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Abstract

Let G be a p-group for some prime p. Recall that the Hughes subgroup of G is the subgroup generated by
all of the elements of G with order not equal to p. In this paper, we prove that if the Hughes subgroup of G
is cyclic, then G has exponent p or is cyclic or is dihedral. We also prove that if the Hughes subgroup of G
is generalised quaternion, then G must be generalised quaternion. With these results in hand, we classify
the tidy p-groups.
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1. Introduction

In this paper, all groups are finite. Given a group G and a prime p, Hughes considered
the subgroup Hp(G) generated by all elements of G whose order is not p. In [8],
Hughes asked if it is always the case that when Hp(G) is proper and nontrivial, then
it has index p in G. Hughes proved that this is true for 2-groups in [7]. Strauss and
Szekeres proved it is true for 3-groups in [14], and Hughes and Thompson proved it
is true when G is not a p-group in [9]. However, the conjecture is not true in general.
Wall published a counterexample for p = 5 [15]. See the discussion in [6] for more
background regarding the Hughes subgroup problem.

In this paper, our goal is quite modest. We wish to consider p-groups that have
Hughes subgroups that are cyclic or generalised quaternion. We begin by considering
p-groups with a cyclic Hughes subgroup.
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THEOREM 1.1. Let G be a p-group. Then Hp(G) is cyclic if and only if one of the
following occurs:

(1) G has exponent p and Hp(G) = 1;
(2) G is cyclic and Hp(G) = G;
(3) p = 2, G is a dihedral group and H2(G) has index 2 in G.

Next, we consider a 2-group with a Hughes subgroup that is generalised quaternion.
In this case, we prove that G must equal its Hughes subgroup.

THEOREM 1.2. Let G be a 2-group. Then H2(G) is generalised quaternion if and only
if G = H2(G).

Our interest in groups of prime power order with a Hughes subgroup that is cyclic
or generalised quaternion arises in the context of tidy groups. For each element x in a
group G, let CycG(x) = {g ∈ G | 〈x, g〉 is cyclic}. It is not difficult to find examples of a
group G and an element x where CycG(x) is not a subgroup. In the literature, a group
G is said to be tidy if CycG(x) is a subgroup of G for every element x ∈ G. As far as
we can determine, tidy groups were introduced in [13] and in a second paper [12]. We
note that in [12], the authors define an object they call cycels, so the word ‘cycels’ in
the title of that paper is not a typo. Tidy groups have been studied in [2–5].

In [12, Theorem 14], O’Bryant et al. prove that if G is a p-group, then G is tidy if
and only if there is a normal subgroup H that is cyclic or generalised quaternion such
that every element in G \ H has order p. It is not difficult to see that H must be the
Hughes subgroup of G. Hence, the task of classifying the tidy p-groups becomes that
of determining the p-groups whose Hughes subgroup is either cyclic or generalised
quaternion. With that in mind, we obtain the following classification of tidy p-groups.

THEOREM 1.3. Let G be a p-group for some prime p. Then the following are
equivalent.

(1) G is a tidy group.
(2) The subgroup Hp(G) is cyclic or generalised quaternion.
(3) One of the following occurs:

(a) G has exponent p;
(b) G is cyclic;
(c) p = 2 and G is dihedral or generalised quaternion.

2. Results

To prove our results, we make use of the following classification of p-groups that
have a cyclic maximal subgroup (see, for example, [10, Satz I.14.9]).

THEOREM 2.1. Let G be a nonabelian p-group for some prime p and assume that
H = 〈h〉 is a cyclic maximal subgroup of G with |〈h〉| = pe. If H has a complement 〈g〉
in G, then one of the following situations occurs:
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(1) p � 2 and hg = h1+pe−1
(for suitably chosen g);

(2) p = 2 and hg = h−1;
(3) p = 2, e ≥ 3 and hg = h−1+2e−1

;
(4) p = 2, e ≥ 3 and hg = h1+2e−1

.

