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ON ORBITS OF ALGEBRAIC GROUPS
AND LIE GROUPS

R.W. RICHARDSON

In this paper we will be concerned with orbits of a closed

subgroup Z of an algebraic group (respectively Lie group) G

on a homogeneous space X for G . More precisely, let D be a

closed subgroup of G and let X denote the coset space G/D .

Let S be a subgroup of G and let Z denote \y) > the

identity component of u , the centralizer of S in G . We

consider the orbits of Z on A , the set of fixed points of S

on X . We- also treat the more general situation in which S is

an algebraic group (respectively Lie group) which acts on G by

automorphisms and acts on X compatibly with the action of G ;

again we consider the orbits of (u J on A .

Our main results are the following theorems:

THEOREM A. Let G be a closed normal connected subgroup of the

affine algebraic group H . Let E act morphically on an algebraic

variety X and assume that the induced action of G on X is transitive.

Let S be a closed subgroup of H and let Z = [cr] . Assume that the

following two conditions are satisfied:

(i) the adjoint representation of S on j; 3 the Lie algebra

of G j is semisimple; and
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2 R.W. R i c h a r d s o n

c
(ii) the Lie algebra of Z is g_ .

Then Z acts transitively on each connected component of A . In

particular, Z has only a finite number of orb-its on T and each such

Z-orbit is closed.

THEOREM B. Let G be a closed connected normal subgroup of the Lie

group H . Let H act differentidbly on a differentiable manifold X

such that the induced action of G on X is transitive. Let S be a

subgroup of H such that the adjoint representation of S on £ is

semisimple. Then A is a closed differentiable submanifold of X and

Z = [y) acts transitively on each connected component of A .

THEOREM C. Let G be a closed connected normal subgroup of the

affine algebraic group H and assume that G is reductive. Let S be a

linearly reductive, closed subgroup of H and let Z = [Gf ) . Let H

act morphically on the affine algebraic variety X and let x € x . Let

C denote the unique closed G-orbit in the closure of the orbit G'X .

Then there exists a (multiplicative) one-parameter subgroup A of Z such

that lim X(t)mx exists and is a point of C . In particular, Gmx is
t-K)

closed if and only if Zmx is closed.

The formulation and proof of Theorem A were worked out in several

conversations with V. Kac and this theorem should be regarded as joint

work. The proof uses an idea from [13]. This theorem seems to be quite

useful in a number of rather technical problems involving orbits of

algebraic groups. We remark that conditions (i) and (ii) of Theorem A hold

whenever 5 is a linearly reductive group (see Section k). In Theorem A

the Z-orbits on x do not necessarily all have the same dimension, so

that the geometric picture is more complicated than it might appear at

first glance.

Theorem B is a Lie group version of Theorem A. The idea of the proof

is the same, although the technical details are a bit more complicated.

The proof of Theorem C depends on a strengthened form, due to Kempf

[g], of the Hilbert-Mumford Theorem. If the base field is of
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characteristic zero, then Theorem C follows from a result of Luna [9], so

that Theorem C is new only for the case of prime characteristic.

Several applications of our theorems to involutions of algebraic

groups are given in Section 9- These results will be used in an essential

way in a forthcoming paper by the author on involutions of reductive

algebraic groups. A few other applications are discussed in Section 10.

1. Preliminaries

Our basic reference for algebraic groups is the book by Borel [I]. In

general, we will follow the notation and terminology therein. All

algebraic groups and algebraic varieties are taken over an algebraically

closed field k . We will usually denote the Lie algebra of an algebraic

group (respectively Lie group) G, H, K , and so on, by the corresponding

lower case letter with a double underline g, h_, k̂  , and so on. All

algebraic groups considered will be affine algebraic groups.

Let G be a group and let X be a G-set. If g € G and x € X ,

then g-x denotes the image of x under the action of g , G'x denotes

the G-orbit of x and G denotes the isotropy subgroup of G at x .

If 5 is a subset of G , we write X for the set of fixed points of S

on X : X = {x € X \ g'X = x for every g € S} . For s € G , we write

o {s}
A instead of X . W e frequently consider G as a G-set, where G

acts by inner automorphisms. Thus if S is a subset of G , CT denotes

the centralizer of S in G . If L is a subset of G and g € G , we

often write ^L for gLg~ .

If the algebraic group G acts morphically on the algebraic variety

X , we say that X is a G-variety. If the algebraic group S acts

morphically on the algebraic group G and if, for every s € S , the

morphism x •—»• s-x is an automorphism of G , then we say that G is an

S-group. Let G be an algebraic group, let X be a G-variety, let

a € X and let C denote the orbit G'a . For x € C , let ;p : G -»• C

denote the orbit map: ip (g) = g'X . We say that G acts separably on the

orbit C if (p is a separable morphism; if <p is separable, then cp
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is separable for every x £ C .

2. Actions of semi-direct products

In this paper we consider the action of a closed subgroup Z of an

algebraic group (respectively Lie group) G on a coset space G/D = X .

However, we can extend the scope of our results by considering an algebraic

group (respectively Lie group) H which contains G as a closed normal

subgroup and is such that the action of G on X extends to an action of

H . This is essentially equivalent to considering the action of a semi-

direct product G K S on X , where G is an S-group. In this section,

we discuss several elementary constructions involving actions of semi-

direct products which will be used in the sequel. We confine our

discussion to algebraic groups. However, all of our constructions carry

over to the case of Lie groups with no essential changes.

Let S and G be algebraic groups and let G be an S-group. We

denote by G ix S the semi-direct product of G and S ; the underlying

algebraic variety of G tx S is G x S and multiplication is defined by

[g1, Sj) [g2, sg) = (^1(s1'g2), s^g) . We consider G and 5 as closed

subgroups of G tx S in the obvious way. Assume that G and S act

morphically on an algebraic variety X . We say that the actions of G

and 5 on X are compatible if

(2.1) s-(g-x) = (s-g)^(s'x) for s € 5 , g € G and x € X .

Let G and 5 act compatibly on X . We define a morphism

n : (ff ix S) x X •* X

ty n((#, s), x) = g'(s'x) . Set n((g, s), x) = (g, s)'X . Then an easy

computation using (2.1) shows that

Hence r\ defines a morphic action of G ix S on X . This is the unique

action of G ix S on X which extends the actions of G and S .

