Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East

By E. S. ANDERSON, E. J. THRELFALL, JACQUELINE M. CARR, MOYRA M. MCCONNELL AND H. R. SMITH

Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT

(Received 31 May 1977)

SUMMARY

Strains of Salmonella typhimurium of predominantly Middle Eastern origin, but distributed from England to India, were found to carry at least three types of resistance plasmid. The most important was initially identified as an F_{T} plasmid by compatibility tests, but differs from the F factor on the one hand and the F_{I} factors R162 and ColV on the other. The three groups of F_{I} plasmids can be distinguished by their compatibility reactions with the MP10 plasmid of S. typhimurium (Smith, Humphreys, Grindley, Grindley & Anderson, 1973) and group H_1 factors: the F factor is unilaterally incompatible with group H_1 (Smith, Grindley, Humphreys & Anderson, 1973; Anderson, 1975b); the F_{I} factors are compatible with MP10 and group H_1 ; and F_Ime factors are incompatible with MP10 but compatible with H_1 . The majority of S. typhimurium cultures belonged to phage type 208; most of those that did not, belonged to types related to 208. Only a minority of their $F_{T}me$ plasmids were autotransferring. The remainder were mobilizable by F-like plasmids, and by group H₁ and H₂ factors, but not by the $f_1 - I_1$ factor Δ , or by plasmids of the I_2 , B, P, W, N and com 7 groups. The compatibility reactions of the autotransferring $F_{I}me$ plasmids were identical with those of the non-transferring members of the group, and both were large, single-copy plasmids.

The S. typhimurium strains of this series carried A or AK, and SSu resistance determinants: small, probably multicopy, non-transferring plasmids similar to those originally described in phage type 29 of S. typhimurium (Anderson & Lewis, 1965b).

These S. typhimurium cultures probably represent a clone of wide geographical distribution. The accurate epidemiological study of such clonal outbreaks requires, in addition to phage typing, precise identification of the plasmids harboured by the epidemic strains, and may have to be carried to the molecular level.

 $F_{1}me$ plasmids were identified in other drug-resistant salmonellas, notably in a strain of *S. wien* which caused large outbreaks of mainly paediatric infection in Algeria, and also spread to Britain. An $F_{1}me$ plasmid was found in *S. typhi* phage type 44 from Algeria, in which the phage-restricting properties of the plasmid are responsible for the specificity of the type.

Table 1	. Stand	lard bac	terial	strains
---------	---------	----------	--------	---------

ERL No.	Description	Plasmids carried	Compatibility group
1R713 14R525	Escherichia coli K12 F ⁻ lac ⁺ prototrophic 1R713 Nal ^r *		•
27R207 31R892	K12 HfrH lac ⁺ Nal ^r K12 F ⁺ lac ⁺ Nal ^r	Integrated F F	$\mathbf{F}_{\mathbf{f}}$ $\mathbf{F}_{\mathbf{f}}$
42R500 Type A	Salmonella typhimurium phage type 36 S. typhi Vi-type A		•
1R380 RT641 18R951 20R770	K12 F ⁻ lac ⁺ (Δ) S. typhimurium type 6 (Δ) K12 F ⁻ lac ⁻ Str ^t † (X) K12 F ⁻ lac ⁺ (T- Δ drp)	Δ Δ Χ T -Δ drp	$\begin{matrix} \mathbf{I_1} \\ \mathbf{I_1} \\ \mathbf{F_{II}} \\ \mathbf{I_1} \end{matrix}$

 $\Delta: fi^-$ Group I₁ transfer factor (Anderson & Lewis, 1965b).

X: f_{II}^{+} Group F_{II} transfer factor (Anderson & Lewis, 1965b; Anderson, Pitton & Mayhew, 1968).

T- Δdrp : derepressed mutant of the Group l_1 R factor T- Δ (Anderson & Lewis, 1965b; Anderson, 1968b; Grindley & Anderson, 1971).

* Nalidixic acid-resistant mutant of 1R713.

† Chromosomal resistance to streptomycin.

INTRODUCTION

In a previous communication we outlined compatibility relations of F_I plasmids, both within the $\mathbf{F}_{\mathbf{I}}$ group, and with plasmids of other groups (Threlfall, Carr & Anderson, 1976). With the exception of the F factor itself, these plasmids were initially identified in salmonellas: principally S. typhimurium, but also in S. typhi and S. wien. The observations summarized by Threlfall et al. (1976) have been extended, and the present article describes these interactions in detail. Special emphasis will be concentrated on the $F_{I}me$ group, so designated because it has widespread Middle Eastern associations, though it has been found in North Africa (Mered et al. 1970), France (Le Minor, 1972) and Britain. This group consists of fi^+ plasmids, most of which are non-autotransferring. Those that transfer are incompatible with those that do not, and establish their membership of the F_{T} groups by incompatibility with the F factor and by stimulating their carrier strains to produce F fimbriae, as shown by their ability to support multiplication of F-specific phages. Other compatibility reactions, to be described in this article, distinguish F₁ plasmids from each other. Because they are incompatible with the autotransferring members of the group and with F, the non-transferring members have been allotted to the F_Ime group, despite the fact that they do not produce F fimbriae.

Bacterial strains

MATERIALS AND METHODS

The standard strains used for the compatibility and other studies are shown in Tables 1 and 2.

The wild strains of salmonellas, with the exception of one bovine culture of S. typhimurium from Canada, were isolated in man: their countries of origin are indicated in Tables 3 and 8 (for S. typhimurium) and 9 (for other salmonellas).

Plasmid		Resistance	9	9
designation	Compatibility group	markers	Source	Reference
Γ.	F,		E. coli K12	Hayes (1952)
F-lac	Ŀ,	I	$E. \ coli \ K12$	Jacob & Adelberg (1959)
\mathbf{F} -lac- \mathbf{T}	F,	Т	*	Anderson & Smith (1972a)
F-T	F,	H	+	Anderson $(1975a)$
ColV2	F,	1	$E. \ coli \ K94$	Gratia (1925)
$\mathbf{R}162$	$\mathbf{F}_{\mathbf{I}}^{\mathbf{i}}$	ACSSuT	S. typhi Vi-type E13,	Chabbert & Gerbaud (1974)
			(France, 1974)	
TP160	$\mathbf{F}_{\mathbf{I}}me$	ACKSSuT	S. $typhi$ Vi-type 44, 1T5626	Anderson $(1975b)$
	(autotransferring)		(Algeria, 1974)	
TP181	$\mathbf{F}_{\mathbf{I}}me$	ACKSSuT	S. typhimurium type 208, 15M3557	Threffall et al. (1976)
	(autotransferring)		(Iran, 1975)	
TP187	$\mathbf{F}_{1}me$	ACKSSuT	S. wien 77	See text (McConnell et al., unpublished work)
	(autotransferring)		(England, 1974)	
NTP101	FIme	ACSSuT	S. typhimurium type 208, 14M6407	Threffall et al. (1976)
	(non-autotransferring)		(England, 1974)	
$MP10_{36}$	MP10	I	S. typhimurium type 36, RT576	Anderson & Smith (1972 <i>a</i>)
			(England, 1964)	
$f^{-}\mathbf{K}^{\dagger} (= \mathbf{K})$	MP10	K	S. typhimurium type 29, $5M4136$	Anderson, Pitton & Mayhew (1968); Smith
			(England, 1965)	$et \ al. \ (1974)$
A *	MP10	A	8	Smith, Humphreys et al. (1973)
TP123	H,	CSSuT	S. typhi 1T4739	Anderson & Smith (1972b); Grindley et al.
			(Mexico, 1972)	(1972)
NTP1	Group 1	A	S. typhimurium type 29, RT1	Anderson & Lewis $(1965a, b)$; Smith et al.
			(England, 1964)	(1974)
NTP2	Group 2	SSu	S. typhimurium type 29, RT1	Anderson & Lewis $(1965a, b)$; Smith <i>et al.</i>
			(England, 1964)	(1974)
NTP3	Group 2	\mathbf{ASu}		Anderson, Kelemen et al. (1968); Smith et al.
				(1974)
Drug resistance	symbols: A. ampicillin: C. c	chloramphenico	l: K. neomvein-kanamvein: S. streptom	Drug resistance symbols: A. ampicillin: C. chloramphenicol: K. neomycin-kanamycin: S. streptomycin: Su. sulphonamides: T. tetracyclines.
* Recombinant	* Recombinant between F-lac and the tetra	cycline resistar	the tetracycline resistance marker of $T-\Delta$ (Anderson & Lewis, 1965b; Anderson, 1968b)	965 <i>b</i> ; Anderson, 1968 <i>b</i>).
F F				

Table 2. Autotransferring and non-autotransferring plasmids used in compatibility tests

28

нүс 79

Clonal distribution of an R^+ S. typhimurium

F-T was derived from the F-lac-T hybrid plasmid by loss or inactivation of the lac operon. Spontaneous $\hat{\mu}^-$ mutant of $\hat{\mu}^+$ K, a recombinant between K and MP10, identified in S. typhimurium 5M4136 (Anderson, Pitton & Mayhew, 1968).

