent secondary organ damage by free
radicals, they could also diminish the killing of bacteria by
free radical-dependent mechanisms. Hence, strategies aiding
immune function and aiding the body’s own antioxidant
defences whilst preserving the balance between pro- and anti-
inflammatory cytokines may be beneficial. This approach is
the basis of immunonutrition, which includes n-3 poly-
unsaturated fatty acids, glutamine, arginine, S-amino acids
and nucleotides (Beale ef al. 1999; Grimble, 2001; Heyland
et al. 2001).

The non-essential amino acid glutamine is the most
abundant amino acid in plasma, having several important
physiological roles (Haussinger, 1998). During sepsis endog-
enous glutamine stores are mobilized, gut glutamine uptake
is diminished and the liver and immune system become its
major consumers such that net glutamine utilization exceeds
production and glutamine becomes ‘conditionally essential’
(Lacey & Wilmore, 1990; Souba & Austgen, 2001). The
enhanced hepatic glutamine extraction in sepsis has been
attributed to increased hepatic gluconeogenesis, ureagenesis,
glutathione production and synthetic and proliferative activ-
ities (Ardawi, 1992; Ewart et al. 1995). The provision
of exogenous glutamine improves N balance, attenuates
skeletal muscle proteolysis (Hammarqvist et al. 1989; Stehle
et al. 1989), reduces bacterial translocation from the gut
(Souba et al. 1990; McAndrew et al. 1999) and is essential
for the immune system to mount an adequate immune
response (Ardawi & Newsholme, 1990). Glutamine is not
routinely included in paediatric parenteral nutrition but has
been shown to have beneficial effects in premature neonates
(Lacey et al. 1996). It has been shown that hepatic and plasma
glutamine are rapidly depleted during neonatal endotoxaemia
(Vejchapipat et al. 2002; RG Garrett-Cox, A Pierro and
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S Eaton, unpublished results). Addition of 10 mM-glutamine
to hepatocytes isolated from endotoxic neonatal rats in vitro
restored mitochondrial oxidative metabolism and the drastic
ultrastructural changes to mitochondria were completely
reversed (Markley et al. 2002). In further experiments it was
shown that glutamine acts by providing a substrate for
glutathione synthesis (Babu et a/. 2001) and that the addition
of glutamine enhanced fatty acid oxidation in both control
and endotoxaemic hepatocytes (Kim et al. 2002). However,
these experiments were all undertaken with isolated hepato-
cytes incubated with exogenous glutamine. It is important
to determine whether glutamine has any beneficial effects
in vivo. In recent experiments using indirect calorimetry of
suckling rats it was shown that intraperitoneal injection of
either glutamine or leucine into control animals caused an
increase in resting energy expenditure (nutrient-induced
thermogenesis; Garrett-Cox et al. 2003). Injection of
glutamine or leucine into endotoxaemic animals partially
reversed the hypometabolism induced by endotoxin (Fig. 3),
but only glutamine reduced the incidence of hypothermia and
improved the clinical status of these animals (Garrett-Cox
et al. 2003). These results suggest that glutamine has a
beneficial effect on endotoxaemia that may be related to
thermoregulation rather than thermogenesis and the metab-
olism of glutamine per se. Further work is necessary in this
area to clarify the mechanism of this novel action of
glutamine. In addition, the relationship between glutamine
and glutathione metabolism during neonatal sepsis requires
further investigation, as the supply of cysteine, rather than the
glutamate moiety that can be provided by glutamine, is
thought to be rate limiting for glutathione synthesis under
most conditions (Sen, 1997). Other compounds that ensure
adequate glutathione status, such as N-acetyl-cysteine, L-2-
oxothiazolidine-1-carboxylate and glutathione esters are also
of potential clinical interest (Anderson ef al. 1985; Moberly
et al. 1998; Poon et al. 1998; Grattagliano ef al. 1999).
Although generalised antioxidant therapies during sepsis
are unlikely to be clinically effective, because of the
involvement of free-radical mechanisms in the process of
killing bacteria and the many physiological functions of free
radicals, therapeutic measures directed against peroxynitrite
may find useful application as, unlike NO and other reactive
oxygen and nitrogen species, peroxynitrite does not have
a well-defined physiological role (Beckman & Koppenol,
1996). Recently, a series of porphyrin compounds that
scavenge superoxide and/or peroxynitrite have been synthe-
sised and shown to be effective in relevant animal models
(Salvemini et al. 1998, 1999; Cuzzocrea et al. 2000, 2001).
However, whether these compounds have utility clinically
is as yet unknown. A summary of potential nutritional
approaches to therapy for sepsis is shown in Fig. 4.

Conclusions

New possible therapeutic strategies to prevent multiple
organ failure during sepsis, involving both pharmaceuticals
and ‘nutraceuticals’, appear promising. However, as there
appear to be marked differences in the metabolic response of
neonates to infection, these new approaches require careful
evaluation in the paediatric population.
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Fig. 3. Effects of endotoxin, glutamine (glu) and leucine (leu) on
oxygen consumption (Vo,) of neonatal rats.Rats were injected with
saline (control) and endotoxin, glu or leu as indicated. Values are
means with their standard errors represented by vertical bars. (Data
from Garrett-Cox et al. 2003.)
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Fig. 4. Potential nutrient therapies for neonatal sepsis.
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