Conversely, the restrictions to G and 5 of an action of G tx S on X

are compatible.

Now let G be an 5-group and let D be an S-stable closed subgroup

of G . If s € S and g € G , we set S'(gD) = (s-g)D ; equivalently
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S'(gD) is the s-image of the left coset gD under the action of S on

G . Clearly this defines an action of S on (the set) G/D . A standard

argument using the properties of quotient morphisms (see [7, pp. 172-186])

shows that the map

5 x {G/D) + G/D , (s, gD) >-+ S'(gD) ,

is a morphism of algebraic varieties. Hence we have defined a morphic

action of S on G/D . We let G act on G/D by left translations. One

checks immediately that the actions of G and S on G/D are compatible

and hence determine a morphic action of the semi-direct product G ix S on

G/D .

REMARK. One needs to be a bit careful in the above construction. Let

5 be a closed subgroup of G and let S act on G by inner auto-

morphisms. This defines an S-group structure on G . Let D be a closed

subgroup of G normalized by S . Then the action of S on G/D by left

translations is not the same as the above defined action of S on G/D

unless 5 is contained in D .

3. Proof of Theorem A

We will use the following lemma, which is an abstraction of a method

used in [73] (see also [7£, p. U69]):

LEMMA 3.1. Let the algebraic group G act morphically on the

algebraic variety X . Let Z be a closed connected subgroup of G and

let Y be a closed Z-stable sub-variety of X . Assume that, for every

y i Y , T (G-y) n T' (Y) c [dip )e(z) , where <p : G •+ G'y is the orbit

map. Then, for every y € Y , (G'y) n Y is a finite union of Z-orbits

and Z acts transitively on each irreducible component of {G'y) n Y .

Moreover, for y € Y , Z acts separably on the orbit Z'y .

Proof. Let y € Y and let C be an irreducible component of

(G'y) n Y which contains y . Clearly Z'y is contained in C . We have

Ty(C) c Ty(G-y) n Ty(Y) c faj^z) c Ty(Z-y) c Ty(C)

and hence T(C) = T (Z'y) . Since Z'y is a smooth variety, it follows

that
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dim C 5 dim T (C) = dim T (Z'y) = dim Z'y .

Consequently Z'y is an open neighbourhood of y in C . It follows

immediately that Z acts transitively on C . It is also clear that Z

acts separably on the orbit Z'y .

Proof of Theorem A. Let the notation be as in the statement of

Theorem A. First we consider the case in which G acts separably on the

orbit X . Let Y = AT . Since Z centralizes S , Y is Z-stable.

Let y € Y and let D = G . Then the orbit map <p : G •* G*z/ = X

induces a G-isomorphism of the coset space G/D onto X . Let 41 denote

the differential 0*J>) e : £ "*• 2" U ) . Then ij> is surjective. Since

5 c H S acts on the tangent space T (X) . If s € 5 and g d G ,

then

'PytsS's' ) = (s^s~ )*y = s-{g-y) = s->p (g) .

Hence <p is an 5-morphism. It follows easily that 4* : g "*" ^ (X) is an

S-module homomorphism (here S acts on j; u-ia the adjoint representation).

Consequently ^ = kernelCi^) is an S-submodule of g . Since £ is a

semisimple 5-module, there exists an S-submodule q of j; such that

s s s
g = A © Q. • We clearly have i = £ = A © jl • Hence we see that <P

determines an 5-module isomorphism of j. onto 27y(^)
 an(i that

<l>Cz) = *(gS) = T (X)S . Clearly * U ) c T (Z'y) . But since * = Xs , we

have r (Y) c 2" U ) S . Thus we have 21 (G»z/) n T (Y) c T (*)5 = ip(̂ ) .

y y y y y
The conclusion of Theorem A now follows from Lemma 3.1.

Now for the case where the action of G on X is not necessarily

separable. We may assume that A is non-empty. Let y € A and let

D = G . Then S normalizes D . Since S normalizes G , we may
y

consider G as an 5-group with S acting on G by conjugation. As in

Section 2, we define a morphic action of the semi-direct product G <x S = K

on G/D . Since G acts separably on G/D , it follows from the case of

Theorem A just proved (with H replaced by K ) that Z acts transitively
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o
on each i r reduc ib le component of {G/D) . The o rb i t map ip : G -*• G'y = X

iy

determines a bijective G-morphism a : G/D •*• X . Since G/D and X are

normal varieties, it follows from Zariski's Main Theorem (see [5, p. 138,

Corollary 3]) that a is a finite morphism. In particular a is a closed

map. Consequently a is a homeomorphism. We have

a[s-(gD)) = a(sg's"1£') = [sgs~l] -y = s'(g'y) = s*a(gD) .

Hence a is an S-morphism. Since Z acts transitively on each

e

irreducible component of (G/D) , we see immediately that Z acts

transitively on each irreducible component of A . This proves Theorem A.

We record for later use the following result, which was proved in the

course of the above proof.

COROLLARY 3.2. Let the notations and assumptions be as in Theorem A

and assume that G acts separably on X . Then, for y € A , Z acts

separably on the orbit Z'y .

3.3. An example. Let G = H = GL_(k) , let X denote the projective

plane Pp(fe) and let G act on X in the usual way. Let

5 = {diag(t, t, l) I t € k*} ; S is a one-dimensional algebraic torus in

G . Clearly 5 satisfies conditions (i) and (ii) of Theorem A. Now

A consists of two connected components, one a projective line and one a

point. Consequently we see that in Theorem A the irreducible components of

A do not necessarily all have the same dimension.

4. A lemma on linearly reductive groups

We recall that an affine algebraic group S is linearly reductive if

every rational representation of 5 is semisimple. In characteristic

zero, S is linearly reductive if and only if the identity component S

is a reductive algebraic group. In prime characteristic p , it has been

shown by Nagata [Jl] that S is linearly reductive if and only if 5 is

a torus and the order of S/S is relatively prime to p .