Made in the laboratory by u.v. irradiation of strain RT1 of S. typhimurium (Anderson, Kelemen et al. 1968).

Spontaneous recombinant between the A translocon of NTP3 and MP10.

 $\infty =$

Phage-typing

This was carried out in S. typhi by the method of Craigie & Felix (1947), review: Anderson & Williams (1956); and in S. typhimurium by the methods of Felix & Callow (1943) and Callow (1959); review: Anderson (1964).

Media

The nutrient media used throughout were based on 2% Bacto dehydrated nutrient broth (Difco Laboratories). To this was added 1.3% New Zealand powdered agar (Davis) for the preparation of nutrient agar plates.

Oxoid MacConkey agar No. 3 was routinely employed as a differential medium to distinguish between Lac⁺ and Lac⁻ strains.

Selection was exercised where necessary with the following concentrations of antibacterial drugs:

Drugs	Concentrations	Drugs	Concentrations
Ampicillin	100 μ g/ml	Tetracyclines	$10 \ \mu g/ml$
Chloramphenicol	$40 \ \mu g/ml$	Sulphathiazole	$100 \ \mu g/ml$
Kanamycin	$20 \ \mu g/ml$	Trimethoprim	$2 \mu \mathrm{g/ml}$
Gentamicin	$20 \ \mu g/ml$	Nalidixic acid	$40 \mu g/ml$
Streptomycin	$20 \ \mu g/ml$		

Tests for drug resistance (R-typing) and minimal inhibitory concentration (MIC)

These were carried out by the techniques described by Anderson & Threlfall (1974).

Bacterial crosses

The method of Anderson & Lewis (1965a) was used for crosses, which were mostly of about 18 h (overnight) duration. When the crosses were of short duration, 1 or 2 h, the ratio of donor to recipient cultures was 1:10.

Triparental crosses for plasmid mobilization were performed by the method of Anderson (1965). The Δ factor, which belongs to compatibility group I_1 , and the X factor (Group F_{II}), were routinely used in mobilization tests (Anderson & Threlfall, 1974), but other transfer factors were introduced as necessary.

Sex-specific phage propagation

Plasmids were examined for their ability to stimulate production of F or I sex fimbriae by investigating the capacity of their carrier strains to support growth of the F-specific phages μ^2 (Dettori, Maccacaro & Piccinin, 1961) and fd (Marvin & Hoffman-Berling, 1963), and the I-specific phage If1 (Meynell & Lawn, 1968). The method employed was that of Grindley & Anderson (1971).

Compatibility tests

Compatibility tests between pairs of plasmids were carried out by the method of Grindley, Grindley & Anderson (1972). Segregation resulting from incompatibility usually yielded only 10-50% of colonies carrying both plasmids, whereas the rate of segregation of compatible plasmids was no higher than that of their spontaneous loss from strains carrying the plasmids separately. Residual hybrids carrying incompatible plasmids continued to segregate.

 $\mathbf{428}$

RESULTS

Our findings are summarized in Tables 3-9.

Table 3 shows the distribution and properties of F_Ime plasmids isolated from S. typhimurium of Middle Eastern origin. The majority of the Iranian cultures, and all the Israeli cultures, were isolated in their respective countries, mostly from severe paediatric infections. All other strains were isolated in Britain from persons infected in the countries concerned, and were sent to the Enteric Reference Laboratory for phage-typing.

The strains shown under Britain are specially interesting. They were isolated from a small but protracted outbreak of S. typhimurium infection in adults and children in a Burns Unit in Birmingham. Five infections, four of which were symptomless, occurred between November and December 1974; seven infections. two symptomless, between March and April 1975; and one infection with symptoms in November 1975. This outbreak provided our first examples of $F_{\rm T}me$ plasmids in November 1974. Symptoms, when they occurred, were those of mild enteritis. Epidemiological studies revealed that the outbreak started after admission to the unit of a severely scalded patient who had been flown as an emergency case from Tehran in November 1974. He was a symptomless excreter of the epidemic strain of S. typhimurium. It was reasonably concluded in retrospect that he was the index case: the outbreak strain was therefore imported from Iran, and shared the Middle Eastern origin of the other S. typhimurium strains studied. It is interesting that it persisted in the unit for a year, though no cases with symptoms occurred between April and November 1975. There was no evidence that the strain had been introduced more than once, that is, in November 1974.

Resistance spectra (R-types) of resistant S. typhimurium strains

These are shown in column 5 of Table 3. The commonest R-type was ACKSSuT, but K was not always present, and other resistances identified were Fu, Nx, G and Tm. Fu and Nx are probably of chromosomal origin, but G and Tm are plasmid-coded. There is further discussion of R-types in the following section.

Direct

Resistance transfer

Autotransferring $F_{I}me$ plasmids were identified principally in cultures from Iran, either in patients infected there and yielding *S. typhimurium* on their return to Britain, three in 1970, one in 1973 and one in 1976; or isolated in Iran, mainly from severe paediatric infections. Of the latter group, 44 of 113 strains transferred their $F_{I}me$ plasmids directly. Direct resistance transfer was also found in one culture isolated in Britain from a person infected in Turkey, and one from an infection acquired in an unidentified place between Pakistan and Turkey. Most directly-transferring $F_{I}me$ plasmids coded for the R-type ACKSSuT (see Tables 3 and 4). However, considerable variation from this pattern was found, especially in the Iranian cultures, as Table 4 shows.

All the autotransferring F_1me resistance plasmids formed Class 1 transfer systems, that is, the transfer factor and the resistance linkage group(s) were

28-2

		,	Iran, Iraq, Isra	Iran, Iraq, Israel, Jordan, Kuwait, Syria, Turkey		Drug resistance transfer			100
a	9	3 <u>1</u> 1	Salmonelle	Salmonella typhimurium		By	By mobilization†	ion†	
country of origin	cultures isolation	r ear or isolation	Phage type	R-type*	Directly	F ₁ me	Group 1	Group 1 Group 2	
Britain‡	13	1974-5	208	ACKSSuT	1	ACSSuT	A	\mathbf{SSu}	
India	en	1974	208 (1)	ACKSSuTNx	I	ACSSuT	AK	\mathbf{SSu}	
		1975	170 (1) 208 (1)	AKSSu ACKSSuT	11	CT	AK AK	SSu SSu	
Iran	Ð	1970	208 (3)	ACKSSuT (2)	ACKSSuT AK§ SSu§		•	•	3. K
		1973	208 (1)	ACKSSuT (1) ACKSSuT	ACKSSuT AK\$ SSu\$	ACSSuT	A	SSu	
		1976	Untypable (1)	ACKSSuTTmFu	Î	ACSSuT	AK	SSul	TT.
	125	1969-74	208 (91)	23 R-types	44 of 113 Iranian cultures (38.9%) transferred F_{ime}	ures (38.9%) tr	ansferred	$F_{T}me$	ית
	:		Untypable (21)	-	plasmids directly. These also transferred A or AK and	e also transferred	A or A	K and	
			170 (12) 24 (1)		SSu in a Class 2 relationship. Non-transferring plasmids were mobilizable as in strains from elsewhere	nship. Non-transl trains from elsew	ferring pl vhere	asmids	5011
Iraq	63	1974	208	ACKSSuTFu	ł	ACSSuT		ss_{u}	AL
,				ACKSSuTFu	1	ACSSuT	AK	ssu	
Israel	44**	1971-3	208 (8)	ACKSSuTFu	1	ACSSuT	AK	SSu	0
		1974	208 (10)	ACKSSuTFu (3)	l	ACSSuT	AK	SSu	
				ACKSSuTFu (2)	ł	ACSSuT	AK		
				ACSSuTFu (5)	l	ACSSuT		SSu	
			24 (2)	ACKSSuTFu (1)	1	ACSSuT	A	SSu	
		1075	106/ 806	ACKSSuTFu (1)	1	ACSSuT	×		
				ACKSSuTTmFu (4)	2000	ACSSuTTm	AK	SSu	
				ACKSSuTFu (6)	[ACSSuT	AK	SSu	
				ACKSSuTFu (2)	1	ACSSuT		SSu	
				ACKSSuTGFu (2)	1	ACSSuTG	AK	SSu	
				ACSSuTFu (1)	I	ACSSuT		SSu	
		1976	208 (2)	ACKSSuTFu (1)	1	ACSSuT	AK	SSu	
			Untypable (2)	ACKSSuTTmFu (1) ACKSSuTTmFu (1)	łľ	ACSSuTTm ACSSuTTm	A	SSu SSu	

