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Folate, DNA methylation and colo-rectal cancer

Maria Pufulete®, Peter W. Emery and Thomas A. B. Sanders

Nutrition Food and Health Research Centre, King’s College London, 150 Stamford Street,

London SE1 9NN, UK

Prospective cohort and case—control studies suggest an association between low folate intake and
increased risk of colo-rectal adenoma and cancer. Some, but not all, animal studies indicate that
folate supplementation protects against the development of colo-rectal neoplasms, although
supraphysiological folate doses have been shown to enhance tumour growth. Folate is a methyl
donor for nucleotide synthesis and biological methylation reactions, including DNA methylation.
A low dietary folate intake may increase the risk of colo-rectal neoplasia by inducing genomic
DNA hypomethylation, which can affect the expression of proto-oncogenes and tumour
suppressor genes associated with the development of cancer. Common polymorphisms in genes
involved in the methylation pathway, such as methylenetetrahydrofolate reductase and methionine
synthase, have been shown to influence risk of colo-rectal neoplasia, with interactions dependent
on folate status and/or alcohol intake, which is known to antagonise methyl group availability.
There is some evidence to show that DNA from normal-appearing colo-rectal mucosa in
individuals with colo-rectal cancer is hypomethylated. In a case—control study DNA methylation
in normal-appearing colo-rectal mucosa has been shown to be lower in individuals with
colo-rectal cancer (P=0-08) and colo-rectal adenoma (P=0-009) than in controls free of colo-
rectal abnormalities. Human intervention trials to date suggest that supraphysiological doses of
folate can reverse DNA hypomethylation in colo-rectal mucosa of individuals with colo-rectal
neoplasia. In a double-blind randomised placebo-controlled study folate supplementation at
physiological doses has been shown to increase DNA methylation in leucocytes (P=0-05) and
colonic mucosa (P=0-09). Further studies are required to confirm these findings in larger
populations and to define abnormal ranges of DNA methylation.
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Diet and colo-rectal neoplasia

Colo-rectal cancer (CC) is the second most common cancer
in Western societies (Muir et al. 1987). There is marked
variation in incidence throughout the world, with high rates
in industrialised regions such as Australia, New Zealand,
USA, Japan and Western Europe, and low rates in regions
such as Africa, China and other parts of Asia (Parkin et al.
1999). The majority of CC are believed to be sporadic, and
only about 15 % are due to dominantly inherited mutations
in susceptibility genes (Cannon-Albright et al. 1988;
Houlston ef al. 1992). Neoplastic transformation of the
colonic mucosa is characterised by increased cell prolifer-
ation, adenomatous polyp formation and growth, malignant
transformation and invasion (Fearon & Vogelstein, 1990).
This transformation process is accompanied by many

genetic and epigenetic changes occurring at various stages
of disease progression.

Diet is thought to play a role in the development of CC.
Ecological studies suggest that the adoption of a Western
diet, characterised by high intakes of fat and lower intakes
of starchy foods, is associated with increased risk. There is
now moderately consistent evidence that diets containing
high intakes of red meat and low intakes of vegetables are
associated with increased risk (Department of Health,
1998). In a recent study in which a food-frequency question-
naire specifically designed to assess folate intake was
validated against a 7d weighed food intake record and
biomarkers of folate status was validated, vegetables were
shown to be a major source of folate in the diet (Pufulete
et al. 2002b). Among the components in vegetables that
may be responsible for the observed protective effect is the
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Fig. 1. Competing pathways in folate metabolism. dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine
monophosphate; DHF, dihydrofolate; THF, tetrahydrofolate; MTHFR, methylenetetrahydrofolate reductase; MS,
methionine synthase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; CBS, cystathionine-B-synthase.

water-soluble B-vitamin, folate, which has recently attracted
a lot of attention because of its important role in DNA
metabolism, which is markedly altered in carcinogenesis.

Biochemical function of folate

Folate donates and accepts C; units, a reaction that is essential
for the synthesis of DNA, RNA and glycine, and maintaining
the methylation cycle (Fig. 1). Deficiency results in
ineffective DNA synthesis, reduced cell proliferation and
impaired cellular physiology.