Let G, H and 5 be as in the statement of Theorem A. We wish to
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show that conditions (i) and (ii) of Theorem A hold if S is linearly

reductive. It follows immediately from the definition of linearly

reductive groups that condition (i) holds. Condition (ii) will follow from

the following lemma:

LEMMA 4.1. Let S and G be algebraia groups with S a linearly

reductive group and G an S-group. Let Z = (cr) . Then j. = js .

For the proof of Lemma U.I, we will use the following lemma.

LEMMA 4.2. Let E be a finite dimensional vector space over k and

let K be a closed subgroup of GL(i?) such that g£(E) is a semisimple

K-module. Let M be a closed subgroup of GL(S) which contains K .

Then m is the Lie algebra of M .

Proof. We will use Corollary 3.2 of Theorem A. We identify g£(ff)

with End, (E) . Now gl(E) is the centralizer of K. in Eni^(E) ; in

particular, gt(E) is an associative subalgebra of End, (£) . Moreover

GL(E)K = C is simply the intersection of GL(£) with &l(E)K , hence C

K K
is an open subset of &£{E) . Clearly £ = g£(£) is the Lie algebra of

C . We can apply Corollary 3.2 to the action of C on [GL{E)/M) . Let

IT : GL(£) -*• GL(E)/M be the canonical map and let y = ir(e) . Then

y € [GL(E)/M] and hence, by Corollary 3.2, the orbit map ip : C •*• C'y ,

<p (e) = cy , is separable. But the kernel of (dtp ):£.-• T [GL(E)/M)

y y e y
is just c_ n m = jg and the isotropy subgroup C is C n M = Az . Since

«/
K K K

<p is separable, dim M = dim m and therefore m is the Lie algebra
y ~ ~
of AT^ .

Now for the proof of Lemma U.I. We may embed the semi-direct product

G ix S = M as a closed subgroup of some GL(£) . We consider G and S

as closed subgroups of M , hence as closed subgroups of GL(i?) . Since S

is linearly reductive, g£(E) is a semisimple 5-module. By Lemma U.2,

dim AT = dim a . But it is trivial to show that M = u x a (as an

S S S
algebraic variety) and that a = g x JL (as a vector space). Since
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dim (f 5 dim g and dim 5^ < dim ̂  , we must have dim (T = dim ̂  . If

Z = [Cr)° , it follows that £ = S •

REMARK. The case of Lemma U.I in which S is a diagonalizable group

is treated in 116, p. 125, Corollary U.U.7] by a different method.

5. Proof of Theorem B

For the proof of Theorem B, we will use the following lemma:

LEMMA 5.1. Let U and V be differentiable manifolds, let n be a

positive integer, let f : U -*• V be a differentiable map, and let

n - : V •* R be differentiable maps, j = 1, ..., m . Let a € U and let
3

y = f(a) . Assume that r\ .{f{U)) = (0> for 3 = 1, ..., m . Let

M = {v € V I T\.{V) = 0 for 3 = 1, ..., m\ and let E <= T (V) denote the

intersection of the kernels of the differentials {dr\.) : T (V) -»• Rw ,
3 y y

3=1, ..., m . Assume that the differential dfa : Ta(U) •*• T {V) has

image E . Then f(U) is a neighbourhood of y in M .

Lemma 5-1 is a straightforward application of the inverse function

theorem. See [72, p. 91, Lemma 6.8] for a detailed proof in a slightly

more general setting.

Now for the proof of Theorem B. We use the notation in the statement

of the theorem. Let n = dim X and let y (. A . We wish first to show

that the orbit Z'y is an open neighbourhood of J in A . Since

y € K , S acts on TAX) • We choose a finite set {s ..., s^} of

m s .
•elements of 5 such tha t T (X) = (] T (X) d . Choose an open

y J=l y

neighbourhood E of y in X and a diffeomorphism h of E onto an

open subset of R such that h{y) = 0 . Let V be an open neighbourhood

of y in E such that 8 .'V a E for 3 = 1, ..., m . We define
3

differentiable maps n . : V •*• RU , 3 = 1, ..., m , by
JJ

r\.{x) = h(x) - h[8 .*x) . We note tha t A n V c n ' ^ O ) . We also note
0 3 3
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that the differential (̂ 1 •),, • T,.(v) ^ ^ is given by
o y y

[dr\ .) (u) = dh (v-s .%v) . Since dh is a linear isomorphism,

3 y y 3 y

s.
kernel (dri .) = T (X) " . Consequently we obtainoJy y

m
sS

n kernel (dn.L = TJX> •
J=l J y y

Let D denote the isotropy subgroup G . Then the orbit map

tp : G -*• X induces a C-diffeomorphism of G/D onto X . In particular

[da? ) : g •*• T (X) is a surjection; let ty = (dp J . The argument given
y e = y y e

in Section 3 shows that \p is an 5-module homomorphism and that

MM) = *[g5) = T (J)S • L e t U = {z £ Z \ <p (z) £ V] and let / : U •* V

denote the restriction of <p to U . The image of df is
y e

S m

ty(z) = T (X) =__ PI kernel {dr\ .) . It now follows from Lemma 5-1 that
y 'j=1 s y

f(U) is a neighbourhood of y in (1 n" (0) . Since f(U) c Z-y , we see
3

that Z'y is an open neighbourhood of y in A .

We have shown that, for every y € A , Z'y is a neighbourhood of y

in A . It follows that each Z-orbit on A is both open and closed in

A . Hence Z acts transitively on each connected component of x .

Since each Z-orbit on A is closed in A , hence closed in X , it

follows by a standard result (see [6, p. 62, 16.10.7]) that each such orbit

is a closed differentiable submanifold of X . Since each such orbit is

relatively open in A , we see that A is a closed differentiable

submanifold of X . This completes the proof of Theorem B.

REMARK. In Theorem B, one cannot necessarily conclude that Z has

only a finite number of orbits on A , that is that A has only a finite

number of connected components. However, in certain cases of Theorem B

involving real algebraic groups, one can show that A has only a finite

number of connected components. For example, let H be a (complex) affine
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algebraic group defined over R , let r\ : H -+ GL(F) be a rational

representation of H defined over R and let x be an R-rational point

of V (respectively P{V) ). Let K be a closed connected normal

subgroup of H defined over R and let G denote the identity component

of the real Lie group K{R) . Let S be a subgroup of H(R) such that

the adjoint representation of S on g is semisimple and let Z = (J .