Table 3. Drug resistance transfer in Salmonella typhimurium of mainly Middle Eastern origin, 1969-76, Britain, India,

430

E. S. ANDERSON AND OTHERS

-		na ngg	ıl dıs	stri nSS		ssu w	of an	R	
ion†	1 Gro		ΣΩ			ŝ	ž		er fact . resist
By mobilization†	Group 1 Group 2	AK	A	AK	AK	A	.Α		I ₁ transfi
By r	Fime	ACSSuT	ACSSuT ACSSuT	ACSSuT	CT	CT	ACSSuT		the ft^- group both X and Δ spendent grou but not Δ .
			SSu				SSu§		lasmids; tion with s the inde ed by X
	Directly	1	I	l	۲ ا		A§ 		ı. d F _i <i>me</i> p mobiliza , whereas
	Ι		A††		ACKSSuT		ст		iidixic acid. ad in Britair minants, an formed after octinomycin ectinomycin ompatibility
Salmonella typhimurium	R-type*	ACKSSuT	ACKSSuT ACKSSuT	ACKSSuTNx	ACKSSuT ACKSSuT	ACKSSuT	ACKSSuT ACKSSuT		 Drug resistance symbols: G, gentamicin; Tm, trimethoprim; Fu, furazolidone; Nx, nalidixic acid. Number of strains shown in parentheses. Unless otherwise stated, cultures were isolated in Britain. * R.type = drug resistance spectrum. † The <i>fi⁺</i> group F_{II} transfer factor X mobilized group 1 and group 2 resistance determinants, and F_Ime plasmids; the <i>fi⁻</i> group I₁ transfer factor Δ mobilized only the group 1 and group 2 resistance transfer systems were formed after mobilization with both X and Δ. All F_Ime plasmids coding for streptomycin resistance also conferred resistance to spectinomycin, whereas the independent group 2 SSu resistance determinants, and Fime plasmids; the <i>fi⁻</i> group 1. All F_Ime plasmids coding for streptomycin resistance also conferred resistance to spectinomycin, whereas the independent group 2 SSu resistance determinants do not code for spectinomycin resistance (see text). ‡ Index case infected in Tehran, Iran. § Transferred in Class 2 relationship by autotransferring F_Ime plasmid compatibility, mobilized by X but not Δ. ** Isolated in Iran. ** Isolated in Iran.
Salmonella	Phage type	208	208 208	208	208 208	208	208 208		Drug resistance symbols: G, gentamicin; Tm, trimethoprim; Fu, furaza Number of strains shown in parentheses. Unless otherwise stated, cultu * R.type = drug resistance spectrum. † The jt^+ group F_{II} transfer factor X mobilized group 1 and group 2 1 mobilized only the group 1 and group 2 plasmids. Class 2 resistance transfe All F_{IME} plasmids coding for streptomycin resistance also conferred r determinants do not code for spectinomycin resistance (see text). ‡ Index case infected in Tehran, Iran. § Transferred in Class 2 relationship by autotransferring F_{IME} plasmid \parallel This culture also carried a trimethoprim (Tm) resistance plasmid of ' ** Isolated in Iran.
Voon of	rear or isolation	1974	1971 1975	1974	1973	1975	1972 1974		amicin; Tm ntheses. Un trum. or X mobil op 2 plasmid eptomycin rei nomycin rei Lran. hip by auto aethoprim ((
Mundan of	cultures	1	63	1	e			201	mbols: G, gent shown in pare resistance spec in transfer fact oup 1 and grou coding for stu code for specti ted in Tehran, lass 2 relations carried a trin iel.
Journature of	country of origin	Jordan	Kuwait	Syria	Turkey		Uncertain‡‡ (i) (ii)	Total	Drug resistance symbols: G, gentamicii Number of strains shown in parenthese R P. type = drug resistance spectrum. The ft + group F_{II} transfer factor X bilized only the group 1 and group 2 pl All F_{fme} plasmids coding for strepton terminants do not code for spectinomyy therminants do not code for spectinomyy T Index case infected in Tehran, Iran. Transferred in Class 2 relationship by Transferred in Iran.

1 3 10 - Ply Ê

https://doi.org/10.1017/S0022172400053286 Published online by Cambridge University Press

431

			$\mathbf{F}_{\mathbf{I}}me$	plasmids		
Character of	37. 6	Autotransf	erring	Non-autotran	sferring*	
Country of origin	Year of isolation	R-type	No.	R-type	No.	Total
Britain	1974–5	•	0	ACSSuT	13	13
India	1974 1975	•	0	ACSSuT CT	1 1	1 1
Iran	1970 1973 1976 1969–74†	ACKSSuT ACKSSuT ACKSSuT CT T ACSSuT	2 1 0 19 12 12 12 1	ACSSuT ACSSuT ACSSuT CT T	1 0 1 53 12 4	3 1 72 24 16 1
Iraq Israel‡	1974 1971–4 1975 1976		0 0 0	ACSSuT ACSSuT ACSSuTTm ACSSuT ACSSuTG ACSSuTTm ACSSuT	2 20 9 2 3 1	2 44
Jordan	1974		0	ACSSuT	1	1
Kuwait	1971 1975	•	0 0	ACSSuT ACSSuT	1 1	1 1
Syria	1974	•	0	ACSSuT	1	1
Turkey	1973 1975	ACKSSuT	1 0	CT CT	1 1	2 1
Uncertain§ (i) (ii) Totals Percent	1972 1974	CT .	1 0 49 26·1	ACSSuT	0 1 139 73·9	1 1 188

Table 4. Group $F_{1}me$ plasmids in Salmonella typhimurium of mainly Middle Eastern origin, 1969–76

. .

Unless otherwise stated, F_1me plasmids were identified in S. typhimurium isolated in Britain.

* Mobilizable with X transfer factor.

† S. typhimurium isolated in Iran.

‡ S. typhimurium isolated in Israel.

§ (i) Between Pakistan and Turkey.

(ii) Egypt or Syria.

covalently bonded to form single plasmids which transferred intact and remained transferable from their new hosts (Anderson, 1968b, 1969; Anderson & Threlfall, 1970, 1974).

Transfer by mobilization

The transfer factors routinely used in the triparental cross for determinant mobilization are Δ , an fi^- group I₁ factor (Anderson & Lewis, 1965b; Grindley

Au	totransferrin	g	Non-au	utotransferri	ıg
R-type	No.	Per cent	R-type	No.	Per cent
ACKSSuT	23	46.9	ACSSuT	106	76.3
CT	13	26.5	\mathbf{CT}	15	10.8
Т	12	$24 \cdot 5$	ACSSuTTm	12	8.6
ACSSuT	1	$2 \cdot 0$	т	4	2.9
			ACSSuTG	2	1.4
Totals	49 (= 26	$\cdot 1$ % of total)		139 (= 73	.9% of total)

Table 5. Resistances coded for by 188 F_{I} me plasmids identified in S. typhimurium of mainly Middle Eastern origin

et al. 1972) and X, an fi^+ F_{II} factor (Anderson, 1968b; Anderson & Lewis, 1965b; Anderson, Pitton & Mayhew, 1968; Anderson & Threlfall, 1974). Most resistance determinants tested have been mobilizable with either or both of these factors.

The non-autotransferring F_1me plasmids were mobilizable with the X transfer factor at a frequency of about 10^{-4} in triparental crosses, but mobilization was not detected with Δ . It has long been known that non-transferring resistance plasmids may show specificity of mobilization potentiality towards different transfer factors (Anderson & Lewis, 1965b; Anderson, 1968b), so that mobilization of the F_1me plasmids by X but not by Δ came as no surprise. A group F_{1V} R factor mobilized F_1me plasmids at a frequency similar to that of X.

The predominant $F_{I}me$ resistance linkage group mobilized by X in 139 cultures of Middle Eastern origin was ACSSuT (106) (see Tables 3, 4 and 5), but the following were also mobilized: CT (15); ACSSuTTm (12); T (4); and ACSSuTG (2). All the cultures carrying the ACSSuTTm and ACSSuTG linkage groups came from Israel.

Tables 4 and 5 indicate that in 23 of 49 cases, cultures of R-type ACKSSuT, and carrying autotransferring $F_{I}me$ plasmids, transferred the complete ACKSSuT linkage group. Thirteen of the remainder transferred CT; 12, T; and 1 ACSSuT. By contrast, mobilization of non-autotransferring $F_{I}me$ plasmids by the X transfer factor yielded, with relatively few exceptions (see above), final recipients carrying only ACSSuT. The mobilized plasmid retained its $F_{I}me$ character; no recombination had occurred between it and the X transfer factor. In other words the mobilization had yielded Class 2 resistance transfer systems, in which the resistance determinant and the transfer factor remained as independent plasmids. The same was true of mobilization by X of the ACSSuTTm and ACSSuTG resistance plasmids from strains isolated in Israel.