Theorem 2.1 depends on the structure of Aut(H), which we mention explicitly. If H
is a cyclic p-group of order pe, where p is an odd prime, then Aut(H) is cyclic of order
pe−1(p − 1). If H is a cyclic 2-group of order 2e, e ≥ 1, then Aut(H) is cyclic of order
2e−1 for e ∈ {1, 2} and is isomorphic to C2 × C2e−2 for e ≥ 3.

Let G be a group and let p be a prime. We define the Hughes subgroup of G to be
the subgroup generated by all of the elements of G whose order does not equal p. The
Hughes subgroup of G with respect to the prime p is denoted by Hp(G). Hence,

Hp(G) = 〈 g ∈ G | o(g) � p 〉.

When a p-group G is cyclic, then it will equal its Hughes subgroup. However, a
p-group G has exponent p and order at least p2 if and only if its Hughes subgroup is
trivial. The following preliminary lemma about the Hughes subgroup is useful.

LEMMA 2.2. If G is a p-group for a prime p and Hp(G) � 1, then CG(Hp(G)) ≤ Hp(G).

PROOF. Suppose that CG(Hp(G)) �≤ Hp(G) and fix x ∈ CG(Hp(G)) \ Hp(G). Note that
o(x) = p. The subgroup Hp(G) has an element of order p2, say h. However, now, we
deduce that the element hx has order p2 and does not belong to Hp(G), which is a
contradiction. �

We now prove the case when the Hughes subgroup is cyclic.

PROOF OF THEOREM 1.1. Let H = Hp(G) and assume that H is cyclic. If H = 1, then
G has exponent p and G satisfies item (1). If H = G, then G satisfies item (2). We
therefore proceed with the hypothesis that 1 < H < G. Note that |H| ≥ p2 since H is
nontrivial.

Since H is cyclic, H ≤ CG(H). Using Lemma 2.2, we conclude that H = CG(H).
By the normaliser/centraliser theorem [11, Corollary X.19], G/H is isomorphic to a
subgroup of Aut(H).

If p is odd, then Aut(H) is cyclic. Hence, the section G/H is also cyclic. Since every
nonidentity element of G/H has order p, we conclude that |G : H| = p. In particular,
H is a cyclic maximal subgroup of G.

Now, let H = 〈h〉 and write |〈h〉| = pe. Fix g ∈ G \ H. Note that |〈g〉| = p and that 〈g〉
serves as a complement to H in G. By Theorem 2.1, hg = h1+pe−1

(where g may have to
be re-chosen). Observe that

(hp)g = (hg)p = (h1+pe−1
)p = hp+pe

= hp.

Hence, 〈hp〉 ≤ Z(G) and it follows that |H : Z(G)| = p. Now, if |Z(G)| > p, then there
would exist elements of order p2 outside of H, which is a contradiction. We conclude
that |Z(G)| = p, |G| = p3 and the exponent of G is p2. Hence, G is extraspecial.
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Now G is extra-special of order p3 and has exponent p2. This implies that G has
nilpotence class 2. We claim that G is generated by elements of order p2. We know
that G has an element a whose order is p2. It suffices to show that G \ 〈a〉 contains
an element of order p2. Consider b ∈ G \ 〈a〉, and assume b has order p. Then using
induction, it is not difficult to compute that (ab)n = anbn[b, a](n−1)n/2 for every positive
integer n. So, if p is odd, then (ab)p = apbp[b, a](p−1)p/2 = ap � 1. Hence, ab has
order p2. Thus, we conclude that G = H, which is a contradiction. In particular, if
H is a nontrivial, proper cyclic subgroup of G, then p = 2.

So, assume that p = 2, while still operating under the assumption that H = H2(G) is
cyclic. Again, fix g ∈ G \ H. Lemma 2.2 guarantees that hg � h. Consider the subgroup
X = 〈h, g〉. We claim that g inverts h: that is, hg = h−1. By Theorem 2.1 applied to X,
the possibilities for hg are hg = h−1, hg = h−1+2e−1

or hg = h1+2e−1
. If hg = h−1+2e−1

, then
there exist elements of order 4 in X \ 〈h〉 ⊆ G \ H (see [11, Problem 3A.1]), which is a
contradiction.