Folate, in the form of 5,10-methylenetetrahydrofolate
is required for purine synthesis and the de novo synthesis
of thymidylate from deoxyuridylate. The regeneration of
methionine from homocysteine in the methylation cycle
requires a methyl group from 5-methyltetrahydrofolate, in a
reaction catalysed by the vitamin Bi,-dependent enzyme,
methionine synthase (MS). The activated form of meth-
ionine, S-adenosylmethionine, donates the methyl group
derived from folate in over eighty methylation reactions,
including DNA methylation, which is a fundamental mech-
anism for the epigenetic control of gene expression and
maintenance of genomic integrity.

At first glance, folate seems an unlikely candidate as a
protective agent against cancer. It has been known for some
time that folate can promote tumour growth, an observation
that has led to the development of anti-folate agents such as
methotrexate, which is used in cancer chemotherapy
(Kamen, 1997). Folate plays a key role in DNA replication
and cell division; therefore, reducing the amount of folate
in tissues with rapidly replicating cells will impair these
processes. However, healthy tissues also require an
adequate folate pool to maintain normal DNA synthesis and
function, and a disruption of these processes can lead to
genomic instability, creating an environment that potentiates
risk factors for carcinogenesis.
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Folate intake and risk of colo-rectal neoplasia

Prospective cohort (Giovannucci et al. 1995, 1998;
Glynn et al. 1996; Su & Arab 2001; Fuchs et al. 2002;
Konings et al. 2002; Terry et al. 2002) and case—control
(Benito et al. 1991; Freudenheim et al. 1991; Meyer &
White, 1993; Ferraroni ef al. 1994; La Vecchia et al. 1997,
White et al. 1997) studies that have investigated the effect
of dietary folate intake on CC risk generally show a
reduction in risk (about 35% overall) in subjects with the
highest dietary folate intake compared with those with the
lowest intake. These effects appeared to be greatest in
subjects with the lowest alcohol intake (Giovannucci et al.
1995; Glynn et al. 1996). In some studies regular use of
folic acid supplements was associated with the protective
effect (Giovannucci et al. 1998; Fuchs et al. 2002).
Only four studies showed no protective effect of folate
(Boutron-Ruault et al. 1996; Kato et al. 1999; Levi et al.
2000; Flood et al. 2002). A high folate intake has also been
associated with decreased risk of colo-rectal adenoma (CA;
Giovannucci et al. 1993; Boutron-Ruault ef al. 1996; Tseng
et al. 1996; Baron et al. 1998). CA is believed to be a
precursor of CC (Fenoglio & Lane, 1974) and is considered
an intermediary stage of colo-rectal neoplasia. Folate
supplementation (1 mg/d) has been shown to decrease CA
recurrence by 46% in thirty-one subjects with previously
resected CA (Paspatis & Karamanolis, 1994).

Biomarkers of folate status and risk of colo-rectal
neoplasia

The relationship between biomarkers of folate status and
risk of colo-rectal neoplasia is less well defined. Two
nested case—control studies provide conflicting information;
the first showed that serum folate concentrations were
significantly lower (P<0-001) in women with CC
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compared with controls (Kato ef al. 1999), while the second
showed no differences in serum folate concentrations
between male smokers with and without CC (Glynn et al.
1996). In a large case—control study investigating the
relationship between biomarkers of folate status and risk of
CA, serum and erythrocyte folate concentrations were
significantly different (P<0-05) between cases and
controls, but only in men (Bird ef al. 1995). On the other
hand, Paspatis ef al. (1995) showed that erythrocyte (but not
serum) folate concentrations were significantly lower in
subjects with CA compared with controls (P<0-01).

Two studies have reported data on the relationship
between plasma homocysteine concentration, which rises in
folate depletion and is thought to be a sensitive indicator of
cellular folate depletion, and risk of colo-rectal neoplasia.
The first study showed that plasma homocysteine concen-
trations were significantly higher in women with CC
compared with controls (P=0-04; Kato ef al. 1999), while a
smaller study showed that although plasma homocysteine
concentration was higher in subjects with CA compared
with controls (P=0-04), blood folate concentrations were
similar in both groups (Kim et al. 1998).