Mobilization of the prototype non-autotransferring $F_{I}me$ plasmid NTP101 (ACSSuT), identified in the Burns Unit strain 14M6407, was also effected with group H_1 and H_2 R factors at a frequency of about 10⁻⁶. The transferring complex so formed belonged to Class 2 in the case of H_1 factors, but apparently to Class 1 with H_2 factors. The resistance transfer systems formed by mobilization of $F_{I}me$ plasmids with H_2 factors were displaced completely by introduction of a further H_2 factor in compatibility tests. By contrast, autotransferring $F_{I}me$ resistance

plasmids displaced the F_1me component only of the F_1me -H₂ recombinant: the H₂ component was unaffected. This phenomenon is under further investigation.

When strains carrying an F_Ime plasmid and an H_1 factor were crossed overnight with K12 at 28 °C, the H_1 factor was transferred at its usual frequency of about 5×10^{-1} , but the F_Ime plasmid, which remained independent, at about 10^{-4} . However, similar crosses with strains carrying $F_Ime \cdot H_2$ recombinant factors resulted in transfer of the recombinant at the characteristic transfer frequency of H_2 factors, about 10^{-1} .

The frequency of mobilization of F_Ime plasmids was much lower with group H factors (10⁻⁶) than with the F_{II} factor X (10⁻⁴). No mobilization of F_Ime plasmids was detected with autotransferring resistance plasmids of compatibility groups I_1 , I_2 , B, P, W, N and com 7.

Phage propagation

Strains carrying autotransferring $F_{I}me$ plasmids supported the growth of phage μ^{2} or fd, which indicated that they formed F fimbriae. The strains carrying non-autotransferring $F_{I}me$ plasmids, however, did not support multiplication of these phages, which indicated the absence of F fimbriae from such strains.

The efficiency of plating (EOP) of the 'female-specific' phage $\phi 2$ (Cuzin, 1965) was studied on K12 carrying the F factor, an autotransferring F_Ime factor, a non-autotransferring F_Ime factor, and on K12F⁻. The EOP of phage $\phi 2$ on the F⁺ strain was 10^{-2} of that on K12F⁻. The F_Ime plasmids inhibited plaque formation by $\phi 2$ to a slightly lesser degree, which was similar with the autotransferring and non-autotransferring plasmids. The plaques were reduced in size to the greatest extent by K12F⁺.

Mobilization of K

After many attempts K was mobilized by X in the reference strain 14M6407. However, when this occurred it was the result of recombination between K and the ACSSuT linkage group in 14M6407, to form a non-autotransferring ACKSSuT linkage group, which was mobilized by X in a Class 2 relationship.

Mobilization of K was also effected by autotransferring $F_{I}me$ resistance plasmids that lacked the K marker, in nine strains from which the original $F_{I}me$ plasmid had been displaced by F-lac. The mobilization frequency was low, 10^{-7} to 10^{-8} in overnight triparental crosses. Subsequent crosses showed that recombination had occurred between the K resistance determinant and the mobilizing $F_{I}me$ plasmid. The recombinant was indistinguishable from the wild autotransferring $F_{I}me$ plasmids that possessed the K marker.

K was also mobilized at a similar frequency by autotransferring resistance plasmids belonging to compatibility groups H_1 , H_2 and *com* 7. In each case a Class 1 resistance plasmid was formed, belonging to the compatibility group of the mobilizing plasmid.

Compatibility properties of F_{I} plasmids

The $F_{I}me$ plasmids were compatible with plasmids of groups F_{II} , F_{IV} , F_{V} , B, H_1 , H_2 , I_1 , I_2 , N, P, W, com 7, com 9, of group G (Anderson, Threlfall, Frost & Carr, 1975) and four undesignated groups identified in this laboratory.

Since F_Ime plasmids were incompatible with the F factor in the extrachromosomal or integrated state, it was at first assumed that they were simply further representatives of the F_I group, first designated by Hedges & Datta (1972). Indeed, the ACKSSuT R factor TP160, isolated from the Algerian strain of *S. typhi* type 44, was used in the Enteric Reference Laboratory for some time as an F_I reference plasmid, as was another F-like *S. typhi* R factor isolated in France (Chabbert & Gerbaud, 1974). The phage type of the French strain from which this R factor was isolated belonged to a newly identified type, E13, and the plasmid concerned, numbered R162, has phage-restricting properties that determine the type specificity of E13 (E. M. de Saxe and E. S. Anderson, unpublished work). However, its phage restriction is different from that of the R factor of *S. typhi* type 44, and from F_Ime plasmids in general. Moreover, its compatibility properties differ from those of the F_Ime group, as will be seen.

Further exploration of the compatibility properties of the F_{I} plasmids revealed differences between individual members that enabled the group to be subdivided. This subdivision was effected by exploiting the compatibility properties of F_{I} plasmids with plasmids of other groups, specifically MP10, a single-copy plasmid, apparently non-autotransferring, carried by many strains of S. typhimurium and defined in some detail by Anderson & Smith (1972a), Smith, Humphreys et al. (1973) and Smith, Humphreys & Anderson (1974). This plasmid is f^{+} , but a recombinant between it and a K resistance determinant has undergone deletion of the f^{+} region and is therefore f^{-} (Smith, Grindley, Grindley & Anderson, 1970); it is routinely used in compatibility studies because of the convenience of the K marker. Another recombinant, between MP10 and the A translocon, has produced a plasmid that is autotransferring at low frequency, an indication that MP10 is a defective transfer factor (Smith, Humphreys et al. 1973). The new A resistance plasmid, designated A*, has the same compatibility reactions as MP10 and its K recombinant. Another compatibility group used in these studies is H₁, of which all freshly isolated examples so far studied in our laboratory have been incompatible with the F factor in its extrachromosomal state. F is displaced by H, factors, but this is a unilateral property, in that the F factor cannot displace H_1 plasmids: it is always F that is lost (Smith, Grindley et al. 1973; Anderson, 1975b).

Table 6 shows the results of the compatibility experiments with the F, F_{I} (R162 and ColV), $F_{I}me$, MP10 and H_{1} plasmids.

These compatibility reactions can be summarized as follows:

(1) The F factor is incompatible with itself, with F_I factors such as ColV and R162, F_Ime autotransferring and non-autotransferring plasmids, and H_1 , unilaterally, as explained above.

(2) The F_{I} factor R162 is incompatible with F, with other members of its own group such as ColV, and with $F_{I}me$. It is compatible with MP10 and H_{1} .

(3) F_Ime is incompatible with F, the F_I group, its own group and MP10, but is compatible with H_1 .

(4) MP10 is compatible with F, F_{I} and H_{I} . It is incompatible with $F_{I}me$ and its own group.

	н	TP123	INC (loss of R factor only)	COM COM	COM	COM	INC											
H_1 group plasmids	MP10	MP10 ₃₆ A* K	COM	COM	INC	INC	COM					ran 1975.		ingland 1974.	972.		ASu and	10.
Table 6. Compatibility properties of the F factor, F_{I} , $F_{I}me$, $MP10$ and H_{1} group plasmids	$\mathbf{F}_{\mathbf{I}}$	Autotransferring Non- TP160; TP181, autotransferring TP187 NTP101	INC	INC	INC	INC	COM		cOM = compatible. INC = incompatible.	Plasmids (other than F and ColV)	from S. typhi type E13, France 1974. from S tunki type 44 . Alveria, 1974.	from S. hunhimurium type 208. 15M3557. Iran 1975.	from S. wien, England 1974.	from S. typhimurium type 208, 14M6407, England 1974.	from S. typhi Degraded Vi-strain, Mexico 1972.	fi ⁺ plasmid from S. typhimurium type 36.)	recombinant between the A translocon of ASu and	recombinant between the K determinant of S . typhimurium type 29 (5M4136) and MP10.
utibility properties	$\mathbf{F}_{\mathbf{I}}$	R162 ColV	INC	INC	INC	COM	COM		° OM	Group	R162 f			Ξ				ĸ
Table 6. Comp	ĨŦ		INC	INC	INC	COM	INC	(loss of F factor only)		Gr	F _I H.me	F.me	F.me	$\mathbf{F}_{\mathbf{r}}^{\dagger}me$	H	MP10	MP10	MP10
	Group		H	FI I	$F_{I}me$	MP10	щ	r										

(5) H_1 is unilaterally incompatible with F and is fully incompatible with other members of its own group. It is compatible with F_1 . F_1me and MP10.

The ' F_I ' plasmids can therefore be distinguished from each other by the following reactions:

(1) The F factor is unilaterally incompatible with group H_1 .

(2) The F_I group is compatible with MP10 and H_1 .

(3) The $F_{I}me$ group is incompatible with MP10 but compatible with H_{I} .

Of these plasmids, $F_{I}me$ constitutes by far the largest group, at least so far as the salmonellas are concerned.