Assume that hg = h1+2e−1
. Under this hypothesis, Z(X) is cyclic of order 2e−2 (see

[1, Exercise 8.2(1)]). If |Z(X)| > 2, then, as before, there exist elements of order
4 in X \ 〈h〉 ⊆ G \ H, which is a contradiction. So |Z(X)| = 2 and e = 3. Hence,
hg = h5. Note that hg ∈ X \ H and so (hg)2 = 1. Now, 1 = (hg)(hg) = h(g−1hg) =
hh5 = h6, which is a contradiction to the fact that o(h) = 8.

The remaining possibility is, of course, that g inverts h. Indeed, g always inverts h,
and so X is dihedral. As noted below Theorem 2.1, Aut(H) � C2 × C2e−2 . As G/H
embeds in Aut(H), we conclude that G/H � C2 or G/H � C2 × C2. Suppose that
G/H � C2 × C2. Then we can choose x, y ∈ G \ H such that Hx � Hy. Both elements
x and y are involutions and invert h. So hxy−1

= (h−1)y−1
= h. However, now xy−1 ∈

CG(H) = H and so Hx = Hy, which is a contradiction. This argument rules out the pos-
sibility that G � C2 × C2. Hence, |G : H| = 2 and G = X is dihedral, giving item (3).

Finally, if item (1), (2) or (3) occurs, then it is not difficult to see in each case that
H is cyclic. �

Finally, we consider the case when the Hughes subgroup is generalised quaternion.

PROOF OF THEOREM 1.2. Assume that H = H2(G) is generalised quaternion. In this
case, H is generated by elements x, y such that o(x) = 2a, o(y) = 4, xy = x−1, x2a−1

=

y2. Recall that x2a−1
= y2 is the unique involution of H. If G = H, then we are done.

So, assume that H < G and fix s ∈ G \ H. Conjugation by s induces an automorphism
of H. If s induces an inner automorphism of H, then, for all h ∈ H, hs = ht for some
t ∈ H. However, then st−1 ∈ CG(H) ≤ H (using Lemma 2.2) and so s ∈ H, which is a
contradiction. Hence, s induces an outer automorphism of H.

At this point, we recall a result mentioned previously. Reference [12, Theorem 14]
says that if G is a p-group, then G is tidy if and only if there is a normal subgroup K
that is cyclic or generalised quaternion such that every element in G \ K has order p.
So, setting K = H in our present situation, we conclude that G is tidy. If a = 2, then the
semi-direct product resulting from the action of 〈s〉 on H is necessarily semi-dihedral,
which contradicts the fact that G is tidy.
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Assume a ≥ 3. Note that 〈x〉 is characteristic in H and so s induces an
automorphism of 〈x〉. An analysis of the possibilities, similar to the argument in
the proof of Theorem 1.1, shows that s acts as the inversion map on 〈x〉.

Write ys = yxd for 0 ≤ d ≤ 2a − 1. Suppose that d is even and write d = 2b for b ∈ Z.
However, now,

(yxb)s = yx2bx−b = yxb.

Thus, s and yxb commute. Since H is generalised quaternion and yxb does not lie in 〈x〉,
we see that o(yxb) = 4. Now, o(syxb) = 4 and syxb ∈ G \ H, which is a contradiction.

We now suppose that d is odd. Observe that

(sy)2 = sysy = ysy = yxdy = y2y−1xdy = y2x−d = x2a−1−d.

Since d is odd, o((sy)2) = 2a. Hence, o(sy) = 2a+1. Next, note that 〈x〉 ≤ 〈sy〉 and that
|H〈s〉 : 〈sy〉| = 2. Now, as H〈s〉 contains subgroups of index 2 that are generalised
quaternion and cyclic, it can be deduced that H〈s〉 is semi-dihedral (which is not tidy),
in contrast to the fact that it is a subgroup of a tidy group. So, if H is generalised
quaternion, then G = H.

If G is generalised quaternion, it is not difficult to see that it is its own Hughes
subgroup. �

Combining all of the results, we see that Theorem 1.3 follows.
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