Let X = G'X . Then X is a locally closed differentiable submanifold of

V (respectively P(V) ) and is S-stable. One can shov that A has only

a finite number of connected components and hence that Z has only a

finite number of orbits on X . The main point of the proof is that, by a

theorem of Whitney [20], if Y is a Zariski locally-closed subset of V(R)

(respectively P(v(R)) ) , then Y has only a finite number of components

(with respect to the topology on Y determined by the usual topology of

the real numbers). We omit further details.

6. Another technical result on linearly reductive groups

If the base field k is of characteristic zero, then all of the

results of this section are either well-known or follow readily from

standard results. We shall assume throughout this section that k is of

prime characteristic p . If 5 is a linearly reductive group, this will

imply that S is a torus and that \S/S | is relatively prime to p .

The purpose of this section is to prove the following proposition:

PROPOSITION 6.1. Let G be a closed connected normal subgroup of an

algebraic group H and let S be a closed subgroup of H . Assume that

G is a reductive group and that S is a linearly reductive group. Let P

be a parabolic subgroup of G which is normalized by S . Then there

exists a Levi subgroup L of P which is normalized by S .

6.2. Non-commutative cohomology of algebraic groups. The most

convenient way to prove Proposition 6.1 seems to be via the non-commutative

cohomology of algebraic groups. First we need to transpose some standard

definitions and results from Galois cohomology to this slightly different

framework. See [Z] for Galois cohomology.

Let G and M be algebraic groups and assume that M is a G-group.

A morphism of algebraic varieties a : G •* M is a one-cocycle of G with
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values in M if a(gh) = a(g) (g-a(h)) for every g, ii 6 G . Let

Z (G, M) denote the set of a l l one-cocycles of G with values in M . We

define an action of M on the set Z (G, M) as follows: if m € M and

a (. Z (G, M) , then the one-cocycle m'O. is defined by

(m*a)(^) = ma(g)(g-m)~ for g i G . Two one-cocycles a and 3 are

cohomologous i f there exists m i M such that 3 = wot . The set of

orbi ts of M on Z1(G, W) is denoted by ^{G, M) ; ff^G, M) is the

first cohomology set of G with coefficients in M . If a € Z (G, M) ,

then [a] € ^"(G, A/) denotes the orbit of a . Let 1 € ^{G, M) be the

t r i v i a l cocycle: 1(g) = e for g i G . Then H (G, M) is a pointed set

with neutral element [1] . If M is abelian, then H (G, M) is the

usual f i r s t cohomology group of the algebraic group G with coefficients

in the G-group M . In th is case, we sometimes denote [1] by 0 .

LEMMA 6.2.1 . Let F be a finite group whose order is relatively

prime to p and let V be an abelian unipotent F-group. Then

H1(F, V) = 0 .

Proof. Let a € Z1(F, V) and let r = \F\ . Let a? denote the

cocycle defined by a (/) = a(/) for every / € F . By a standard

argument (see [7 5, p. 5.01]), a is cohomologous to the trivial cocycle

1 . Thus there exists V € V such that ct(/)r = v(f'V)'1 for / € F .

Now V is a p-group and hence every element of V has a unique rth

root. Let u € V be such that u = V . Then we have

(w(/'M)~1)r = v(f'V)'1 = ct(/)r for every f € F , and hence

ct(/) = uif'u)'1 for every f € F . Thus [a] = 0 .

LEMMA 6.2.2. Let G be an algebraic group, let M be a G-group

and let N be a closed normal G-stable subgroup of M . Then there

exists an exact sequence (of pointed sets)

{^(G, N) •+ lp-(G, M) •* 1?-{G, M/N) .

LEMMA 6.2.3. Let G be an algebraic group, let M be a G-group.
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and let H be a closed normal subgroup of G . Then there exists an exact

sequence (of pointed sets)

[1] •*• ^[G/H, hP) •* Ip-(G, M) •+ Ip-{H, M) .

For the case of Galois cohomology, results similar to Lemmas 6.2.2 and

6.2.3 are proved in [2; p. 120, Proposition 1.17 and p. 123, Proposition

1.273. The proofs in our case are essentially the same and will be

omitted.

LEMMA 6.2.4. Let S be an algebraic torus and let V be an abelian

wiipotent S-group. Then ^(S, V) = 0 .

Proof. Let a € Z (5, V) . Corresponding to the one-cocycle a , we

define a "twisted" morphic action of S on (the algebraic variety) V ,

denoted by (s, v) t—»• s * v , as follows: s * v = a(s)s'V . (See [2,

p. 1153 for the general setting for this.) We note that s * V = V if and

only if Oi(s) = v{smv)~ . Thus a is cohomologous to the trivial cocycle

1 if and only if the twisted action corresponding to a has a fixed

point. Now it is a standard fact that, for any morphic action of an

algebraic torus on an affine variety, there are only a finite number of

distinct isotropy subgroups. (This is obvious for a linear action on a

vector space, and the general case can be reduced to this case.) Let

A , ..., A denote the set of distinct isotropy subgroups for the twisted

action of S on V . If some A . = S , then S has a fixed point on V
3

and hence a is sohomologous to 1 . If not, there exists a finite

subgroup F of 5 such that F is not contained in any A. . But \F\
3

is relatively prime to p and consequently, by Lemma 6.2.1,

IT(F, V) = 0 ; thus F has a fixed point on V . This gives a

contradiction and proves Lemma 6.2.1*.

LEMMA 6.2.5. Let S be a linearly reductive group and V an

abelian unipotent S-group. Then Ii{S, V) = 0 .

Proof. By Lemma 6.2.3, we have an exact sequence

°, Vs0) - Ip-(S, V) - ^ ( 5 ° , V) .
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But \S/S | is relatively prime to p and S is a torus. Hence, by

Lemma 6.2.1, ^[s/S0, Vs ) = 0 and, by Lemma 6.2.1*, H1 [S°, V) = 0 .

Consequently f^iS, V) = 0 .

LEMMA 6.2.6. Let S be a linearly reductive group and V a

vnipotent S-group. Then lP~{S, V) = [1] .