The F_I factors in general, to which these three groups belong, cannot be distinguished genetically unless their compatibilities with H_1 and MP10 are tested.

In S. wien we have identified $F_{I}me$ plasmids that can become compatible with the F factor in the integrated, that is, Hfr, state. These will be described later (McConnell, Leonardopoulos, Smith & Anderson, unpublished observations).

Resistance plasmids other than $F_{I}me$

The S. typhimurium strains in this series carried small (probably multicopy) non-autotransferring resistance plasmids. These were A or AK; and SSu (see Table 3). The A determinant, and an A⁻ segregant of AK, are incompatible with each other, and belong to compatibility group 1 of non-autotransferring plasmids (Smith *et al.* 1974; Smith, 1975), that is, they are homologues of NTP1, the A determinant of strain RT1 (Anderson & Lewis, 1965b). The SSu plasmid is incompatible with ASu (Anderson, Kelemen, Jones & Pitton, 1968). It thus belongs to compatibility group 2 of Smith (1975) and is therefore a homologue of NTP2, the SSu determinant of RT1. A few strains lacked A or AK; and others lacked SSu. When the $F_{I}me$ plasmids were autotransferring, these small resistance determinants were transferred to new hosts in a Class 2 relationship with the main plasmid. When the $F_{I}me$ plasmids were non-transferring, the small determinants transferred in a Class 2 relationship with the mobilizing transfer factor used in triparental crosses.

One strain isolated in Britain from a patient infected in Iran in 1976 carried an independent determinant for trimethoprim resistance, which was mobilized by X but not by Δ . It is compatible with A or AK and SSu. Another strain, found in a patient infected in Kuwait, carried A in a Class 1 relationship with an fi^+ I₁ R factor. This factor mediated transfer of the SSu determinant of the host strain in a Class 2 relationship (see Table 3).

The frequencies of mobilization of F_1me , A or AK, SSu and the Tm plasmids by Δ and X are summarized in Table 7.

Ampicillin, streptomycin and furazolidone resistances

 $F_{I}me$ plasmids conferred penicillin (= ampicillin) resistance on their carrier strains, of which the MIC was about 250 μ g/ml. By contrast, the ampicillin MIC of strains carrying the A or AK determinant was about 2000 μ g/ml. The lower ampicillin resistance conferred by the $F_{I}me$ plasmid may result from the presence of only one copy of the plasmid, while the high ampicillin resistance of the A or Table 7. Mobilization frequency of $F_{I}me$, A or AK, SSu and Tm plasmids by Δ and X transfer factors from original S. typhimurium strains into K12

	Transfe	er factors
Plasmids	Δ	X
F ₁ me A or AK	0 10-4	5×10^{-4}
A or AK SSu	10	10^{-6} $4 \times 10^{-5*}$
\mathbf{Tm}	0	10-4

* Once introduced into K12, SSu is mobilized at a frequency about 100 times higher with Δ (ca. 10⁻⁴) than with X (ca. 10⁻⁶). A and AK do not show this change.

AK-carrying strains is the probable result of multiplicity – 10–20 copies – of the respective plasmid (Smith, Anderson & Clowes, 1970; Humphreys, Grindley & Anderson, 1972; Smith *et al.* 1974).

The A and AK determinants also conferred cephaloridine resistance on their host strains, the MIC of which was $32 \,\mu g/ml$. In contrast, the A region of $F_T me$ plasmids isolated from S. typhimurium, did not appear to code for such resistance. However, F_1me plasmids from some of the S. wein strains studied, do code for cephaloridine resistance. NTP1, the standard A determinant (Anderson & Lewis, 1965b; Smith et al. 1974) which is present in a multiplicity of 10-20 copies per cell (Humphreys et al. 1972) produces an ampicillin MIC of 2000 μ g|ml in the host strains, and the cephaloridine MIC of such strains is $32 \mu g/ml$, the same as strains carrying A or AK of Middle Eastern origin. When the A translocon of NTP1 recombines with the Δ transfer factor, the resultant A- Δ resistance plasmid (Anderson, Kelemen et al. 1968; Anderson, 1969), which is present as only one copy per cell (Humphreys et al. 1972), gives MICs of 250 and $4 \mu g/ml$ for ampicillin and cephaloridine respectively. Although the A region of F, me plasmids confers a degree of ampicillin resistance similar to that of $A-\Delta$ on host strains, no cephaloridine resistance was detectable in these strains. which showed the same cephaloridine MIC as the sensitive control, $2 \mu g/ml$. Because of the low values of the respective MICs, these MIC determinations, as well as those of A- Δ , were confirmed in four independent parallel titrations. Since the \mathbf{F}_{1} me A region does not seem to code for cephaloridine resistance, the ampicillin resistance resulting from carriage of $F_{T}me$ plasmids may be caused by synthesis of a different enzyme from the TEM type of β -lactamase coded for by NTP1 and its homologues. This subject will be discussed in detail in a later paper.

All F_Ime plasmids carrying the S marker also conferred resistance to spectinomycin, an indication that the resistance was caused by an adenylylating enzyme (Benveniste & Davies, 1973). The streptomycin resistance coded for was low, the MIC of carrier strains being about 32 μ g/ml. The small independent SSu resistance plasmids did not code for spectinomycin resistance, an indication that the inactivation of the drug was caused by a phosphorylating enzyme. They conferred much higher streptomycin resistance, MIC 250 μ g/ml, on their carrier strains.

Furazolidone resistance, probably chromosomal in origin, was present in all Israeli strains.

Phage types and phage restriction in S. typhimurium

The phage type of the S. typhimurium strains investigated in this series was predominantly 208, as can be seen in Table 3. However, two other phage-typing reactions were encountered, which were probably related to that type: type 170; and one in which the organism was resistant to all the typing phages and was thus designated untypable. All type 208 cultures carried $F_{I}me$ plasmids, while type 170 did not. Type 208 is resistant to all the typing phages of the revised typing scheme of Callow (1959), but is sensitive to ancillary phages used for extension of that typing scheme (Anderson, Ward, de Saxe & de Sa, 1977). Type 170, in contrast, shows a characteristic pattern of sensitivity to the phages of Callow (1959). F_1me plasmids exercise a characteristic phage-restriction pattern: when they are transferred directly or by mobilization into type 170, this restriction converts 170 into type 208. Conversely, loss of an F_Tme plasmid by type 208 converts it into type 170. Such loss may occur spontaneously, or by displacement of the $F_{1}me$ plasmid by the F factor, with which it is incompatible. Introduction of F_1 me plasmids into S. typhimurium type 36, which is sensitive to all 30 of the routine S. typhimurium typing phages, restricts the sensitivity of the host strain to at least 22 of the phages. The pattern of phage lysis so produced is characteristic, but does not conform to that of a recognized type of the scheme of Callow (1959) or Anderson et al. (1977). It has been given the provisional designation nonconforming (= NC) 10.

The difference between type 208 and the untypable strains depends on the reaction to only one ancillary typing phage, to which type 208 is sensitive but the untypable strain resistant. The untypable cultures were found to carry a small-plaque temperate phage that rendered type 208 untypable by restricting sensitivity to the differentiating typing phage.

Further investigation of phage restriction in the Middle Eastern series revealed the following features:

(1) Type 170 carries a large-plaque temperate phage that converts types with wide phage sensitivity, such as 135, sensitive to 26 of 30 typing phages, into type 170, sensitive to only eight phages.

(2) Type 208 carries the large-plaque phage and an F_1me resistance plasmid.

(3) The untypable drug-resistant strains carry the large-plaque phage, an $F_{1}me$ plasmid, and the small-plaque temperate phage that converts type 208 into the untypable strain.

Type 135 may have been the starting point of the series, since a few sensitive cultures of that type were isolated in Iran before the onset of the type 208 outbreak. The sequence of events could thus have been:

type 135
$$\xrightarrow{\text{large-plaque}}_{\text{phage}}$$
 type 170 $\xrightarrow{\text{F}_1 me}_{\text{plasmid}}$ type 208 $\xrightarrow{\text{small-plaque}}_{\text{phage}}$ Untypable strain

It can therefore be assumed that the cultures giving the three reactions to the S. typhimurium typing phages belonged to a single strain which caused wide-spread infection in the Middle East during the period covered by the study, 1969-76.