Polymorphisms of enzymes involved in the methylation
cycle and risk of colo-rectal neoplasia

The effect of common polymorphisms in key enzymes
involved in the methylation pathway (methylenetetrahydro-
folate reductase (MTHFR) 677C—T, MS 2756A—G and
cystathionine-B-synthase (CBS) 844ins68) on CC risk has
been investigated in several studies. MTHFR is a
critical enzyme in folate metabolism (Fig. 1), catalysing
the conversion of 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate. The 677C—T mutation decreases
MTHFR activity (Frosst et al. 1995), leading to reduced
plasma folate and increased plasma homocysteine.

Three studies have reported a decreased risk of CC in
individuals homozygous for the MTHFR 677C—T mutation
compared with those not carrying the mutation, although the
protective effect was absent in those with folate deficiency
or high alcohol intake (Chen et al. 1996; Ma et al. 1997;
Slattery et al. 1999). Studies in subjects with CA show
similar interactions between the MTHFR 677C—T
mutation, folate status and alcohol intake (Ulrich ef al. 1999;
Levine et al. 2000; Ulvik et al. 2001), suggesting that the
homozygous mutation increases CA risk under conditions of
low folate status or high alcohol intake. The MS 2756A—G
mutation has also been associated with a small non-
significant increase in risk of developing CC and CA
(Chen et al. 1998; Ma et al. 1999). MS is the vitamin
Bj;-dependent enzyme that catalyses the conversion of
homocysteine to methionine in the methylation cycle
(Fig. 1). This mutation can also lead to increased levels of
plasma homocysteine (Harmon ef al. 1999). One study has
also reported a lower frequency of the CBS 844ins68
mutation in CC subjects compared with controls, particu-
larly in cases with proximal colon tumours (Shannon et al.
2002). CBS irreversibly removes homocysteine from the
methylation cycle by transulfuration to cystathionine, a
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pathway that may become more important when folate
supply is limited.

It has been proposed that the MTHFR 677C—>T
mutation reduces CC risk by influencing the DNA
synthesis pathway (Fig. 1). As the mutation decreases
MTHEFR activity, there is inefficient conversion of 5,10-
methylenetetrahydrofolate to  5-methyltetrahydrofolate.
Increased levels of 5,10-methylenetetrahydrofolate, which
is a cofactor for nucleotide synthesis, may increase nucle-
otide precursor pools resulting in more efficient DNA
synthesis and repair. When there is an adequate supply of
methyl groups from folate the negative effects of these
polymorphisms on DNA methylation may be overcome.
Conversely, when the supply of methyl groups is low, both
DNA methylation and synthesis may be impaired,
increasing the risk of neoplasia. A high alcohol intake can
also overcome the apparent protective effect of the muta-
tions because it reduces the availability of methyl groups
(Finkelstein et al. 1974) and can cleave folate (Shaw et al.
1989), impair folate absorption (Romero et al. 1981) and
increase folate excretion (Eichner & Hillman, 1971).
Alcohol has also been shown to interfere with MS activity
(Barak et al. 2001).

Animal studies

Studies in animal models of cancer generally complement
the epidemiological evidence, although results have not
been entirely consistent. In controlled experiments using
the dimethylhydrazine rodent model of CC, folate depletion
increased tumour incidence following injection with
dimethylhydrazine, a colo-rectal carcinogen (Cravo et al.
1992; Kim et al. 1996b). In the study by Kim et al. (1996b)
folate supplementation of up to four times the dietary
requirement was associated with reduced incidence of
tumour growth. Studies that have used the azoxymethane
rodent model of CC have shown no effect of folate
supplementation on tumour incidence and aberrant crypt
foci (an early precursor lesion and well-established
intermediate biomarker of CC; Shivapurkar et al. 1995;
Reddy ef al. 1996). In some studies pharmacological doses
of folate increased aberrant crypt foci (Wargovich et al.
1996) and tumour growth (Kim et al. 1996b), suggesting
that in a strongly carcinogenic environment folate promotes
tumour growth. This outcome has been observed in animals
with well-established cancers (Baggott er al. 1992; Bills
et al. 1992).