Proof. By induction on the length n of the derived series for V .

For n = 1 , the result follows from Lemma 6.2.5- Assume that the result

has been proved for the case n - 1 . By Lemma 6.2.2, we have an exact

sequence

/ ( S , [V, V]) ->• ^(S, V) •*• ^(S, V/[V, V]) .

By the inductive hypothesis, Ir(,S, [V, V]) = [1] and, by Lemma 6.2.5,

fl^S, V/[V, V]) = 0 . Thus I?~(S, V) = [1] .

6.3. We are now ready to prove Proposition 6.1. Let the notation be

as in the statement of the proposition. It has been shown by Bore I and

Tits [4] that P has a Levi subgroup and that any two Levi subgroups of P

are conjugate in P . Let L be the set of all Levi subgroups of P .

Then NV(P) acts on L by conjugation. Let V = i? (P) and let L be a
ti Xi

Levi subgroup of P . Then we claim that L = Np(L) . To prove this, it

will be sufficient- to show that V n Np(L) = {e} . Let V € V n Np(L) .

Then, for x € L , we have VxV~ x~ £ L n V = {e} . Hence V € 2,AL) .

But, if T is a maximal torus of L (hence a maximal torus of G ), it is

easy to show that Zy(T) = ie) and hence that ZAL) = {e} . Thus our

claim is proved. Since P acts transitively on L by conjugation and

Np(L) = L , it follows that V acts simply transitively on L .

Now since S normalizes P , S normalizes V and we may consider

V as an S-group, with S acting by conjugation on V . We let K

denote the semi-direct product V CK S . Now S and V act on (the set)

L by conjugation and these actions are compatible; consequently they

determine an action of K on L which extends the actions of S and V .
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Let R = {(v, s) € K \ VSL = L) ; R is the stabilizer of L for the

action of if on L . Since V acts simply transitively on L , we see

that the morphism r| : V •*• K/R defined by ri(u) = vR is a bijection. We

wish to show that n is an isomorphism of varieties. It will suffice to

show that the differential dx\ has trivial kernel. The kernel of dr\g

is x n x. . Let x € x n x. • Since a; € i , a; is a nilpotent element of

r. . Now it is known that every nilpotent element of £. is tangent to a

connected unipotent subgroup of R [3], Now i? is contained in the

connected solvable group S v. V and V is the unipotent radical of

5 ix V . Consequently every unipotent subgroup of R is contained in

V . Hence x is tangent to a connected unipotent subgroup of R n V .

But since Np(L) = L , R° n V = {e} . Therefore x = 0 and n : V •*

is an isomorphism.

Define a morphism V : S -»• V by v(s) = n~ (sR) . Thus, for s € 5 ,

v(s) is the unique element of V such that L = L . Moreover, for

s, t € S , we have

) r str sv(t)
L — L — u =

Since F acts simply transitively on i- , this gives

(6.3.1) v(st) = (s-v(t))v(s) for s, t € 5 .

Assume now that there exists £ € L which is normalized by S . We may

write L = £ for some (unique) U € K . Hence, for s € S , we obtain

vT T sT svT svs sT (s*u)v(s)r

L = L = L = L = L = 1/ ,

and consequently, since V acts simply transitively on L , we have

(6.3.2) v(s) = (e-u)"^ for s € 5 .

Conversely, if v satisfies (6.3.2), then L = L is normalized by S .

Thus we see that, in order to show that 5 normalizes a Levi subgroup

of P , it suffices to show that if V : S •* V is a morphism satisfying
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(6.3.1), then there exists v € V such that (6.3.2) is satisfied. Let

V : S -*• V satisfy (6.3.1) and let a : S •* V be defined by

a(s) = v(s)"1 . Then (6.3.1) implies that a € Z1(S, V) . By Lemma 6.2.6,

ff^S, V) = [1] . Hence there exists V € V such that a(s) = v~X(s'V)

for s € 5 . But this implies that V satisfies (6.3.2). This proves

Proposition 6.1.

7. A theorem of Ketnpf

First we need some notation. If tp : k* •*• X is a morphism of

algebraic varieties, then we say that lim <${t) is equal to x € X if
•b+0

there exists a morphism i|> : k -*• X such that ty(t) = cp(t) for t € k*

and i>(0) = x .

Let G be a (connected) reductive algebraic group, let T be a

maximal torus of G and let W = NJ,T)/T be the corresponding Weyl group.

A (multiplicative) one-parameter subgroup of G is a homomorphism

X : k* -*• G of algebraic groups. We let X*(<?) denote the set of one-

parameter subgroups of G . Since T is abelian, the set X#(T) has a

matural structure of abelian group; in fact X^{T) is a free abelian

group of rank equal to the dimension of T . The group G acts on the set

Xt(G) via inner automorphisms: if X i X^G) and g £ G , then the one-

parameter group g'X is defined by (g'X)(t) = gX{t)g~ . Similarly W

acts on X^(T) .

If X € X^G) , let P(X) = \g € G \ lim A(t)gX(t)"1 exists | . Then

*• fr*O j

P(X) is a parabolic subgroup of G [JO, p. 55]. If A € ̂ (T) and if

* = *(T, G) is the set of roots of G with respect to T , then P(X) is

the parabolic subgroup of G containing T which corresponds to the set

of roots {ex € # I <a, X> > 0} (see 119, p. 320, Proposition 3]). If

X € X^iG) and M is a closed subgroup of some algebraic group containing

G , we often write Z
MW for z

M^
mB-S^ ^) • It is well-known [4] that

Zg(X) = 2p/,»(X) and that ^p/,i(X) is a Levi subgroup of P(X)

Now let G act morphically on an affine algebraic variety X and let

x i. X . It is a consequence of the Mumford Conjecture that there is a
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unique closed orbit C in the closure of the orbit G'X (see [14, Lemma

1.1*]). It follows from (a minor extension of) the Hilbert-Mumford Theorem

(see [S, Theorem l.U]) that there exists X € XA(.G) such that lim \(t)-x

t-K)

exists and is a point of C . Let A(x) denote the set of all X € XA(G)

such that lim X(t)*x exists and is a point of C . Kempf [#] has shown

that there exists a (non-empty) "optimal" class C(x) c A(x) which has the

following properties:

(7.1). (i) If X, y € C(x) , then P(X) = P{]i) .