439

		Other plasmids detected	AK resistance determinant	AK and SSu resistance determinants	SSu resistance determinant and Collb (transferable)	AK and SSu resistance determinants	0	0	ft- group I ₁ Class 1 R factor, R-type AT	0	(AK resistance determinant,	$\{f^{-}$ group I ₁ transfer factor			
	ſ	Total	ø	61	61	4	1	4	6	c1	4	Ţ	37		
20	ı- sferring	No.	ø	5	0	61	0	0	0	0	0	0	12	32.2	
F _I me plasmids	Non- autotransferring	R-type	T	CT	•	CT			•		•	•			
$F_{I}m$	ferring	No.	0	0	63	લ	1	4	6	61	4	7	25	67-8	rigin.
	Autotransferring	R-type	•		СТ	СT	ACSSuT	ACSSuT	ACSSuT	ACSSuT	ACSSuT	ACSSu			* Bovine origin.
	urium	R-type	AKTFu	ACKSSuT	ACSSuT	ACKSSuT	ACSSuT	ACSSuT	ACSSuT	ACSSuT	ACKSSuT (4)	ACKSSu (1)			
	S. typkimurium	Phage type	193 (8)	208 (2)	200 (2)	Untypable (4)	208*	NC10 (4)	NC10 (9)	NC10 (2)	Untypable (5)	•	37		
		Year of isolation	1975	1974	1975		1974	1972	1974	1975	1976				
		Country of origin	Britain	Belgium	Germany		Canada	Kenya			Liberia		\mathbf{T} otal	Per cent	

Table 8. Distribution of F₁me plasmids in S. typhimurium other than from the Middle East

Three strains of phage type 24 of S. typhimurium were also identified in this series. One, from Iran, showed the R-type KTFu: it carried an autotransferring $F_{I}me$ plasmid coding for tetracycline resistance only. Israel provided two type 24 strains, both belonging to R-type ACKSSuTFu and carrying a non-transferring ACSSuT $F_{I}me$ plasmid. However, one also carried A and SSu resistance determinants. Loss of the $F_{I}me$ plasmid from these three strains yielded lines of increased sensitivity to the S. typhimurium typing phages, but showing a lytic pattern that did not conform to a recognized type. Apart from their plasmid content, no relation has so far been demonstrated between these strains and the type 208 series that form the main subject of this paper, although a relation must be suspected.

General distribution of $F_{I}me$ plasmids

In S. typhimurium

Although the highest frequency of F_1me -carrying cultures of S. typhimurium occurred in the Middle East, predominantly in type 208 and untypable strains, similar plasmids were found in cultures of the same serotype isolated elsewhere, as Table 8 shows.

Only two cultures from Belgium and one from Canada in this series belonged to type 208, although the four untypable cultures from Germany are related to 208 in a way similar to that described for Middle Eastern untypable strains. The five Liberian untypable cultures do not appear to possess this relationship: they are still under investigation.

The strain of type 208 of bovine origin isolated in Canada is of some interest. It has already been established that the R factors found in man are the same as those in animals (Anderson, Humphreys & Willshaw, 1975). Although no human infections with S. typhimurium carrying F_1me plasmids have so far been encountered in Canada, therefore, the possibility of such infection evidently exists, as the isolation of the bovine culture shows.

Fifteen of the remaining 25 of the total of 37 strains shown in Table 8 belonged to type NC10 (see above); eight belonged to type 193; and two to type 200. Twenty-five of 37 cultures transferred their $F_{I}me$ plasmids directly, in contrast to the Middle Eastern cultures, where non-autotransferability predominated. Moreover, kanamycin resistance, present in most of the Middle Eastern series, was absent from these strains.

The 15 Kenyan strains were isolated from fatal cases of meningitis in children. They all showed the NC10 restriction pattern with the *S. typhimurium* typing phages, the first occasion on which this pattern had been encountered in wild strains. These cultures yielded phage type 135 by spontaneous segregation, which occurred with high frequency. All of 10 type 135 segregant colonies examined carried the MP10 plasmid (Smith, Humphreys *et al.* 1973), which is incompatible with F_1me plasmids (see section on compatibility properties). This explains the high segregation rate of these NC10 strains. The type 135 segregants had lost the F_1me plasmid, indicating that the parent strain belonged to type 135 until it was infected with that plasmid.

Plasmids other than those of the F_Ime group were found in a number of these

:	·		ł		Autotransferring	rring	Non-autotransferring	ferring	
Salmonella serotype	Country of origin	Year of isolation	Phage type	\mathbf{R} -type	R-type	No.	R-type	No.	Total
S. typhi	Algeria	1974	44	ACKSSuT	ACKSSuT	1		0	1
S. oranienburg	Indonesia	1976		ACKSSuT	ACKSSuT	4		0	4
S. newport	Indonesia	1976		ACSSuT	ACSSuT	Ħ		0	1
S. heidelberg	Rhodesia	1974		AKSSuT* ACKSSuT*	T ACKSSnT	-		0 C	
S. wien	Algeria	1970		ACKSSuT+	ACKSSuT			• •	
(see text)	France	1972	•	ACKSSuT	ACKSSuT	-	•	0	
	Britain	1974	•	ACKSSuT	ACKSSuT	e		0	en
		1974		ACKSSu		0	ACK	1	1
		1974		ACKSSuTTmNx		0	ACKSSuT	1	1
	Austria	1974		ACKSSuT	ACKSSuT			0	1

	lid
	asn
	r a Colla ple
	hLa
	సి
	r a
	the
	our
	d 8
	an
	\mathbf{tor}
itor	fac
180	G
Ľ	nsf
aT	tra
3	ke
4	
ਰੂ	Ľ
ar	ğ
nts	rrie
Ina	CB.]
carried non-autotransferring A and SSu determinants and a KUOILD K lactor.	vultures carried an ASSu determinant, one culture carried an F-like transfer factor and another a Colla plasmid
ete	ltu
p n	at, one cul
20	Ö
nd	nt,
8 7	ina
ᅇ	Ē
LLL	ete
Stei	n d
ran	SS
es carried non-autotral	tures carried an ASSu determir
aui	81
ġ	ied
ਸ ਹ	38.11
, LIG	SS C
Car	h
108	cult
Itu	en (
GU	wi
686	Ś
Ĕ	All
H-	+

strains, as Table 8 indicates. A substantial proportion were the small A or AK and SSu plasmids, but two strains from Germany also carried a ColIb transfer system, and the nine NC10 cultures isolated in Kenya in 1974 carried an fi^- group I₁ Class 1 R factor of R-type AT.

In other salmonellas

The remaining salmonellas in which $F_{I}me$ plasmids have been identified are presented in Table 9.

Apart from S. wien, which is discussed separately below, there were eight cultures, in all of which the F_Ime resistance factor was directly transferable. A strain of S. typhi from Algeria, four of S. oranienburg from Indonesia, and one of S. heidelberg from Rhodesia, transferred ACKSSuT linkage groups. The strain of S. newport transferred its complete resistance spectrum of ACSSuT, but one of S. heidelberg from Rhodesia, of R-type AKSSuT, transferred only T as an F_Ime plasmid. The Rhodesian strains also carried mobilizable A and SSu determinants, and a KCoIIb R factor, which suggests that a clone of S. heidelberg was involved, despite the difference between the two cultures in the F_Ime resistance transfer pattern.

The Algerian S. typhi strain was isolated from a sporadic case of typhoid fever in 1974 (Anderson, 1975b). Its $F_{I}me$ resistance plasmid converts S. typhi phage type A, sensitive to all 96 of the Vi-typing phages, into type 44, which is sensitive only to phage 44. This is a property common to all $F_{I}me$ plasmids tested.

Of the other salmonellas, sufficient is known only about S. wien to warrant further description. This serotype caused an outbreak of at least 329 cases in Algeria in 1969 (Mered *et al.* 1970) and outbreaks totalling at least 1302 cases in France between 1970 and 1972 (Le Minor, 1972). Most of the infections were in paediatric hospital units. There were sporadic cases of S. wien infection in Britain from 1973 onwards, and a hospital outbreak of at least 23 cases in 1974.

All the S. wien cultures isolated in these outbreaks were drug-resistant and carried $F_{I}me$ plasmids, most of which were autotransferring. A detailed description of S. wien cultures will be published later (McConnell, *et al.*, unpublished work).

Le Minor (1972) postulated that the original French infections were imported from Algeria. We believe that the identity of the plasmids carried by the Algerian, French and British strains supports the hypothesis that only one strain of S. wien is involved, which may have originated in Algeria. It probably reached Britain from France.

DISCUSSION

The studies described above started with the investigation of non-autotransferring resistance plasmids in the strain of S. typhimurium that caused the outbreak of enteritis in the Burns Unit in Birmingham. Subsequent events directed our attention to strains of the same serotype which caused infection in most countries of the Middle East. Phage type 208, or types related to it, predominated, and most of the cultures exhibited remarkably uniform plasmid content: an

29

HYG 79

 $F_{1}me$ plasmid coding for R-type ACKSSuT (in the transferring members), or ACSSuT (in the non-transferring members); and the independent, small, probably multicopy A or AK, and SSu resistance determinants in most strains. There was a uniform pattern of mobilization, in a Class 2 relationship, of the non-transferring plasmids by Δ , X, F_{IV} and H_1 transfer systems, and possible formation of unstable Class 1 recombinants between non-autotransferring $F_{I}me$ plasmids and H_2 transfer factors. There was also mobilization of an independent K determinant by recombination with autotransferring $F_{I}me$ plasmids, and with transfer systems of groups H_1 , H_2 and com 7, to form Class 1 plasmids.