Studies have also assessed the role of folate intake on
the development of intestinal polyps in a murine model
of intestinal tumorigenesis that carries a heterozygous
mutation in the adenomatous polyposis coli gene. The
mutation predisposes to polyp formation throughout the
small intestine and colon. These studies suggest that folate
supplementation only suppresses polyp formation in the
early stages of development (Song et al. 2000q,b). At
later time points, folate supplementation was associated
with an increase in the number of polyps, emphasising the
protective role of folate only at the initiation stages of
carcinogenesis.
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Potential mechanisms by which folate may influence
cancer risk

A low folate status is thought to increase the risk of
colo-rectal neoplasia by affecting both the DNA synthesis
and methylation pathways (Mason & Choi, 2000). Folate
depletion can induce deoxynucleotide pool imbalance and
uracil misincorporation in DNA in place of thymidine,
which leads to abnormal DNA synthesis and repair. As the
main focus of the present paper is on the role of folate in
DNA methylation, it is beyond its scope to review the
literature concerning the role of folate in DNA synthesis and
repair.

Alterations in DNA methylation

DNA methylation is thought to play crucial roles in the
regulation of gene expression and gene integrity. Of the four
bases that make up DNA, only cytosine has the potential to
be methylated in man and most mammals. Methylation
occurs at the 5 position of cytosine residues that form
cytosine—guanine sequences (CpG dinucleotides). The
pattern of methylation in these sequences is a heritable,
tissue- and species-specific change (Razin & Szyf, 1984).
Most CpG dinucleotides are clustered in small stretches of
DNA known as CpG islands. As CpG islands are mainly
found at the active sequences of genes (promoter regions),
DNA methylation in these regions is an important deter-
minant of gene expression. CpG islands are not usually
methylated and de novo methylation in these regions is
associated with gene silencing (Bird, 1986; Razin & Cedar,
1991). Elsewhere in the genome, approximately 70-90% of
CpG dinucleotides are methylated (Razin & Szyf, 1984).

Apart from altering gene expression, DNA methylation is
important in the conformational configuration and structural
stability of DNA (Antequera ef al. 1990; Keshet et al. 1986;
Lewis & Bird, 1991), binding of transcription factors
and other proteins (Keshet ef al. 1986; Boyes & Bird, 1991;
Levine et al. 1991), genomic imprinting (differential
expression of parental alleles in normal development; Li
et al. 1993) and mutations (Jones et al. 1992).

Collective evidence suggests that aberrations in DNA
methylation are a cause rather than a consequence of
carcinogenesis. Genomic and gene-specific DNA hypo-
methylation has been observed in cancer cells, including CC
(Feinberg & Vogelstein, 1983a; Goelz et al. 1985). DNA
hypomethylation in proto-oncogenes may lead to their
increased expression and has been reported in ras oncogenes
(Feinberg & Vogelstein, 1983b) and the c-myc oncogene
(Sharrard et al. 1992). DNA hypomethylation is also
associated with changes in interactions between DNA and
methyl-specific proteins and changes in chromatin con-
formation, both of which can enhance the accessibility of
specific sequences to DNA-damaging agents or endonu-
cleases, thereby promoting genomic instability (Wolf &
Migeon, 1985; Keshet ef al. 1986; Antequera et al. 1990;
Lewis & Bird, 1991). In cancer cells these hypomethylation
events are frequently accompanied by hypermethylation in
promoter regions of genes. DNA hypermethylation can
silence tumour suppressor genes, including adenomatous
polyposis coli, p16 and AMLH1, and has been reported in
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CA and CC (Sharrard er al. 1992; Hiltunen et al. 1997,
Rashid et al. 2001; Yi et al. 2001).

Some CpG sequences, e.g. in genes such as the
p53 tumour suppressor gene, are not only sites of DNA
methylation, but also mutational hotspots for cancers
(Hollstein et al. 1991; Jones et al. 1992; Greenblatt et al.
1994). Most mutations that occur in CpG sequences are
cytosine to thymine transitions. Several mechanisms have
been proposed for this transition, including spontaneous
deamination of methylated cytosine to thymine (Rideout
et al. 1990), enzymic deamination of methylated cytosine
to thymine (Jones ef al. 1992; Yebra & Bhagwat 1995) and
enzymic deamination of unmethylated cytosine to uracil
followed by methylation to thymine by methyltransferase,
which binds to DNA and blocks repair of DNA mismatches
(Jones et al. 1992; Shen et al. 1992; Yang et al. 1995).