(ii) Let P = P(x) denote P(X) for some (and hence every)

X d C(x) . Then C(x) is a complete P-orbit in X^(P) , that is

C(x) = P«X for any X € C(x) .

(iii) If g € G , then C{g-x) = g-C{x) and hence dP(x) = P(g'x) .

In particular Gx c NQ(P) = P .

Roughly speaking, the optimal class consists of those X € A(a;) for

which X(t)-x approaches C most rapidly as t approaches 0 . The

optimal class C(x) depends on the choice of a (/-invariant, integer-

valued, positive-definite, symmetric bilinear form on X*(T) . Such a form

uniquely determines a C-invariant "norm" on X^{G) ; see [£] for

definition and details. Once such a {/-invariant form on X^(T) is

chosen, the optimal class C(x) is uniquely determined for every x € X

by the geometric data.

We wish to extend 7.1 (iii) above to a slightly more general setting.

Let E be an algebraic group and G a closed, connected, normal subgroup

of H such that G is a reductive group. Let T be a maximal torus of

G , let W = NJT)/T be the corresponding Weyl group and let

W = NH(T)/Z (T) . By the rigidity of tori, W is a finite group.

Moreover, W is canonically embedded as a normal subgroup of W . The

group H acts on X^{G) by conjugation and W acts similarly on

X^T) . We let X^(G)/H (respectively Xlt(T)/W1 ) denote the set of

orbits of H on Xt(G) (respectively of W on XA{T) ).

LEMMA 7.2. The inclusion map XA(T) •>• X^G) induces a bisection B
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of 1

Proof. Let X € X^(G) . Then image(A) is G-conjugate to a subtorus

of T . Thus there exists g € G such that g'\ € X^{T) . Hence 3 is

surjective. Now let u, V € ̂ (r) and assume that there exists h € H

such that h'\i = V . Then T and T both contain image(v) , hence T

and T are both maximal tori of 2«(v) . Therefore, there exists

g € Z^Cv) such that 9 T = T . Thus £?z € flR{T) . We let V denote the

image of gh in W . Then a-p = (gh)'\i = g'V = v . This shows that 3

is injective.

Since W is finite, we may choose a W-invariant, integer-valued,

positive definite, symmetric bilinear form on X^{T) . As in Kempf LS ],

this extends to a G-invariant norm on X^(G) . It follows trivially from

Lemma 7-2 that this norm on X^{G) is //-invariant.

Now let H act morphically on the affine variety X and let C

denote the unique closed orbit in the closure of G'x . Considering X as

a G-variety, we may define A(x) , C(x) and P(x) as above; C(x) and

P(x) are defined with respect to an ^-invariant norm on X^(G)

constructed as above.

LEMMA 7.3. Let the notation be as above. Then the optimal class

C(x) is stable under the action of the isotropy subgroup H . In

particular, H normalizes P{x) .

Proof. This follows immediately from Kempf's definition of the

optimal class C(x) and the fact that the norm on X^(G) is ff-invariant.

8. Proof of Theorem C

Let the notation be as in the statement of Theorem C. We choose an

//-invariant norm on X^G) as indicated in Section 7- Let C(x) be the

optimal class as given by Kempf's theorem and let P = P(x) be the

corresponding parabolic subgroup. Since x € A , it follows from Lemma

7.3 that C{x) is stable under the action of S and that S normalizes

P . Let A € C(x) . Then P(X) = P and L = ZJX) is a Levi subgroup of
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P . Let L denote the set of all Levi subgroups of P . We define a map

F : C(x) + L by F(y) = Zff(u) for y € C(x) .

LEMMA 8.1. F is a bisection.

Proof. If g € P and u (. C(x) , then

F(g'\i) = ZG(^-y) = ^ZG(y) =
 9F(V) .

Thus F is a P-mapping of P-sets. Now P acts transitively on C(x)

and on L and hence F is a surjection. Assume that g € P is such that

F(^'X) = F(X) . Then ^L = ^(X) = F(X) = L . But we have shown in 6.3

that Np(L) = L . Hence g € L = Zp(X) . Thus X and F(X) have the

same isotropy subgroups for the actions of P . Since F is a P-mapping

of transitive P-sets, this implies that F is a bisection.

Since S normalizes P , we see by Proposition 6.1 that there exists

a Levi subgroup L of P which is normalized by 5 . We may write

L = F(u) = ZG(\i) for some y € C(x) . Let s € 5 . Then, by Lemma 7.3,

S'\i € C(«) and we have

F(s'\i) = ZG(s-M) =
 SZG(y) =

 SLX = ̂  = ZG(y) = F(\i) .

Since F is a bijection, this implies that sm\i = y . Hence we see that

svi^s'1 = y(t) for every t € k* . Consequently y € **((Gj0) . This

gives the first conclusion of Theorem C. In particular, we see that if

G'x is not closed, then Z'x is not closed. For the converse, assume

that G'X = X is closed. Then H - GS is a homomorphic image of the

semi-direct product G ix 5 and hence is a closed subgroup of H . Since

x € A , we see that H 'X = G'X = X . It follows from Theorem A, as

applied to the action of H on X , that Z'X is closed in X . Since

X. is closed in X , we see that Z'X is closed in X . This completes

the proof of Theorem C.

9. Applications to involutions of algebraic groups

In this section, we assume that characteristic (k) ? 2 .
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In this section we will prove several results concerning orbits which

are associated to involutions of algebraic groups. There results will be

used in a forthcoming paper of the author on involutions of reductive

groups.

Let G be a connected algebraic group and let 6 be an automorphism

of G of period two. We consider two morphic actions of G on (the

algebraic variety) G :

(1) The action of G by conjugation: g'x = gxg~ for g, x € G .

Here the orbit G'x is just the conjugacy class CJx) .

(2) The "twisted" action of G on G , denoted by {g, x) ̂ —»• g * x ,

where g * x = gx&(g)~ . We denote the G-orbit of x for the twisted

action of G by G * x .