These properties suggest that we are probably dealing with a clone of S. *typhimurium*, which, by some means as yet undetermined, has become distributed in the areas mentioned over a distance of at least 2500 miles (over 4000 miles if the Birmingham outbreak is included). Its complement of plasmids was probably acquired very early in its epidemic history.

The question of transferability of the $F_{I}me$ plasmids presents an enigma. Molecular studies to be described later have shown that even the non-transferring members are of the large single-copy type, about 90×10^6 daltons; while those that transfer are larger, but by only a relatively narrow margin. There is high molecular homology between the transferring and non-transferring groups (Willshaw, Smith & Anderson, unpublished work). The non-transferring members have evidently undergone a small deletion, rendering them transfer defective.

Transfer deficiency of F_1 me factors was found only in S. typhimurium and S. wien. Transfer occurred from all other salmonellas in which these factors were encountered: S. typhi, S. oranienburg, S. newport, and S. heidelberg. Although the number of cultures of each serotype except S. typhimurium and S. wien was small, the results suggest that a special situation was present in the S. typhimurium strains (and probably in S. wien, as will be described later (McConnell et al., unpublished work)). The almost invariable presence of independent A or AK and SSu determinants in S. typhimurium supports that suspicion, although similar determinants were also found in S. heidelberg from Rhodesia. Finally, the fact that the overwhelming majority of S. typhimurium cultures belonged to phage type 208, or to types closely related to 208, as we have shown by the phage restriction studies, suggests once again that a widely distributed clone of S. typhimurium was involved. Variations in the resistance spectrum of the F_1 me plasmid were observed not only in wild cultures, but also occurred by spontaneous segregation in the laboratory, so that such variation does not weaken the clonal hypothesis.

Compatibility studies of the F_1me group of plasmids revealed an unexpected plurality in the F_I group. Indeed it was only as the result of these studies that it was realized that F_Ime was a separate group, to which both the autotransferring and non-autotransferring plasmids belonged. This group is distinct from the F factor, and from the F_I group as represented by resistance plasmid R162 and ColV. Molecular studies which support this subdivision of F_I plasmids will be described later (Willshaw *et al.*, unpublished work).

The mobilization of K in the S. typhimurium strains described here, by

444

recombination with autotransferring plasmids of several groups, is probably analogous to the mobilization of tetracycline resistance (T) by the Δ transfer factor in strain RT1 of type 29 of S. typhimurium (Anderson & Lewis, 1965a, b). while mobilization of non-autotransferring $F_{I}me$ plasmids such as ACSSuT by X is to some extent analogous to that of the resistance determinants A and SSu by Δ or T- Δ . However, this analogy is less close, since A and SSu are small multicopy plasmids, while the F₁me group, such as ACSSuT, albeit non-transferring. are large single-copy plasmids (Willshaw et al., unpublished work). The precise mechanism of mobilization of the small plasmids is unknown, but it may differ from that of the large plasmids: in the latter instance it may involve complementation by the X transfer factor of a transfer defect in the $F_{T}me$ plasmid, which may otherwise be a complete transfer system. Since propagation experiments with F-specific phages establish that strains carrying autotransferring $\mathbf{F}_{\mathbf{T}}$ me plasmids form F fimbriae, while those with non-autotransferring members do not, at least part of the defect is in fimbrial synthesis. Complementation by the X transfer factor could thus consist in supplying the F fimbriae needed for transfer of the $F_{1}me$ factor. However, it is not immediately apparent how mobilization of $F_{T}me$ plasmids by H_{1} factors could involve the provision of F fimbriae. which are not formed by bacteria carrying H_1 factors. The complementation in this instance may depend on other features, and in this respect the fact that the mobilization frequency of F_1me plasmids by H_1 factors is lower than that by X by a factor of 10^{-2} may be significant.

The state of non-transferring K in the parent strains of S. typhimurium is not clear. It is manifestly independent of the $F_{I}me$ plasmids. It may be chromosomal or plasmid in nature. Its very low frequency of mobilization by autotransferring plasmids of several compatibility groups supports the former view, on the basis of recombination initially being needed between such plasmids and the K chromosomal region, followed by 'recombining out' of the segment concerned, a process analogous to the formation of F-prime factors. However, K was spontaneously lost from the wild strain 14M6407 at a frequency of about 0.5% in a freshly picked clone grown in nutrient broth for 8 h, which favours its being plasmid in nature.

The similarity between K mobilization by autotransferring plasmids in these S. typhimurium strains, and that of T by Δ in RT1, suggests that the K and T resistance determinants may subsist in similar states in their host strains. This hypothesis is supported by the fact that, once mobilized, the K-transfer factor recombinant is transferred at the frequency characteristic of the mobilizing plasmid: 10^{-2} in overnight crosses with F_1me at 37 °C, 5×10^{-1} with H_1 at 28 °C; 10^{-1} with H_2 at 28 °C; and 10^{-1} with com 7 at 37 °C. There is a close analogy with T- Δ , which was initially transferred from RT1 at a frequency of $< 10^{-6}$ after recombination had occurred between T and Δ ; and subsequently transferred in overnight crosses.

We believe that the S. typhimurium cultures carrying F_1me plasmids probably constitute a clone. This hypothesis is reinforced by observations on cultures of

S. typhimurium, over 400 in number, recently received from Turkey. These cultures, which will be fully described later, were isolated from severe infections in a paediatric hospital over a period of three years, 1973-6. Most carry an $F_{I}me$ plasmid and A or AK and SSu determinants. Although a few cultures belong to type 208, the great majority belong to an untypable strain similar to that identified in the Middle Eastern cultures described in detail in this paper. The Turkish cultures therefore thus probably constitute a subclone of the S. typhimurium type 208 that predominates in the Middle Easter.

Clonal distribution of drug-resistant S. typhimurium over a wide geographical area is not a new finding. It was first observed with phage type 29 of S. typhimurium, which caused an extensive outbreak of infection in bovines and man in Britain during the period 1963-70. This strain carried multiple drug resistance, the transfer of which was mediated by the Δ factor (Anderson & Lewis, 1965*a*, *b*; Anderson, 1968*a*, *b*). Extensive distribution of a clone has also been observed with phage type 193 of S. typhimurium in the South American sub-continent (Anderson, Threlfall, Carr & Frost, 1974), and with type 194 in Northern Europe (Anderson, Threlfall et al. 1975). The South American strains carried distinctive fi^+ group N plasmids which did not endow their carrier strains with sensitivity to the IKe phage. The Northern European strain of type 194 carried a T resistance determinant and a Δ -like transfer factor in a Class 2 relationship. These observations support the hypothesis that the strains were also clonal in nature (E. S. Anderson, J. A. Frost, J. M. Carr and E. J. Threlfall, unpublished work).

Studies such as those described in this article establish that it is no longer sufficient, in the investigation of infections with the enterobacteria, to identify, for example, the serotype of a salmonella. Characterization should be rendered more precise by phage-typing the organisms when possible, and distinctive biochemical markers should also be sought. Naturally, the strains should be routinely tested for drug resistance. However, the simple identification of resistance markers is inadequate. The plasmid(s) carrying them require exploration. Because of the enormous dispersal of resistance and other plasmids, epidemiological studies may now need to be carried to the genetic and even molecular level, although there are few laboratories in which molecular epidemiology can be followed to a satisfactory conclusion.

The increasingly frequent demonstration of the clonal distribution of plasmidbearing strains of enteric pathogens over extensive land masses, of which we have given an example here, and of which the huge chloramphenicol-resistant Mexican typhoid outbreak in 1972–3, and the even larger and lethal Central American epidemic of drug-resistant Shiga dysentery from 1968 onwards, were striking examples, suggests that plasmids may confer properties other than those of drug resistance, enterotoxigenicity and haemolysin or surface antigen synthesis on their carrier strains. They may contribute, in ways as yet unidentified, to communicability and virulence. These are facets that demand further study.

446

We are grateful to all who supplied cultures used in these studies, and in particular to Dr Soussan Mohadjer, of the School of Public Health and Institute of Public Health Research, Tehran, Iran, Dr G. Altmann, of the Chaim Sheba Medical Center, Israel and Dr E. Berkman, of the Hacettepe Children's Hospital, Ankara, Turkey. We are also indebted to Mrs Maureen de Saxe and Mrs Linda Ward for help with the phage typing studies. This work was partly supported by a grant from the Department of Health.