Animal studies on DNA methylation

Diets deficient in methyl group donors (choline, folate,
methionine and vitamin B;,) have been shown to increase the
risk of spontaneous and chemically-induced liver cancer in
animals (Locker et al. 1986; Jones et al. 1992; Shen et al.
1992). Genomic and gene-specific (c-myc, c-fos and c-ha-ras
proto-oncogenes and the p53 tumour suppressor gene) DNA
hypomethylation occurs well before tumour growth (Wilson
etal. 1984; Locker et al. 1986; Dizik et al. 1991; Cravo et al.
1992; Wainfan & Poirier, 1992; Zapisek et al. 1992;
Pogribny et al. 1995; Kim et al. 1996b; Pogribny et al.
1997). Studies have also reported altered levels of hepatic
S-adenosylmethionine during methyl-group depletion or
folate deficiency (Henning et al. 1989; Balaghi & Wagner,
1993; Kim et al. 1994; Miller et al. 1994). It is not clear
whether DNA hypomethylation occurs secondary to reduced
levels of S-adenosylmethionine.

One study has shown that isolated folate deficiency leads
to genomic DNA hypomethylation in rat liver (Balaghi &
Wagner, 1993), although data from subsequent studies
suggest that folate deficiency alone does not induce
genomic DNA hypomethylation in liver and colon DNA
(Kim et al. 1995; Duthie et al. 2000; Le Leu et al. 2000).
The reason could be that decreased S-adenosylmethionine
availability enhances the activity of DNA methyltransferase,
the enzyme responsible for DNA methylation (Shivapurkar
& Poirier, 1983; Henning et al. 1989).

However, isolated folate deficiency has been shown to
induce hypomethylation at critical loci, which is thought
to be more important in carcinogenesis than genomic
DNA hypomethylation. The p53 tumour suppressor gene is
critically involved in carcinogenesis (Hollstein et al. 1991;
Greenblatt et al. 1994); exons 5-8 of this gene contain large
numbers of CpG nucleotides and are regarded as a muta-
tional hotspot. Isolated folate deficiency has been shown to
cause hypomethylation within exons 6 and 7 of the p53
tumour suppressor gene in rat colon (Kim et al. 1996a,
1997). Dimethylhydrazine treatment of the folate-depleted
rats also caused DNA hypomethylation in exon 8, which
was effectively overcome by increasing levels of dietary
folate in a dose-responsive manner (Kim et al. 1996a). Two
studies in rats have shown a parallel increase in strand
breaks with decreasing DNA methylation in this gene
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during folate deficiency (Pogribny et al. 1995; Kim et al.
1997). Folic acid supplementation has also been observed to
prevent p53 mutations in subjects with chronic ulcerative
colitis, a disease associated with increased risk of CC
(Shapiro et al. 1997).

Human studies on DNA methylation

Methylation abnormalities are not confined entirely to the
neoplasm. One small study has shown that DNA from
normal-appearing colo-rectal mucosa was significantly
(P<0-005) hypomethylated in twelve subjects with cancer
compared with eight controls (Cravo et al. 1994). A study
was carried out to investigate whether genomic DNA
methylation in normal-appearing colo-rectal mucosa
differed between thirty-five subjects with CA, twenty-eight
subjects with CC and seventy-six controls free of any colo-
rectal abnormality. DNA methylation was determined by
measuring [3H]methyl incorporation into DNA (Balaghi &
Wagner, 1993). Thus, an increase in [*H]methyl incorpor-
ation reflects a decrease in DNA methylation. After
adjusting for various lifestyle factors (gender, age, BMI,
smoking and alcohol intake) and polymorphisms in
MTHFR, MS and CBS genes, DNA methylation in normal-
appearing colo-rectal mucosa was 26 and 30 % lower in
subjects with CA (P =0-009) and CC (P =0-08) respectively
compared with controls (Pufulete er al. 2003; Fig. 2).