Let K = G . We note that, for k € K and x € G , we have

k-x = k * x . We let P = G * e = {gB(g)'1 \ g € G) and let

Q = {g € G | 9(#) = g~ } . Then § is a closed subvariety of G which is

stable under the twisted action of G and P is contained in Q . Also

Q is 6-stable.

We will prove the following propositions:

PROPOSITION 9.1. Let G act on Q via the twisted action. Then G

acts transitively on each connected component of Q . Hence Q is a

finite union of twisted G-orbits and each twisted G-orbit on Q is

closed in G . In particular, P is closed in G .

PROPOSITION 9.2. Let y € Q . Then £° acts transitively on each

connected component of Q n CJy) . In particular, Q n Cgiy) is a finite

union of K -orbits, each of which is closed in Q n CAy) .

PROPOSITION 9.3. Let G be reductive.

(a) The following conditions on y € P are equivalent:

(i) y is semisimple;

(ii) GAy) is closed in G ; and
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(Hi) K *y = C (y) is closed in P .

(b) The following conditions on y € P are equivalent:

(iv) y is unipotent;

(v) e belongs to the closure of Cg(j/) 1 and

(vi) e belongs to the closure of K -y .

Proof of Proposition 9.1. We define an action of G x G on (the

algebraic variety) G by [g., g^)'x = g x${g ) . Let A(G) denote the

diagonal subgroup of G x G : A(C) = {{g, g) \ g € G} . Then the A(G)-

orbit of x € G is just the twisted orbit G * x . Define an involutive

automorphism s of G x G by s [g , g-} = (<72' 9TJ • ^ ^ & denote the

two-element subgroup of Aut(G x G) consisting of the identity auto-

morphism of G x G and s . Let H denote the semi-direct product of

G x G and S . We identify G x G and S with closed subgroups of H

in the usual way. Since characteristic(fe) # 2 , S is a linearly

reductive group. Clearly [fi] = A(G) . We define an action of S on

the algebraic variety G by s'x = 6(x)~ for x € G . Then, for

91, g2, x Z G , -we have

= [g2, g-J'is-

Thus the actions of G x G and 5 on G are compatible and determine an

action of the semi-direct product H on G . We note that G* (the set

of fixed points of S on G by the action defined above) is equal to Q .

Hence, by Theorem A (with the X of Theorem A equal to G above and with

G and H of Theorem A equal to H and H above), ve see that A(<7)

acts transitively on each connected component of Q . Since

A(G)~X = G * x for x € G , the proposition is proved.
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Proof of Proposition 9.2. For the proof of this proposition, we let

S denote the two-element subgroup {1,,, 9} of Aut(G) and let H denote

the semi-direct product of G and S . Let G act on G by

conjugation. Thus G'x = CAx) for x € G . We define an action of S

on the algebraic variety G by %'X = 9(x)~ for x t G . With this

action of S on G , the set of fixed points of S on G is exactly Q .

We have

Q-(g-x) = Q

= B(g)'(B-x) .

Thus the actions of G and S on G are compatible and determine an

action of the semi-direct product H on G . Let U € Q and let

X = G-y = CG(y) . Then 6'(G«!/) = G«(6«y) = <?•!/ and hence X is

ff-stable. Now K° = (G^)° and / = CQ(y) n « . Since

characteristic (A:) # 2 , the action of S on £ is semisimple. The

conclusion of Proposition 9.2 now follows from Theorem A.

Proof of Proposition 9.3. Let H and the action of H on G be

defined as in the proof of Proposition 9.2. To conform with the notation

of Theorem C, let G = X (as the algebraic variety on which H = G tx. S

acts). Then r = Q and K = (Cj° . It follows from Theorem C that

K -y is closed if and only if G-y = CJy) is closed. This proves the

equivalence of (ii.) and (iii). Theorem C also implies the equivalence of

(v) and (vi). The equivalence of (i) and (ii) and the equivalence of ttv)

and (v) are well known [77]. This proves Proposition 9.3.

9.4. Now let G be a connected Lie group and let 9 be an

involutive automorphism of G . Let P, Q and the twisted action of G

on G be defined as above. Then we have:

PROPOSITION 9.4.1. The twisted action of G is transitive on each

connected component of Q . In particular, Q is a closed differentiable

submanifold of G and each twisted G-orbit on Q is closed. Hence P

is closed.

The proof is a precise Lie group analogue (using Theorem B) of
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Proposition 9.1- We omit the details. One can, in fact, show that Q has

only a finite number of connected components, but we shall not give the

proof here.

10. Some more applications

10.1. Affine orbits and reductive subgroups. We will use the

following characterization of reductive subgroups of reductive groups:

10.1.1. Let H be a closed subgroup of the reductive algebraic group

G . Then H is a reductive group if and only if the coset space G/H is

an affine variety.

See [74] for a proof.

Before giving our applications, we need a few elementary lemmas.

LEMMA 10.1.2. Let S be a subgroup of GL(ff) such that E is a

semisimple S-module. Then GL(E') is a reductive group.

Proof. Let A denote the commuting algebra of 5 in En&AE) .

K

Then A is a direct product of matrix algebras. (This is a standard

result in the theory of semisimple associative algebras. See, for example,
c

[7, P- 79]-) Hence GL(i?) is isomorphic tp a product of the form
c

GL (k) x ... x GL (k) . In particular GL(S) is reductive.
m. m
1 r

LEMMA 10.1.3. Let the algebraic group G act morphically on the

affine algebraic variety X and let x € X be such that the orbit G'x

is closed. Then G/G is an affine variety.

Proof. The orbit map cp : G •*• G'x determines a bijective morphism

ty : G/G •* G'X . Since G/G and G'X are normal varieties, it follows
x x

from Zariski's Main Theorem that i|) is a finite morphism (see [5, p. 138,

Corollary 3]). Since G'X is an affine variety, this implies that G/G

is an affine variety.

LEMMA 10.1.4. Let H and K be closed subgroups of an algebraic

group G , let irff : G -*• G/H and -nR : G •*• G/K be the canonical morphism
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and let a = irfl(e) , b = T\R(e) . Let G act on G/H and G/K by left

translations. If the orbit K-a is closed in G/H , then H'b is closed

in G/K .