REFERENCES

- ANDERSON, E. S. (1964). The phage typing of salmonellae other than S. typhi. In The World Problem of Salmonellosis (ed. E. Van Oye), pp. 89–110. The Hague: Dr W. Junk.
- ANDERSON, E. S. (1965). A rapid screening test for transfer factors in drug-sensitive Enterobacteriaceae. Nature, London 208, 1016–17.
- ANDERSON, E. S. (1968a). Drug resistance in Salmonella typhimurium and its implications. British Medical Journal iii, 333–9.
- ANDERSON, E. S. (1968b). The ecology of transferable drug resistance in the enterobacteria. Annual Review of Microbiology 22, 131–80.
- ANDERSON, E. S. (1969). Ecology and epidemiology of transferable drug resistance. In Ciba Foundation Symposium on Bacterial Episomes and Plasmids (ed. G. E. W. Wolstenholme and M. O'Connor), pp. 102-115. London: J. A. Churchill Ltd.
- ANDERSON, E. S. (1975a). Viability of, and transfer of a plasmid from, E. coli K12 in the human intestine. Nature, London 255, 502-4.
- ANDERSON, E. S. (1975b). The problems and implications of chloramphenicol resistance in the typhoid bacillus. *Journal of Hygiene* 74, 289–99.
- ANDERSON, E. S., HUMPHREYS, G. O. & WILLSHAW, G. A. (1975). The molecular relatedness of R factors in Enterobacteria of human and animal origin. *Journal of General Microbiology* 91, 376–82.
- ANDERSON, E. S., KELEMEN, M. V., JONES, C. M. & PITTON, J.-S. (1968). Study of the association of resistance to two drugs in a transferable determinant in Salmonella typhimurium. Genetical Research, Cambridge 11, 119-24.
- ANDERSON, E. S. & LEWIS, M. J. (1965a). Drug resistance and its transfer in Salmonella typhimurium. Nature, London 206, 579-83.
- ANDERSON, E. S. & LEWIS, M. J. (1965b). Characterisation of a transfer factor associated with drug resistance in Salmonella typhimurium. Nature, London 208, 843-9.
- ANDERSON, E. S., PITTON, J.-S. & MAYHEW, J. N. (1968). Restriction of bacteriophage multiplication by resistance determinants in salmonellae. Nature, London 219, 640-1.
- ANDERSON, E. S. & SMITH, H. R. (1972a). Fertility inhibition in strains of Salmonella typhimurium. Molecular and General Genetics 118, 79-84.
- ANDERSON, E. S. & SMITH, H. R. (1972b). Chloramphenicol resistance in the typhoid bacillus. British Medical Journal iii, 329.
- ANDERSON, E. S. & THRELFALL, E. J. (1970). Change of host range in a resistance factor. Genetical Research, Cambridge 16, 207-14.
- ANDERSON, E. S. & THRELFALL, E. J. (1974). The characterization of plasmids in the enterobacteria. Journal of Hygiene 72, 471-87.
- ANDERSON, E. S., THRELFALL, E. J., CARR, J. M. & FROST, J. A. (1974). Transferable drug resistance in salmonellae in South and Central America. Proceedings of the Society for General Microbiology 1, 66.
- ANDERSON, E. S., THRELFALL, E. J., FROST, J. A. & CARR, J. M. (1975). Transferable drug resistance in animal and human infection with new phage types of Salmonella typhimurium. Proceedings of the Society for General Microbiology 2, 64.
- ANDERSON, E. S., WARD, L. R., DE SAXE, E. M. & DE SA, J. D. H. (1977). Bacteriophagetyping designations of Salmonella typhimurium. Journal of Hygiene 78, 297-300.
- ANDERSON, E. S. & WILLIAMS, R. E. O. (1956). Bacteriophage typing of enteric pathogens and staphyloccoci and its use in epidemiology. *Journal of Clinical Pathology* 9, 94–127.
- BENVENISTE, R. & DAVIES, J. (1973). Mechanisms of antibiotic resistance in bacteria. Annual Review of Biochemistry 42, 471-506.

- CALLOW, B. R. (1959). A new phage typing scheme for Salmonella typhimurium. Journal of Hygiene 57, 346-59.
- CHABBERT, Y. A. & GERBAUD, G. R. (1974). Surveillance épidémiologique des plasmides responsables de la résistance au chloramphénicol de Salmonella typhi. Annales de Microbiologie, Paris 125A, 153-66.
- CHABBERT, Y. A., SCAVIZZI, M. R., WITCHITZ, J. L., GERBAUD, G. R. & BOUANCHAUD, D.H. (1972). Incompatibility groups and the classification of fl^- , resistance factors. Journal of Bacteriology 112, 666-75.
- CRAIGIE, J. & FELIX, A. (1947). Typing of typhoid bacilli with Vi bacteriophage. Lancet i, 823-7.
- CUZIN, F. (1965). Un bactériophage spécifique du type sexuel F⁻ d'Escherichia coli K12. Comptes rendus de l'Académie des Sciences, Paris **260**, 6482-5.
- DETTORI, R., MACCACARO, G. A. & PICCININ, G. L. (1961). Sex-specific bacteriophages of Escherichia coli K12. Journal of General Microbiology 9, 141-50.
- FELIX, A. & CALLOW, B. R. (1943). Typing of paratyphoid B bacilli by means of Vi bacteriophage. *British Medical Journal* ii, 127-30.
- GRATIA, A. (1925). Sur un remarquable exemple d'antagonisme entre deux souches de colibacille. Comptes rendus des séances de la Sociéte de Biologie 93, 1040.
- GRINDLEY, J. N. & ANDERSON, E. S. (1971). I-like resistance factors with the fi^+ character. Genetical Research, Cambridge 17, 267–71.
- GRINDLEY, N. D. F., GRINDLEY, J. N. & ANDERSON, E. S. (1972). R factor compatibility groups. *Molecular and General Genetics* 119, 287–97.
- HAYES, W. (1952). Recombination in *Bact. coli* K12: unidirectional transfer of genetic material *Nature, London* 169, 118-19.
- HEDGES, R. W. & DATTA, N. (1972). R124, an f^{t+} R factor of a new compatibility class. Journal of General Microbiology 71, 403-5.
- HUMPHREYS, G. O., GRINDLEY, N. D. F. & ANDERSON, E. S. (1972). DNA-protein complexes of Δ -mediated transfer systems. *Biochimica et biophysica acta* 287, 355–60.
- JACOB, F. & ADELBERG, E. A. (1959). Transfert de caractères génétiques par incorporation au facteur sexuel d'Escherichia coli. Comptes rendus de l'Académie des Sciences, Paris 249, 189-91.
- LE MINOR, S. (1972). Apparition en France d'une épidémie à Salmonella wien. Médicine et Maladies Infectieuses 2, 441-8.
- MARVIN, D. A. & HOFFMAN-BERLING, H. A. (1963). Physical and chemical properties of two new small bacteriophages. *Nature, London* 197, 517-18.
- MERED, B., BENHASSINE, M., PAPA, F., KHARTI, B., KHEDDARI, M., RAHAL, A. & SARI, L. (1970). Epidémièà S. wien et S. typhimurium dans un service de pédiatrie. Archives d'Institut Pasteur Algérie 48, 41–52.
- MEYNELL, G. G. & LAWN, A. M. (1968). Filamentous phages specific for the I sex factor. Nature, London 217, 1184-6.
- SMITH, C., ANDERSON, E. S. & CLOWES, R. C. (1970). Stable composite molecular forms of an R factor. Bacteriological Proceedings, p. 77.
- SMITH, H. R. (1975). Studies of non auto-transferring plasmids in *Escherichia coli and* salmonellae. Ph.D. thesis, University of London.
- SMITH, H. R., GRINDLEY, J. N., GRINDLEY, N. D. F. & ANDERSON, E. S. (1970). Derepression of F-lac in Salmonella typhimurium by a determinant for kanamycin resistance. Genetical Research, Cambridge 16, 349-53.
- SMITH, H. R., GRINDLEY, N. D. F., HUMPHREYS, G. O. & ANDERSON, E. S. (1973). Interactions of Group H resistance factors with the F factor. *Journal of Bacteriology* 115, 623-8.
- SMITH, H. R., HUMPHREYS, G. O. & ANDERSON, E. S. (1974). Genetic and molecular characterisation of some non-transferring plasmids. *Molecular and General Genetics*, **129**, 229-42.
- SMITH, H. R., HUMPHREYS, G. O., GRINDLEY, N. D. F., GRINDLEY, J. N. & ANDERSON, E. S. (1973). Molecular studies of an *fi*⁺, plasmid from strains of Salmonella typhimurium. Molecular and General Genetics **126**, 143-51.
- THRELFALL, E. J., CARR, J. M. & ANDERSON, E. S. (1976). Compatibility relations of resistance plasmids in Salmonella typhimurium of Middle Eastern origin. Proceedings of the Society for General Microbiology 3, 88.