Leucocyte DNA methylation has been shown to decrease
in response to moderate folate depletion in post-menopausal
women (Jacob et al. 1998; Rampersaud et al. 2000). DNA
methylation was positively correlated with dietary folate
intake and plasma folate (Jacob er al. 1998) and negatively
correlated with plasma homocysteine (Rampersaud et al.
2000). This relationship was not confirmed in a study in
younger subjects (Fenech et al. 1998). Two studies have
also shown interactions between the MTHFR 677C—>T
mutation, folate status and DNA methylation in leucocytes
(Stern et al. 2000; Friso et al. 2002).
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Fig. 2. Differences in C3H3 incorporation into DNA from normal-
appearing colo-rectal mucosa in subjects with colo-rectal adenoma
(zz) and colo-rectal cancer (mm) and in control subjects (—). Values
are means with their standard errors represented by vertical bars.
Mean value was significantly different from the control value:
**P=0-009. (From Pufulete et al. 2003.)
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To date, there are no published studies that have assessed
the influence of folate status on DNA methylation in colo-
rectal mucosa. This relationship was investigated in a cross-
sectional study of sixty-one subjects (twenty-nine men and
thirty-two women, 38-78 years) free from CA or CC. A
score based on estimates of dietary intake, serum and
erythrocyte folate concentrations was used to assess folate
status. DNA hypomethylation was negatively correlated
with folate status (P=0-01) and positively correlated with
plasma homocysteine (P=0-03; M Pufulete, P Emery and
TAB Sanders, unpublished results).

Folate supplementation and DNA methylation

A small number of randomised double-blind placebo-
controlled folate intervention trials in subjects with CC and
CA have shown that folate supplementation can alter
genomic DNA methylation. DNA hypomethylation in colo-
rectal mucosa was reversed following 6 months of supple-
mentation with folate (10mg/d) in eleven subjects with
either CA or CC following the removal of these lesions
(Cravo et al. 1994). This outcome was not observed in the
eleven subjects receiving placebo. A 3-month crossover
study in twenty subjects with resected CA, using half the
dose of folate (5 mg/d), showed a 40% increase in genomic
DNA methylation in colo-rectal mucosa in subjects with a
single adenoma (P =0-05), although subjects with multiple
adenomas did not respond (Cravo et al. 1998). In another
study both folate supplementation (5 mg/d) and placebo for
1 year in twenty subjects with CA increased genomic DNA
methylation and decreased strand breaks in exons 5-8 of
the p53 tumour suppressor gene (Kim et al. 2001). The
corresponding changes in the placebo group suggest that
factors other than folate were responsible for the observed
improvements.

A randomised placebo-controlled study was conducted in
order to determine whether short-term (10 weeks) supple-
mentation with a physiological dose of folate (400 pg/d)
could increase DNA methylation in leucocytes and colo-
rectal mucosa in thirty-one subjects with CA. The results
showed that after adjusting for various lifestyle factors
(gender, age, BMI, smoking and alcohol intake) and poly-
morphisms in MTHFR 677C—T and MS 2756 A—G folate
supplementation increased genomic DNA methylation by
31% (P=0-05 for folate v. placebo; Fig. 3) and 25%
(P=0:09 for folate v. placebo) respectively in leucocytes
and colo-rectal mucosa (Pufulete et al. 2002a).

Conclusion

There is a growing body of evidence linking a low folate
status to DNA hypomethylation and colo-rectal neoplasia.
Further research is needed to clarify the mechanisms
through which genomic DNA hypomethylation increases
the risk of carcinogenesis, and to determine the between-
and within-person variation in DNA methylation and to
define normal ranges of DNA methylation, thus providing a
definition of ‘hypomethylation’.

The proposed fortification programme in the UK is likely
to improve folate status and lower plasma homocysteine
concentration in the population, but more rigorous studies
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Fig. 3. Changes in [3H]methyl incorporation into leucocyte DNA
following a 10-week period of supplementation with folic acid or
placebo in thirty-one subjects with colo-rectal adenoma. (zz), week
m), week 10. Values are means with their standard errors
represented by vertical bars. Change from baseline was significantly
different from that for the placebo: *P=0-05. (From Pufulete et al.
2002a.)

are required before speculating on any possible benefits on
CC risk. There are currently three randomised double-blind
placebo-controlled multi-centre folate chemo-prevention
trials ongoing in the USA (New England Medical Centre
Multicentre Study, Darmouth Medical Centre Multicentre
Study and the Nurses’ Health Study and Health Profes-
sionals Follow-up Study). All three studies are using
supraphysiological doses of folate (1-5 mg/d) and the latter
two studies have CA recurrence as an end point. It is
likely that the folate fortification programme that began in
the USA after some of these trials commenced will
influence their outcome, so it is open to question whether
these studies will clarify the effect of folate supplementation
on colo-rectal neoplasia.
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