Proof. If K'a is closed in G/H , then KH = ir~1(X«a) is closed in

ti

G and therefore HK = (KH)~ is closed in G . But the topology on G/K

is the quotient topology. Consequently, since HK = uv {H'b) is closed in

G , we see that H'b is closed in G/K .

If S is a reductive subgroup of a reductive algebraic group G and

if k is of characteristic zero, then it is known that Z_(S) and

N~(S) are reductive groups. This result is not true in prime

characteristic p . However, the following result shows that it does hold

if S is linearly reductive.

PROPOSITION 10.1.5. Let S be a linearly reductive group and let G

be a connected S-group. Then G/(T is an affine variety. In particular,

if G is reductive, then [CT) is reductive. If S is a closed

linearly reductive subgroup of G acting on G by inner automorphisms,

then NG(S)° = [SG
3)0 . If, in addition, G is reductive, then NQ{S)°

is reductive.

Proof. Let H denote the semi-direct product G ix S . We consider

G and S as closed subgroups of H in the usual way. We may embed H

as a closed subgroup of some GL(E) . By Lemma 10.1.2 we see that

c
M = GL(F) is a reductive gYoup. Since S normalizes G , it follows

from Section 2 that we may define a morphic action of 5 on Gh(E)/G = X

fcy s'(gG) = sgs G . [Warning: this is not necessarily the same as the

action of S on Gh{E)/G by left translation.) We consider GL(E) as an

5-group, with S acting by inner automorphisms. Let GL(E) act on X by

left translations. Then the actions of GL(E) and S on X are

compatible and hence define an action of the semi-direct product GL(E') IX S

on X . Let IT : GL(E) -*• GL(E)/G = X be the canonical map and let

a = Tf(e) . To avoid confusing notation, let S' denote the subgroup
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{e} x S of GL(E) IX S . We now apply Theorem A to the above situation,

with the H (respectively <?, S ) of Theorem A replaced by GL(E) ix 5

(respectively GL(E), S' ) above. By Theorem A, every orbit of M on

Xs' is closed. In particular M-a is closed. Let IT1 : GL(E) •* Gh(E)/M

be the canonical map and let b = ir'(e) . Since M'a is closed, we see

from Lemma 10.1.k that G-b is closed for the action of G on Gl,(E)/M

by left translations. Since M is reductive, it follows from 10.1.1 that

GL(E)/M is an affine variety. Thus, by Lemma 10.1.3, we see that

is an affine variety. But G-, = G n M = u and consequently G/u is an

affine variety. If G is reductive, then 10.1.1 implies that [u) is

reductive.

Assume now that the linearly reductive group S is a closed subgroup

of G acting on G by inner automorphisms. We let G act on X = G/S

by left translation and let S act on X as a subgroup of G . Let

•n • G •*• G/S ='X be the canonical map and let a = vie) . Then

a € X? . By Theorem A, Z = [u] acts transitively on the connected

component I of I which contains e . Let N = Ng(S) . Clearly Y

is tf-stable. Hence N'O is contained in Z*e = Y . Thus we see that,

for n € N , we have rcS = 35 for some z € Z and hence n $. ZS . Thus

we have shown that W = (Z5) . Assume further that G is reductive. By

the proof above, Z is reductive. Moreover, N/Z = \ZS J/Z is a

homomorphic image of the reductive group o and hence is a reductive

group. Since Z and N/Z are reductive groups, it follows easily that N

is a reductive group. This proves Proposition 10.1.5-

COROLLARY 10.1.6. Let S be a linearly reductive group, let G be

a connected S-group and let Z = [u] . Let L be a closed S-stable

subgroup of G such that the coset space G/L is an affine variety. Then

Z/Z n L is an affine variety.

Proof. Let TT : G •* G/L be the canonical map and let a = v{e) . By
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Theorem A, the orbit Z«a is closed in the affine variety G/L .

Consequently, by Lemma 10.1.3, Z/Z is an affine variety and clearly

Z = Z n L .
a

10.2. Complete orbits and parabolic subgroups.

PROPOSITION 10.2.1. Let S be a linearly reductive group, let G

be a connected S-group and let Z = [u] . Let P be an S-stable

parabolic subgroup of G and let X = G/P . Let G act on X by left

translation and let S act on X by s'(gP) = (s'g)P . Then Z acts

transitively on each irreducible component of A . In particular, Z has

only a finite number of orbits on A and each such orbit is a complete

variety. Let P denote the set of subgroups of G which are G-conjugate

to P . Then P is stable under the natural action of S on subgroups of

G . If Q € r , then Z n Q is a parabolic subgroup of Z .

Proof. Since S and G act compatibly on X , these actions

determine a morphic action of the semi-direct product H = G ix S on X as

in Section 2. Consequently, by Theorem A, Z acts transitively on each

irreducible component of X . The other conclusions of Proposition 10.2.1

now follow easily.

REMARKS. (i) For the case of Proposition 10.2.1 in which S is a

torus subgroup of G acting by inner automorphisms and P is Borel

subgroup of G containing S , we recover a result of Chevalley (see [1,

p. 279, 11.18]).

(ii) The example of 3.3 shows that, in Proposition 10.2.1, it is not

necessarily the case that all orbits of Z on A have the same

dimension.

10.3. Compact orbits and uniform subgroups. We recall that a closed

subgroup L of the Lie group G is uniform if the coset space G/L is

compact.

PROPOSITION 10.3.1. Let G be a connected Lie group and let S be

a subgroup of Aut(G) such that the representation of S on g is

semisimple. Let L be an S-stable uniform subgroup of G , let G act
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on X = G/L by left translations and let S act on X by

s'{gL) = (s'g)L . Then A is a closed differentiable submanifold of X

and Z = [u] acts transitively on each connected component of A . In

particular, Z has only a finite number of orbits on A and each such

orbit is compact. Moreover Z n L is a uniform subgroup of Z .

Proof. Let N = {a € Aut(G) | a'L = L) . We let N act on X by

a'(gL) = {a-g)L . Then the actions of N and G on X are compatible

and hence determine an action of H = G tx. N on X . The proof of

Proposition 10.3.1 now follows immediately from Theorem B.
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